R语言统计学DOE实验设计:用平衡不完全区组设计(BIBD)分析纸飞机飞行时间实验数据...

全文链接:http://tecdat.cn/?p=31010

平衡不完全区组设计(BIBD)是一个很好的研究实验设计,可以从统计的角度看各种所需的特征点击文末“阅读原文”获取完整代码数据)。

最近我们被客户要求撰写关于BIBD的研究报告,包括一些图形和统计输出。

对于一个BIBD有K个观测,重复r次实验。还有第5参数lamda,记录其中每对实验发生在设计块的数目。

生成一组BIBD设计,设计行列和每块的元素具体数目。如果BIBD(b,v,r,k)存在则 :1=v

我们设置区组

BIB(7,7, 4, 2)##      [,1] [,2] [,3] [,4]  
## [1,]    2    3    5    6  
## [2,]    3    4    6    7  
## [3,]    1    2    4    6  
## [4,]    1    5    6    7  
## [5,]    2    4    5    7  
## [6,]    1    2    3    7  
## [7,]    1    3    4    5

这种设计不是BIBD,因为处理不是所有重复的设计都有相同的次数,我们可以通过isGUID检查。对于本例:

BIB(7,7, 4, 2)##      [,1] [,2] [,3] [,4]  
## [1,]    2    3    5    6  
## [2,]    1    5    6    7  
## [3,]    2    4    5    7  
## [4,]    1    2    4    6  
## [5,]    1    2    3    7  
## [6,]    3    4    6    7  
## [7,]    1    3    4    5

然后,我们修改参数,来查看该模型是否生产BIBD

my.design##      [,1] [,2] [,3]  
## [1,]    1    2    6  
## [2,]    2    3    7  
## [3,]    1    4    7  
## [4,]    3    4    6  
## [5,]    1    3    5  
## [6,]    2    4    5  
## [7,]    5    6    7##  
## [1] The design is a balanced incomplete block design w.r.t. rows.

从结果来看,该设计是一个平衡不完全区组设计 。在这种情况下,我们能够生成有效BIBD实验使用指定的参数。


点击标题查阅往期内容

outside_default.png

R语言因子实验设计nlme拟合非线性混合模型分析有机农业施氮水平

outside_default.png

左右滑动查看更多

outside_default.png

01

outside_default.png

02

outside_default.png

03

outside_default.png

04

outside_default.png

分析Box-Behnken设计

Box-Behnken设计的优良在于,可以将其应用于分析2至5个因子的实验。

下面将其扩展到回归模型的实验设计中,比如在下面的一个纸飞机的飞行时间的实验。这是另一个多种因子的实验,在四个变量。这些数据已经被编码。原始的变量是机翼面积A,翼状R,机身宽度W,和长度L , 在数据集中的每个观测代表的10次重复的的纸飞机在每个实验条件下的结果。我们在这里研究平均飞行时间 。

使用响应曲面法对变量进行回归模型拟合

相关视频

查看模型结果

summary(heli.rsm)##  
## Call:  
## rsm(formula = ave ~ block + SO(x1, x2, x3, x4), data = heli)  
##  
##               Estimate Std. Error  t value  Pr(>|t|)     
## (Intercept) 372.800000   1.506375 247.4815 < 2.2e-16 ***  
## block2       -2.950000   1.207787  -2.4425 0.0284522 *   
## x1           -0.083333   0.636560  -0.1309 0.8977075     
## x2            5.083333   0.636560   7.9856 1.398e-06 ***  
## x3            0.250000   0.636560   0.3927 0.7004292     
## x4           -6.083333   0.636560  -9.5566 1.633e-07 ***  
## x1:x2        -2.875000   0.779623  -3.6877 0.0024360 **  
## x1:x3        -3.750000   0.779623  -4.8100 0.0002773 ***  
## x1:x4         4.375000   0.779623   5.6117 6.412e-05 ***  
## x2:x3         4.625000   0.779623   5.9324 3.657e-05 ***  
## x2:x4        -1.500000   0.779623  -1.9240 0.0749257 .   
## x3:x4        -2.125000   0.779623  -2.7257 0.0164099 *   
## x1^2         -2.037500   0.603894  -3.3739 0.0045424 **  
## x2^2         -1.662500   0.603894  -2.7530 0.0155541 *   
## x3^2         -2.537500   0.603894  -4.2019 0.0008873 ***  
## x4^2         -0.162500   0.603894  -0.2691 0.7917877     
## ---  
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
##  
## Multiple R-squared:  0.9555, Adjusted R-squared:  0.9078  
## F-statistic: 20.04 on 15 and 14 DF,  p-value: 6.54e-07  
##  
## Analysis of Variance Table  
##  
## Response: ave  
##                     Df  Sum Sq Mean Sq F value    Pr(>F)  
## block                1   16.81   16.81  1.7281  0.209786  
## FO(x1, x2, x3, x4)   4 1510.00  377.50 38.8175 1.965e-07  
## TWI(x1, x2, x3, x4)  6 1114.00  185.67 19.0917 5.355e-06  
## PQ(x1, x2, x3, x4)   4  282.54   70.64  7.2634  0.002201  
## Residuals           14  136.15    9.72                   
## Lack of fit         10  125.40   12.54  4.6660  0.075500  
## Pure error           4   10.75    2.69                   
##  
## Stationary point of response surface:  
##         x1         x2         x3         x4  
##  0.8607107 -0.3307115 -0.8394866 -0.1161465  
##  
## Stationary point in original units:  
##         A         R         W         L  
## 12.916426  2.434015  1.040128  1.941927  
##  
## Eigenanalysis:  
## $values  
## [1]  3.258222 -1.198324 -3.807935 -4.651963  
##  
## $vectors  
##          [,1]       [,2]       [,3]        [,4]  
## x1  0.5177048 0.04099358  0.7608371 -0.38913772  
## x2 -0.4504231 0.58176202  0.5056034  0.45059647  
## x3 -0.4517232 0.37582195 -0.1219894 -0.79988915  
## x4  0.5701289 0.72015994 -0.3880860  0.07557783

绘制拟合值的等高线图

contour(

outside_default.png

可视化结果

围绕拟合面,我们可以画出样本拟合点的位置。默认情况下,每个小区显示多个轮廓线的图像。可以看到,图中显示的不一定是等高线图的中心(默认可变范围是从数据中获得 );而是它设置在在坐标轴上的变量对应的值。因此,左上角的图中绘制了在x1和x2对应的拟合值,其中x3 =-0.839和x4=-0.116, 在固定的值,最大的就是该坐标X1 =0.861,X2=-0.331。


outside_default.png

点击文末“阅读原文”

获取全文完整代码数据资料。

本文选自《R语言统计学DOE实验设计:用平衡不完全区组设计(BIBD)分析纸飞机飞行时间实验数据》。

outside_default.png

outside_default.png

点击标题查阅往期内容

非线性混合效应 NLME模型对抗哮喘药物茶碱动力学研究

R语言用线性混合效应(多水平/层次/嵌套)模型分析声调高低与礼貌态度的关系

R语言LME4混合效应模型研究教师的受欢迎程度

R语言nlme、nlmer、lme4用(非)线性混合模型non-linear mixed model分析藻类数据实例

R语言混合线性模型、多层次模型、回归模型分析学生平均成绩GPA和可视化

R语言线性混合效应模型(固定效应&随机效应)和交互可视化3案例

R语言用lme4多层次(混合效应)广义线性模型(GLM),逻辑回归分析教育留级调查数据

R语言 线性混合效应模型实战案例

R语言混合效应逻辑回归(mixed effects logistic)模型分析肺癌数据

R语言如何用潜类别混合效应模型(LCMM)分析抑郁症状

R语言基于copula的贝叶斯分层混合模型的诊断准确性研究

R语言建立和可视化混合效应模型mixed effect model

R语言LME4混合效应模型研究教师的受欢迎程度

R语言 线性混合效应模型实战案例

R语言用Rshiny探索lme4广义线性混合模型(GLMM)和线性混合模型(LMM)

R语言基于copula的贝叶斯分层混合模型的诊断准确性研究

R语言如何解决线性混合模型中畸形拟合(Singular fit)的问题

基于R语言的lmer混合线性回归模型

R语言用WinBUGS 软件对学术能力测验建立层次(分层)贝叶斯模型

R语言分层线性模型案例

R语言用WinBUGS 软件对学术能力测验(SAT)建立分层模型

使用SAS,Stata,HLM,R,SPSS和Mplus的分层线性模型HLM

R语言用WinBUGS 软件对学术能力测验建立层次(分层)贝叶斯模型

SPSS中的多层(等级)线性模型Multilevel linear models研究整容手术数据

用SPSS估计HLM多层(层次)线性模型模型

outside_default.png

outside_default.png

outside_default.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/130028.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C++进阶】二叉树进阶之二叉搜索树

&#x1f466;个人主页&#xff1a;Weraphael ✍&#x1f3fb;作者简介&#xff1a;目前学习C和算法 ✈️专栏&#xff1a;C航路 &#x1f40b; 希望大家多多支持&#xff0c;咱一起进步&#xff01;&#x1f601; 如果文章对你有帮助的话 欢迎 评论&#x1f4ac; 点赞&#x1…

北斗高精度定位,破解共享单车停车乱象

如今&#xff0c;共享单车已经成为了许多人出行的首选方式&#xff0c;方便了市民们的“最后一公里”&#xff0c;给大家的生活带来了很多便利。然而&#xff0c;乱停乱放的单车也给城市治理带来了难题。在这种情况下&#xff0c;相关企业尝试将北斗导航定位芯片装载到共享单车…

SpringMVC综合案例

目录 一、SpringMVC常用注解 二、传递参数 2.1 基础类型String 2.2 复杂类型 2.3 RequestParam 2.4 PathVariable 2.5 RequestBody 2.6 RequestHeader 2.7 请求方法 三、返回值 3.1 void 3.2 String 3.3 StringModel 3.4 ModelAndView 四、页面跳转 4.1 转发 4…

蓝桥杯打卡Day6

文章目录 N的阶乘基本算术整数查询 一、N的阶乘OI链接 本题思路&#xff1a;本题是关于高精度的模板题。 #pragma GCC optimize(3) #include <bits/stdc.h>constexpr int N1010;std::vector<int> a; std::vector<int> f[N];std::vector<int> mul(in…

如何用 Java 找到字符串中的元音

这个题目其实不难&#xff0c;这是一个公司面试的时候要求的题目。 这个公司的面试有点意思&#xff0c;他们希望 Zoom 看我的电脑&#xff0c;然后让我解决问题。 题目 题目就非常简单了&#xff0c;他们给了我 2 个字符串。 其中一个是测试字符串&#xff0c;另外一个是元…

《热题100》字符串、双指针、贪心算法篇

思路&#xff1a;对于输入的的字符串&#xff0c;只有三种可能&#xff0c;ipv4,ipv6,和neither ipv4:四位&#xff0c;十进制&#xff0c;无前导0&#xff0c;小于256 ipv6:八位&#xff0c;十六进制&#xff0c;无多余0&#xff08;00情况不允许&#xff09;&#xff0c;不…

Lua02——应用场景及环境安装

应用场景 是当今游戏领域使用最广泛的脚本语言之一。 搭配 OpenResty 使用&#xff0c;可以扩展Nginx服务器的功能&#xff0c;使用者仅需要编写Lua代码就能轻松完成业务逻辑。 与 Redis 结合。 Adobe Photoshop Lightroom 搭配 Lua 编写插件。 与游戏结合&#xff1a; C/…

3.4 栈与递归

3.4.1 采用递归算法解决问题 3.4 栈与递归的关系 栈和递归之间有着紧密的关系&#xff0c;特别是在算法和程序设计中。栈作为一种数据结构&#xff0c;可以有效地支持递归算法的实现。本节我们将详细讨论栈在递归算法中的作用及其在程序设计中的重要性。 1. 递归算法的基本概…

Swift学习内容精选(一)

Swift 可选(Optionals)类型 Swift 的可选&#xff08;Optional&#xff09;类型&#xff0c;用于处理值缺失的情况。可选表示"那儿有一个值&#xff0c;并且它等于 x "或者"那儿没有值"。 Swfit语言定义后缀&#xff1f;作为命名类型Optional的简写&…

uni-app--》基于小程序开发的电商平台项目实战(一)

&#x1f3cd;️作者简介&#xff1a;大家好&#xff0c;我是亦世凡华、渴望知识储备自己的一名在校大学生 &#x1f6f5;个人主页&#xff1a;亦世凡华、 &#x1f6fa;系列专栏&#xff1a;uni-app &#x1f6b2;座右铭&#xff1a;人生亦可燃烧&#xff0c;亦可腐败&#xf…

vue响应式详解

1. 响应式的定义 我们都知道&#xff0c;vue是基于javascript的&#xff0c;那我们使用一段javascript代码来描述响应式 let a 1,b 1,c; c a b; console.log(c) // 输出 2 // 改变 a的值 a 3; // 重新给c赋值 即把 c a b; 再执行一遍c的值才能变为 4 // c a b; // …

小白也可以玩转CMake之常用必备

目录 1.设置编译器flags2.设置源文件属性3.链接器标志4.Debug与Release包 今天&#xff0c;分享一篇工作中经常用到的一些CMake命令&#xff0c;看完就学会了哦&#xff0c;更多CMake与C内容也期待加入星球与我一起学习呀~ 1.设置编译器flags 例如&#xff1a;设置C标准&#x…

C高级shell脚本

#!/bin/bash function fun() {sum0i0b($*)while [ $i -lt ${#b[*]} ]do((sum ${b[i]}))((i))doneecho $sum }read -p "请输入数组" -a a fun ${a[*]}function fun2() {aid -ubid -gecho $a $b } p(fun2) uid${p[0]} pid${p[1]} echo $uid $pidXMind

飞行动力学 - 第20节-横向静稳定性 之 基础点摘要

飞行动力学 - 第20节-横向静稳定性 之 基础点摘要 1. 横向静稳定性2. 横向静稳定准则3. 横向静稳定性的组成4. 参考资料 1. 横向静稳定性 2. 横向静稳定准则 对于横向静稳定性飞机&#xff0c;右滚转扰动会产生正侧滑&#xff0c;飞机产生左滚恢复力矩(负)&#xff0c;即 Δ …

java 身份证号码验证

需要编号文件 编号文件部分内容如下 11:北京市 1101:市辖区 110101:东城区 110102:西城区 110105:朝阳区 110106:丰台区 110107:石景山区 110108:海淀区 ...... 编号文件内容比较多 csdn点击 下载地址 java代码如下 import java.io.*; import java.text.ParseException; im…

github 创建自己的分支 并下载代码

github创建自己的分支 并下载代码 目录概述需求&#xff1a; 设计思路实现思路分析1.进入到master分支&#xff0c;git checkout master;2.master-slave的个人远程仓库3.爬虫调度器4.建立本地分支与个人远程分支之间的联系5.master 拓展实现 参考资料和推荐阅读 Survive by day…

golang面试题:reflect(反射包)如何获取字段tag​?为什么json包不能导出私有变量的tag?

问题 json包里使用的时候&#xff0c;会结构体里的字段边上加tag&#xff0c;有没有什么办法可以获取到这个tag的内容呢&#xff1f; 举例 tag信息可以通过反射&#xff08;reflect包&#xff09;内的方法获取&#xff0c;通过一个例子加深理解。 package mainimport (&quo…

Linux 6.6 初步支持AMD 新一代 Zen 5 处理器

AMD 下一代 Zen 5 CPU 现已开始为 Linux 6.6 支持提交相关代码&#xff0c;最新补丁包括提供温度监控和 EDAC 报告等。 最新的 Linux 6.6 代码中已经加入了包括支持硬件监视器温度监控和 EDAC 报告的补丁。此外&#xff0c;新版本还加入了 x86 / misc 补丁&#xff0c;Phoronix…

初出茅庐的小李博客之根据编译时间生成软件版本号

为什么要软件版本号呢&#xff1f; 生成软件版本号是在软件开发和维护过程中非常重要的一项任务&#xff0c;它有很多意义和好处&#xff0c;同时也有多种常见的方法。 标识和追踪&#xff1a;软件版本号是唯一的标识符&#xff0c;用于区分不同版本的软件。这有助于开发人员和…

华为云云服务器云耀L实例评测 | 华为云云服务器实例新品全面解析

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文…