TCP IP网络编程(四) 基于TCP的服务器端、客户端

文章目录

    • 理解TCP、UDP
      • TCP/IP协议栈
      • 链路层
      • IP层
      • TCP/UDP层
      • 应用层
    • 实现基于TCP的服务器端、客户端
      • TCP服务器端的默认函数调用顺序
      • 进入等待连接请求状态
      • 受理客户端连接请求
      • TCP客户端的默认函数调用顺序
      • 基于TCP的服务器端、客户端函数调用关系
    • 实现迭代服务器端、客户端
      • 实现迭代服务器端
      • 迭代回声服务器端、客户端

理解TCP、UDP

TCP/IP协议栈

TCP/IP协议栈

请添加图片描述

TCP/IP协议栈共分为4层,可以理解为数据收发分成了4个层次化过程。

TCP协议栈

在这里插入图片描述

UDP协议栈

在这里插入图片描述

链路层

链路层是物理连接领域标准化的结果,也是最基本的领域,专门定义LAN、WAN、MAN等网络标准。两台主机通过网络进行数据交换,这需要像下图所示的物理连接,链路层就负责这些标准。

在这里插入图片描述

IP层

IP协议是面向消息的,不可靠的协议。每次传输数据时会帮我们选择路径,但并不一致。如果传输中发生路径错误,则选择其他路径。但如果发生数据丢失或错误,则无法解决。IP协议无法应对数据错误。

TCP/UDP层

IP层解决数据传输中路径选择问,只需要按照此路径传输数据即可。TCP和UDP层以IP层提供的路径信息为基础完成实际的数据传输,故该层又称为传输层。TCP可以保证可靠的数据传输,但它发送数据时以IP层为基础。

在这里插入图片描述

TCP和UDP存在于IP层之上,决定主机之间的数据传输方式,TCP协议确认后向不可靠的IP协议赋予可靠性。

应用层

以上类容是套接字通信过程中自动处理的。选择数据传输路径、数据确认过程都被隐藏到套接字内部。但掌握了这些理论,才能编写出符合需求的网络程序。

向大家提供的工具就是套接字,大家只需要利用套接字编写出程序即可。编写软件的过程中,需要根据程序特点决定服务器端和客户端之间的数据传输规则,这便是应用层协议。网络编程的大部分内容就是设计并实现应用层协议。

实现基于TCP的服务器端、客户端

TCP服务器端的默认函数调用顺序

1、socket()    		创建套接字
2、bind()			分配套接字地址
3、listen()			等待连接请求状态
4、accept()			允许连接
5、read()/write()	数据交换
6、close()			断开连接

进入等待连接请求状态

我们已经调用bind函数给套接字分配了地址,接下来通过调用listen函数进入等待连接请求状态,只有调用了listen函数,客户端才能进入可发出连接请求的状态,这时客户端才可以调用connect函数。

#include<sys/socket.h>int listen(int sock, int backlog);成功返回0,失败返回-1sock	为希望进入等待连接请求状态的文件描述符,传递的描述符套接字参数为服务器端套接字backlog 连接请求等待队列的长度,若为5,则队列长度为5,表示最多使5个连接请求进入队列

等待连接请求状态是指客户端请求连接时,受理连接前一直使连接处于等待状态,客户端连接请求本身也是网络中收到的一种数据,而想要接受就需要套接字。

受理客户端连接请求

调用listen函数后,有新的连接请求,则应按序受理。受理请求意味着进入可接受数据的状态,此时就需要套接字来接受数据,但服务器端的套接字在做门卫,不能再充当接受数据的角色。因此需要另外一个套接字,该套接字不需要亲自创建,accept函数将会创建套接字并连接到发起请求的客户端。

#include <sys/socket.h>int accept(int sock, struct sockaddr* addr, socklen_t* addrlen);成功返回创建的套接字文件描述符,失败返回-1sock  	服务器套接字的文件描述符addr  	保存发起连接请求的客户端地址信息的变量的地址,调用函数后会向该变量填充客户端地址信息addrlen	第二个参数addr结构体的长度,调用函数后会向该变量填充客户端地址长度

accept函数受理连接请求等待队列中待处理中的客户端连接请求。函数调用成功时,accept函数内部将产生用于数据I/O的套接字,并返回文件描述符,套接字使自动创建的,并且自动与发起连接请求的客户端建立连接。

TCP客户端的默认函数调用顺序

TCP客户端函数的调用顺序

1、socket()			创建套接字
2、connect()			请求连接
3、read()/write()	交换数据
4、closr()			断开连接

与服务器端相比,区别就在于请求连接,它使创建客户端套接字后向服务器端发起的连接请求,服务器端调用listen函数后创建请求等待队列,之后客户端即可请求连接。

#include<sys/socket.h>int connect(int sock, struct sockaddr* servaddr, socklen_t addrlen);成功返回0,失败返回-1sock  		客户端套接字文件描述符servaddr	保存目标服务器地址信息的变量地址值addrlen	以字节为单位,传递第二个参数的地址变量的长度

客户端调用connect函数后,发生以下情况才会返回

  • 服务器端接受连接请求
  • 发生断网等异常情况而中断连接请求

接受连接请求并不是服务器端调用accept函数,其实是服务器端把连接请求信息记录到等待队列中,因此connect函数返回后并不立即进行数据交换

基于TCP的服务器端、客户端函数调用关系

在这里插入图片描述

总体流程如下:

​ 服务器端创建套接字后连续调用bind、listen函数进入等待状态,客户端通过调用connect函数发起连接请求,客户端侄女等到服务器端调用listen函数之后才能调用connect发起连接请求,也要主义客户端调用connect函数前,服务器端可能率先调用accept函数,此时服务器端调用accept函数进入阻塞状态,知道客户端调用connect函数为止。

实现迭代服务器端、客户端

实现迭代服务器端

在这里插入图片描述

实现迭代服务器端最简单的办法就是插入循环语句反复调用accept函数。循环最后的close(client)关闭的调用accept函数创建的套接字,意味着结束了针对某一客户端的服务,此时如果还想服务于其他客户端,就要重新调用accept函数。目前同一时刻只能服务于一个客户端,学完进程和线程后,就可以编写同时服务于多个客户端的服务器端。

迭代回声服务器端、客户端

回声服务器端以及配套的回声客户端的程度的基本运行方式:

  • 服务器端在同一时刻只与一个客户端相连,并提供回声服务。
  • 服务器端依次向5个客户端提供服务并退出。
  • 客户端接受用户的输入字符串并发送到服务器端。
  • 服务器端将收到的字符串数据传回客户端,即“回声”。
  • 两端之间的字符串回声一直执行到客户端输入Q为止。

首先介绍满足以上要求的回声服务器端

echo_server.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <sys/socket.h>#define BUF_SIZE 1024
void error_handling(char *message);int main(int argc, char *argv[])
{int serv_sock, clnt_sock;char message[BUF_SIZE];int str_len, i;struct sockaddr_in serv_adr;struct sockaddr_in clnt_adr;socklen_t clnt_adr_sz;if(argc!=2) {printf("Usage : %s <port>\n", argv[0]);exit(1);}serv_sock=socket(PF_INET, SOCK_STREAM, 0);   if(serv_sock==-1)error_handling("socket() error");memset(&serv_adr, 0, sizeof(serv_adr));serv_adr.sin_family=AF_INET;serv_adr.sin_addr.s_addr=htonl(INADDR_ANY);serv_adr.sin_port=htons(atoi(argv[1]));if(bind(serv_sock, (struct sockaddr*)&serv_adr, sizeof(serv_adr))==-1)error_handling("bind() error");if(listen(serv_sock, 5)==-1)error_handling("listen() error");clnt_adr_sz=sizeof(clnt_adr);for(i=0; i<5; i++){clnt_sock=accept(serv_sock, (struct sockaddr*)&clnt_adr, &clnt_adr_sz);if(clnt_sock==-1)error_handling("accept() error");elseprintf("Connected client %d \n", i+1);while((str_len=read(clnt_sock, message, BUF_SIZE))!=0)write(clnt_sock, message, str_len);close(clnt_sock);}close(serv_sock);return 0;
}void error_handling(char *message)
{fputs(message, stderr);fputc('\n', stderr);exit(1);
}

运行结果

gcc echo_server.c -o eserver
./eserver 9190
输出:
Connecten client 1
Connecten client 2
Connecten client 3

回声客户端代码

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <sys/socket.h>#define BUF_SIZE 1024
void error_handling(char *message);int main(int argc, char *argv[])
{int sock;char message[BUF_SIZE];int str_len;struct sockaddr_in serv_adr;if(argc!=3) {printf("Usage : %s <IP> <port>\n", argv[0]);exit(1);}sock=socket(PF_INET, SOCK_STREAM, 0);   if(sock==-1)error_handling("socket() error");memset(&serv_adr, 0, sizeof(serv_adr));serv_adr.sin_family=AF_INET;serv_adr.sin_addr.s_addr=inet_addr(argv[1]);serv_adr.sin_port=htons(atoi(argv[2]));if(connect(sock, (struct sockaddr*)&serv_adr, sizeof(serv_adr))==-1)error_handling("connect() error!");elseputs("Connected...........");while(1) {fputs("Input message(Q to quit): ", stdout); 	//如果输入Q说明结束while循环fgets(message, BUF_SIZE, stdin);if(!strcmp(message,"q\n") || !strcmp(message,"Q\n"))  //检验message是否为Q/qbreak;write(sock, message, strlen(message));str_len=read(sock, message, BUF_SIZE-1);message[str_len]=0;printf("Message from server: %s", message);}close(sock);return 0;
}void error_handling(char *message)
{fputs(message, stderr);fputc('\n', stderr);exit(1);
}

运行结果

gcc echo_client.c -o eclient
./eclient 192.168.233.20 9190
输出:
Connected ....
Input message: hello
Message from server: hello
Input message : Q

这是《TCP/IP网络编程》专栏的第四篇文章,欢迎各位读者订阅!

更多资料点击 GitHub 欢迎各位读者去Star

⭐学术交流群Q 754410389 持续更新中~~~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/129684.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

RK3399平台开发系列讲解(内核调试篇)spidev_test工具使用

🚀返回专栏总目录 文章目录 一、环境二、执行测试三、回环测试四、字节发送测试五、32位数据发送测试沉淀、分享、成长,让自己和他人都能有所收获!😄 📢 在 Linux 系统上,“spidev_test” 是一个用于测试和配置 SPI(Serial Peripheral Interface)设备的命令行工具。…

Java拓展--空间复杂度和时间复杂度

空间复杂度和时间复杂度 文章目录 空间复杂度和时间复杂度空间复杂度时间复杂度**评价排序算法****时间频度****什么是时间频度****忽略常数项****忽略低次项****忽略系数** **时间复杂度****什么是时间复杂度****计算时间复杂度的方法****常见的时间复杂度** **常见的时间复杂…

Weblogic(CVE-2017-10271)与 Struts2(s2-045) 反序列化漏洞复现

文章目录 Java 反序列化漏洞复现weblogic环境搭建漏洞复现 Struts2(s2-045)环境搭建漏洞复现**漏洞利用** Java 反序列化漏洞复现 weblogic Weblogic < 10.3.6 ‘wls-wsat’ XMLDecoder 反序列化漏洞&#xff08;CVE-2017-10271&#xff09; ​ Weblogic的WLS Security组…

【ARM CoreLink 系列 2 -- CCI-400 控制器简介】

文章目录 CCI-400 介绍DVM 机制介绍DVM 消息传输过程TOKEN 机制介绍 下篇文章&#xff1a;ARM CoreLink 系列 3 – CCI-550 控制器介绍 CCI-400 介绍 CCI&#xff08;Cache Coherent Interconnect&#xff09;是ARM 中 的Cache一致性控制器。 CCI-400 将 Interconnect 和coh…

SUMPRODUCT函数

SUMPRODUCT函数返回相应范围或数组的个数之和。 默认操作是乘法&#xff0c;但也可以执行加减除运算。 本示例使用 SUMPRODUCT 返回给定项和大小的总销售额&#xff1a; SUMPRODUCT 匹配项 Y/大小 M 的所有实例并求和&#xff0c;因此对于此示例&#xff0c;21 加 41 等于 62。…

pytorch中的词性标注_seq2seq_比较naive的示例

一、各种用法_查漏补缺&#xff1a; 1.关于numpy中的argmax的用法&#xff1a; numpy之argmax()函数 - 知乎 (zhihu.com) 具体看这篇文章够了 二、代码注释&#xff1a; 参考&#xff1a; Sequence Models and Long Short-Term Memory Networks — PyTorch Tutorials 2.0.…

【1++的数据结构】之map与set(二)

&#x1f44d;作者主页&#xff1a;进击的1 &#x1f929; 专栏链接&#xff1a;【1的数据结构】 文章目录 一&#xff0c;前言二&#xff0c;红黑树的概念及其性质三&#xff0c;红黑树的插入四&#xff0c;红黑树的验证五&#xff0c;map与set的封装红黑树迭代器的实现map重载…

qt 正则表达式

以上是正则表达式的格式说明 以下是自己写的正则表达式 22-25行 是一种设置正则表达式的方式&#xff0c; 29-34行 : 29行 new一个正则表达式的过滤器对象 30行 正则表达式 的过滤格式 这个格式是0-321的任意数字都可以输入 31行 将过滤格式保存到过滤器对象里面 32行 将验…

快人一步进入智能新纪元,《新程序员006》来了!

文 | 王启隆 曾浩辰 出品 | 《新程序员》编辑部 亲爱的 CSDN 以及《新程序员》的读者朋友们&#xff0c;金秋将至&#xff0c;《新程序员006&#xff1a;人工智能新十年》也正式与大家见面&#xff01;现在点击下方封面&#xff0c;即可订阅&#xff0c;立即阅读电子书。精美…

UNIX网络编程卷一 学习笔记 第三十章 客户/服务器程序设计范式

开发一个Unix服务器程序时&#xff0c;我们本书做过的进程控制&#xff1a; 1.迭代服务器&#xff08;iterative server&#xff09;&#xff0c;它的适用情形极为有限&#xff0c;因为这样的服务器在完成对当前客户的服务前无法处理已等待服务的新客户。 2.并发服务器&#x…

Java笔记040-反射/反射机制、Class类

目录 反射(reflection) 一个需求引出反射 反射机制 Java反射机制原理图 Java反射机制可以完成 反射相关的主要类 反射机制的优点和缺点 反射调用优化-关闭访问检查 Class类 基本介绍 代码解释部分 类加载方法 应用实例&#xff1a;Class02.java 获取Class类对象 …

【17 > 分布式接口幂等性】2. Update的幂等性原理解析

一、 根据 唯一业务号去更新 数据的情况 1.1 原理 1.2 操作 1.3 实战 Stage 1&#xff1a;表添加 version 字段 Stage 2&#xff1a;前端 > 版本号放入隐藏域 Stage 3&#xff1a;后台 > 使用版本号作为更新条件 二、更新操作没有唯一业务号&#xff0c;可使用Tok…

RP9学习-1

一.基础 1.10个面板位置示意图&#xff1a; 2.常用英文 1.鼠标点击&#xff1a;click or tap 3.工作区 1.恢复默认工作区&#xff1a; view-->reset view 2.自定义工作区&#xff1a; 可以用鼠标左键拖动面板到独立的位置或者吸附到其他面板上 3.自定义工具栏 view-->T…

Adobe Acrobat Reader界面改版 - 解决方案

问题 日期&#xff1a;2023年9月 Adobe Acrobat Reader下文简称Adobe PDF Reader&#xff0c;此软件会自动进行更新&#xff0c;当版本更新至2023.003.20284版本后。 软件UI界面会大改版&#xff1a;书签页变成了右边、工具栏变到了左边、缩放按钮变到了右下角&#xff0c;如…

打造高效的私密论坛网站:Cpolar内网穿透+HadSky轻量级搭建指南

文章目录 前言1. 网站搭建1.1 网页下载和安装1.2 网页测试1.3 cpolar的安装和注册 2. 本地网页发布2.1 Cpolar临时数据隧道2.2 Cpolar稳定隧道&#xff08;云端设置&#xff09;2.3 Cpolar稳定隧道&#xff08;本地设置&#xff09;2.4 公网访问测试 总结 前言 经过多年的基础…

怎么激活IDM

IDM是一个下载软件。 激活它需要用到git上面的一个项目&#xff0c;同时网络要能连到github GitHub - lstprjct/IDM-Activation-Script: IDM Activation & Trail Reset Script WINR 输入powershell 输入命令行 iex(irm is.gd/idm_reset) 或者 iwr -useb https://raw.…

vim常用操作

一、Esc键 & 命令模式 1.撤销&#xff1a;u 恢复撤销&#xff1a;Ctrl r 2.定位 行首&#xff1a;0 行尾&#xff1a;$ 第7行&#xff1a;7G 3.编辑 下行开始插入&#xff1a; o 删除行&#xff1a;dd 复制3行并粘贴&#xff1a;3yy ---> p 复制单词并粘贴&#…

【Leetcode-面试经典150题-day22】

目录 97. 交错字符串 97. 交错字符串 题意&#xff1a; 给定三个字符串 s1、s2、s3&#xff0c;请你帮忙验证 s3 是否是由 s1 和 s2 交错 组成的。 两个字符串 s 和 t 交错 的定义与过程如下&#xff0c;其中每个字符串都会被分割成若干 非空 子字符串&#xff1a; s s1 s2 …

Hadoop:HDFS--分布式文件存储系统

目录 HDFS的基础架构 VMware虚拟机部署HDFS集群 HDFS集群启停命令 HDFS Shell操作 hadoop 命令体系&#xff1a; 创建文件夹 -mkdir 查看目录内容 -ls 上传文件到hdfs -put 查看HDFS文件内容 -cat 下载HDFS文件 -get 复制HDFS文件 -cp 追加数据到HDFS文件中 -appendTo…

初阶扫雷(超详解)

✨博客主页&#xff1a;小钱编程成长记 &#x1f388;博客专栏&#xff1a;C语言小游戏 &#x1f388;推荐相关博文&#xff1a;初阶三子棋&#xff08;超详解&#xff09; 初阶扫雷 1.游戏介绍2.基本思路3.实现前的准备4.实现步骤4.1 打印菜单4.2 初始化扫雷棋盘4.3 打印扫雷棋…