【C++】哈希——哈希的概念,应用以及闭散列和哈希桶的模拟实现

前言:

       前面我们一同学习了二叉搜索树,以及特殊版本的平衡二叉搜索树,这些容器让我们查找数据的效率提高到了O(log^2 N)。虽然效率提高了很多,但是有没有一种理想的方法使得我们能提高到O(1)呢?其实在C语言数据结构中,我们接触过哈希表,他可以使效率提高到O(1)。        

      哈希表作为STL中我们所必须学习和了解的容器,是一种一一映射的存储方式,其次它在日常生活中的应用范围也是很广的,例如位图,海量数据筛选中用到的布隆过滤器等等……

      下面我们就来先学习一下STL中的应用哈希表的两个容器,再了解一下底层结构 (两个关联式容器unordered_map和unordered_set,unordered系列的关联式容器之所以效率比较高,是因为其底层使用了哈希结构),最后再来模拟实现一下。

目录

(一)STL中底层应用哈希的两个容器

1、unordered_set

2、unordered_map

(二)常见的查找性能对比

(三)哈希表的概念及模拟实现

1、哈希的概念

2、哈希函数

3、哈希冲突

4、闭散列——开放定址法

5、开散列——链地址法(开链法),哈希桶

(四)详细代码


(一)STL中底层应用哈希的两个容器

在STL中对应的容器分别是unordered_map和unordered_set这两个关联式容器。、

我们会用map和set,其实就会用unordered_map和unordered_set这两个容器,但是这两类容器是有区别的!

我们一一分析:

1、unordered_set

文档链接->unordered_set文档

我们使用一下unordered_set的接口函数:


void test_unordered_set1()
{unordered_set<int> s1;s1.insert(1);s1.insert(2);s1.insert(9);s1.insert(2);s1.insert(3);s1.insert(3);s1.insert(4);s1.insert(5);unordered_set<int>::iterator it = s1.begin();while (it != s1.end()){cout << *it << " ";++it;}cout << endl;for (auto e : s1){cout << e << " ";}
}

 

结果是实现了存储+去重,但是是无序的。

由上图和查阅资料得知:

  • map和set: 去重 + 排序
  • unordered_map和unordered_set: 只有去重

这里主要原因是底层实现不同,map和set底层是红黑树,unordered_set和unordered_map底层是红黑树。

其余函数接口和之前所学的容器使用起来大致相同,不再一一赘述。

unordered_map和unordered_set都是单向迭代器:

值得注意的是unordered_map和unordered_set的迭代器都是单向迭代器,而我们之前学的map和set则是双向迭代器(所以迭代器可以++也可以--)。

unordered_set和set的性能对比:


int main()
{const size_t N = 100000;unordered_set<int> us;set<int> s;vector<int> v;v.reserve(N);srand(time(0));for (size_t i = 0; i < N; i++){v.push_back(rand());//v.push_back(rand()+i);//v.push_back(i);}size_t begin1 = clock();for (auto e : v){s.insert(e);}size_t end1 = clock();cout << "set insert:" << end1 - begin1 << endl;size_t begin2 = clock();for (auto e : v){us.insert(e);}size_t end2 = clock();cout << "unordered_set insert:" << end2 - begin2 << endl;size_t begin3 = clock();for (auto e : v){s.find(e);}size_t end3 = clock();cout << "set find:" << end3 - begin3 << endl;size_t begin4 = clock();for (auto e : v){us.find(e);}size_t end4 = clock();cout << "unordered_set find:" << end4 - begin4 << endl << endl;size_t begin5 = clock();for (auto e : v){s.erase(e);}size_t end5 = clock();cout << "set erase:" << end5 - begin5 << endl;size_t begin6 = clock();for (auto e : v){us.erase(e);}size_t end6 = clock();cout << "unordered_set erase:" << end6 - begin6 << endl << endl;return 0;
}

数据随机但有重复:                                  数据随机但重复少

数据连续无重复:

总结:

总的来说unordered_map和unordered_set要比map和set的性能要好的,但是也并不是一定的,当数据量很大的时候,扩容重新哈希是有消耗的。

2、unordered_map

文档链接->unordered_map文档

我们使用unordered1_map的接口函数:

void test_unordered_map()
{string arr[] = { "梨","梨","苹果","梨","西瓜","西瓜" };unordered_map<string, int> m;for (auto& e : arr){m[e]++;}for (auto& kv : m){cout << kv.first << ":" << kv.second << endl;}
}
int main()
{test_unordered_map();return 0;
}

 

总体来说,unordered_map和map的用法差不多,但是他们的效率有所不同。

(二)常见的查找性能对比

  • 暴力查找: 时间复杂度〇(N)
  • 二分查找: 时间复杂度〇(logN) ,缺点 — 有序、数组结构
  • 搜索二叉树: 时间复杂度〇(N),缺点 — 极端场景退化成单支
  • 平衡二叉搜索树: 时间复杂度〇(logN)
  • AVLTree: 左右子树高度差不超过1
  • 红黑树:最长路径不超过最短路径的2倍
  • 哈希
  • B树系列: 多叉平衡搜索树 — 数据库原理
  • 跳表

ps:

红黑树高度略高一些,但是跟AVL树是同一数量级,对于现代计算机没有差别但是红黑树相对而言近似平衡,旋转少。

(三)哈希表的概念及模拟实现

1、哈希的概念

我们已学过的查找 :

顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素
时,必须要经过关键码的多次比较顺序查找时间复杂度为O(N),平衡树中为树的高度,即
O(log_2 N),搜索的效率取决于搜索过程中元素的比较次数。

理想的查找方法:

可以不经过任何比较,一次直接从表中得到要搜索的元素。
如果构造一种存储结构,通过某种函数(hashFunc)使元素的存储位置与它的关键码之间能够建立
一一映射的关系,那么在查找时通过该函数可以很快找到该元素。
  • 该中存储结构可以实现:
    • 插入元素时:
      根据待插入元素的关键码,以此函数计算出该元素的存储位置并按此位置进行存放。
    • 查找元素时:
      对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在结构中按此位置取元素比较,若关键码相等,则搜索成功。
该方式即为哈希(散列)方法,哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称
为哈希表(Hash Table)(或者称散列表)

2、哈希函数

我们如何一一将键值转换为对应的关键码值,并映射到对应序号的存储位置呢?

直接建立映射关系问题:

  • 1、数据范围分布很广、不集中(可能存在空间浪费严重的问题)
  • 2、key的数据不是整数,是字符串怎么办?是自定义类型对象怎么办?

此时我们就需要一个函数对特殊非整数类型的数据进行处理,使其返回一个特定的整数,这个函数我们叫做 —— 哈希函数。
 

常见的哈希函数:

1、直接定址法(常用)

  • 取关键字的某个线性函数为散列地址:Hash(Key)= A*Key + B
  • 优点:简单、均匀
  • 缺点:需要事先知道关键字的分布情况
  • 使用场景:适合查找比较小且连续的情况

2、除留余数法(常用)

设散列表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数,
按照哈希函数:Hash(key) = key% p(p<=m),将关键码转换成哈希地址

3、其余常见但不常用的还有 平方取中法、折叠法、随机数法、数学分析法等。

字符串也有自己类型的哈希函数----->参考文献(了解即可)


3、哈希冲突

不同关键字通过相同哈希哈数计算出相同的哈希地址,该种现象称为哈希冲突或哈希碰撞。

按照上述哈希函数计算出键值对应的关键码值,但是算出来的这些码值当中,有很大的可能会出现关键码值相同的情况,这种情况就叫作:哈希冲突。

  •  哈希函数设计的越精妙,产生哈希冲突的可能性就越低,但是无法避免哈希冲突。
  •  解决哈希冲突两种常见的方法是:闭散列和开散列

4、闭散列——开放定址法

闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有
空位置,那么可以把key存放到冲突位置中的“下一个” 空位置中去。那如何寻找下一个空位置呢?
这就用到了我们的—— 线性探测:(依次去找空位置)
如下图中的场景,现在需要插入元素44,先通过哈希函数计算哈希地址,hashAddr为4,
因此44理论上应该插在该位置,但是该位置已经放了值为4的元素,即发生哈希冲突。

 线性探测:

从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止。

插入:

  • 通过哈希函数获取待插入元素在哈希表中的位置
  • 线性探测找到空位置将值插入

查找:

  • 挨个遍历哈希表,直到找到空为止

删除:

  • 过关键码值再用线性探测找到该值直接删除
  • 注意:
  • 删除要是直接删除的话有可能会影响查找的准确性
  • 如图删除了4,要去找44就会找不到。

那怎么办呢?
 

  • 所以我们给每个键值提供一个状态,采取伪删除的方法

即通过对每一个数据加上一个标识状态即可:

线性探测的缺点:

  • 一旦发生哈希冲突,所有的冲突连在一起,容易产生数据“堆积”,即:不同关键码占据了可利用的空位置,使得寻找某关键码的位置需要许多次比较,导致搜索效率降低。

所以我们引入了二次探测跳跃着找空位置,是相对上面方法的优化,使得数据可能不那么拥堵。


 所以经过上面的介绍,我们想自己实现一个闭散列需要注意以下的几点:

  1. 哈希函数的选择
  2. 哈希冲突的应对
  3. 如何应对“堆积”导致效率低下的情况
  4. 如何扩容表

第一点和第二点我们已经在上文介绍过了,这里我们应用的就是开放定址法和线性探测。

  • 第三点:如何应对“堆积”导致效率低下的情况?

查询资料:

首先根据上文我们知道闭散列哈希表并不能太满:

  • 太满就会导致线性探测时,找不到位置
  • 更不能放满,那样探测就会陷入死循环
  • 所以要控制一下存储的数据
  • 我们引入了一个变量n来记录存储数据的个数

散列表的载荷因子定义为: a = 填入表中的元素个数 / 散列表的长度

所以我们要控制一下负载因子:

  • 第四点:负载因子超了如何扩容?

有人会说直接resize扩容就行了啊。但是,你没注意到一个问题:

我在刚刚那个表中又插入了13,这时按理说应该扩容了防止效率变低。

假如我扩容到20格,我想找13的时候根据哈希函数,13不应该在编号是13的格子中吗?但是我是存储在3中啊,这就矛盾了...

所以扩容时我们不能直接将原来的数据拷贝过去:

  • 因为哈希是映射的关系,关键码值是通过数据和表的大小计算出来的
  • 如果直接拷贝的话全都乱套了
  • 这时我们需要重新映射

 

如图所示,也不是特别麻烦
直接建立一个新表,然后遍历旧表一次映射到新表中
不过扩容时会有不少的消耗

 

补充:

  • 映射的时候取模
  • 应该是对表的size()取模,而不是capacity()
  • 因为对capacity取模的话,可能取到超出size的位置
  • operator[]会对超出size的检查(不过有的也不检查,根据不同版本的库里定)


5、开散列——链地址法(开链法),哈希桶

开散列法又叫链地址法(开链法),首先对关键码集合用散列函数计算散列地址,具有相同地
址的关键码归于同一子集合,每一个子集合称为一个桶,各个桶中的元素通过一个单链表链
接起来,各链表的头结点存储在哈希表中

从上图可以看出,开散列中每个桶中放的都是发生哈希冲突的元素。

很显然,哈希桶中每个元素是个地址,所以哈希桶的底层原理就是一个指针数组,每个结点再挂着一个单链表,这样冲突就很容易解决了。

还是老问题,

  1. 如何应对“堆积”导致效率低下的情况
  2. 如何扩容
  • 如何应对“堆积”导致效率低下的情况?

这里我们还是选择适时扩容,那什么情况扩容呢?

桶的个数是一定的,随着元素的不断插入,每个桶中元素的个数不断增多,极端情况下,可
能会导致一个桶中链表节点非常多,会影响的哈希表的性能,因此在一定条件下需要对哈希
表进行增容,那该条件怎么确认呢?开散列最好的情况是:每个哈希桶中刚好挂一个节点,
再继续插入元素时,每一次都会发生哈希冲突,因此,在元素个数刚好等于桶的个数时,可
以给哈希表增容。
  • 如何扩容?
方案一:
方案二:

很显然我们更倾向于方案二:

方案一写法更简单,但是不断递归开销更大。

注:哈希桶结点插入,我们一般采用头插的方法,因为对于每一个链表,如果尾插,需要先找到尾,增加了时间消耗,头插的话消耗更低。

因为开散列是一个指针数组,涉及到空间的开辟,所以析构函数我们要自己完善:

	~HashTable(){for (auto& cur : _tables){while (cur){Node* next = cur->_next;delete cur;cur = next;}cur = nullptr;}}

(四)详细代码


namespace OpenAddress
{enum State{EMPTY,EXIST,DELETE};template<class K, class V>struct HashData{pair<K, V> _kv;State _state = EMPTY;};template<class K, class V>class HashTable{public:HashData<K, V>* Find(const K& key){if (_tables.size() == 0){return nullptr;}size_t hashi = key % _tables.size();//线性探测size_t i = 1;size_t index = hashi;while (_tables[index]._state != EMPTY){if (_tables[index]._state == EXIST&& _tables[index]._kv.first == key){return &_tables[index];}index = hashi + i;index %= _tables.size();++i;if (index == hashi){break;}}return nullptr;}bool Erase(const K& key){HashData<K, V>* ret = Find(key);if (ret){ret->_state = DELETE;--_n;return true;}else{return false;}}bool Insert(const pair<K, V>& kv){if (Find(kv.first)){return false;}if (_tables.size() == 0 || _n * 10 / _tables.size() >= 7){size_t newsize = _tables.size() == 0 ? 10 : _tables.size() * 2;HashTable<K, V> newht;newht._tables.resize(newsize);for (auto& data : _tables){if (data._state == EXIST){newht.Insert(data._kv);}}_tables.swap(newht._tables);}size_t hashi = kv.first % _tables.size();//线性探测size_t i = 1;size_t index = hashi;while (_tables[index]._state == EXIST){index = hashi + i;index %= _tables.size();++i;}_tables[index]._kv = kv;_tables[index]._state = EXIST;_n++;return true;}private:vector<HashData<K, V>> _tables;size_t _n = 0;//存储的数据个数};void TestHashTable2(){HashTable<int, int> ht;int arr[] = { 1,2,2,3,3,3,4,4,4,4,5,9,2,3 };for (auto& e : arr){ht.Insert(make_pair(e, e));}}void TestHashTable1(){int a[] = { 3, 33, 2, 13, 5, 12, 1002 };HashTable<int, int> ht;for (auto e : a){ht.Insert(make_pair(e, e));}ht.Insert(make_pair(15, 15));if (ht.Find(13)){cout << "13在" << endl;}else{cout << "13不在" << endl;}ht.Erase(13);if (ht.Find(13)){cout << "13在" << endl;}else{cout << "13不在" << endl;}}
}namespace HashBacket
{template<class K,class V>struct HashNode{HashNode<K, V>* _next;pair<K, V> _kv;HashNode(const pair<K, V>& kv):_next(nullptr), _kv(kv){}};template<class K,class V>class HashTable{typedef HashNode<K, V> Node;public:~HashTable(){for (auto& cur : _tables){while (cur){Node* next = cur->_next;delete cur;cur = next;}cur = nullptr;}}Node* Find(const K& key){if (_tables.size() == 0){return nullptr;}size_t hashi = key % _tables.size();Node* cur = _tables[hashi];while (cur){if (cur->_kv.first == key){return cur;}cur = cur->_next;}return nullptr;}bool Erase(const K& key){size_t hashi = key % _tables.size();Node* prev = nullptr;Node* cur = _tables[hashi];while (cur){if (cur->_kv.first == key){if(prev==nullptr){ _tables[hashi] = cur->_next;}else{prev->_next = cur->_next;}delete cur;return true;}else{prev = cur;cur = cur->_next;}}return false;}bool Insert(const pair<K, V>& kv){if (Find(kv.first)){return false;}if (_n == _tables.size()){size_t newsize = _tables.size() == 0 ? 10 : _tables.size() * 2;vector<Node*> newtables(newsize, nullptr);for (auto& cur : _tables){while (cur){Node* next = cur->_next;size_t hashi = cur->_kv.first % newtables.size();//头插到新表cur->_next = newtables[hashi];newtables[hashi] = cur;cur = next;}}_tables.swap(newtables);}size_t hashi = kv.first % _tables.size();// 头插Node* newnode = new Node(kv);newnode->_next = _tables[hashi];_tables[hashi] = newnode;++_n;return true;}private:vector<Node*> _tables;size_t _n = 0;};void TestHashTable1(){int a[] = { 3, 33, 2, 13, 5, 12, 1002 };HashTable<int, int> ht;for (auto e : a){ht.Insert(make_pair(e, e));}ht.Insert(make_pair(15, 15));ht.Insert(make_pair(25, 25));ht.Insert(make_pair(35, 35));ht.Insert(make_pair(45, 45));}void TestHashTable2(){int a[] = { 3, 33, 2, 13, 5, 12, 1002 };HashTable<int, int> ht;for (auto e : a){ht.Insert(make_pair(e, e));}ht.Erase(12);ht.Erase(3);ht.Erase(33);}
}

感谢你的阅读!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/130457.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

服务器数据恢复-EMC存储磁盘损坏的RAID5数据恢复案例

服务器数据恢复环境&#xff1a; 北京某单位有一台EMC某型号存储&#xff0c;有一组由10块STAT硬盘组建的RAID5阵列&#xff0c;另外2块磁盘作为热备盘使用。RAID5阵列上层只划分了一个LUN&#xff0c;分配给SUN小机使用&#xff0c;上层文件系统为ZFS。 服务器故障&#xff1…

【语义分割 01】Open MMLab介绍

1 Tutorial https://github.com/TommyZihao/MMSegmentation_Tutorials https://github.com/TommyZihao/Train_Custom_Dataset https://github.com/TommyZihao/aidlux_tutorial OpenMMLab是一个由中国开发者主导的具有世界影响力的人工智能计算机视觉开源算法体系, 至今已经开…

掌握信息利器,快速发现潜在商机——介绍一款高效的数据检索软件

掌握信息利器&#xff0c;快速发现潜在商机——介绍一款高效的数据检索软件 在当今信息爆炸的时代&#xff0c;获取准确、实时的信息变得至关重要。为了帮助您快速发现潜在商机&#xff0c;我们推出了一款功能强大的数据检索软件。无论您是市场调研人员、销售专员还是企业经营者…

花见Live Wallpaper Themes 4K Pro for mac(4k视频壁纸)

如果你希望让自己的Mac桌面焕发活力&#xff0c;那么Live Wallpaper & Themes 4K Pro正是一款值得尝试的软件。它提供了丰富的超高清4K动态壁纸和主题&#xff0c;可以让你轻松打造出个性化的桌面环境。 这款软件拥有众多令人惊叹的功能。其中最值得一提的是&#xff0c;它…

Windows下的Elasticsearch-head安装

Windows下的Elasticsearch-head安装 参考&#xff1a;https://gitcode.net/mirrors/mobz/elasticsearch-head 需要用到 npm 命令&#xff0c;这里可以提前下载安装下Node.js 即可自动安装npm&#xff1b; Node.js 下载安装地址&#xff1a;https://nodejs.org/en/download # 进…

sql server 查询某个字段是否有值 返回bool类型

sql server 查询某个字段是否有值 返回bool类型&#xff0c;true 或 false SELECT ColumnCode,CONVERT(BIT,CASE WHEN LEN(ColumnCode) > 0 THEN 1 ELSE 0 END) AS HasValue FROM dbo.TF_LessonCatalog

生物通路数据库收录1600+整合的经典通路

生物通路数据库为科学家提供了关于生物通路的大量信息和资源&#xff0c;特别是在数据整合、信息检索、数据可视化分析、数据交互、生物学研究等方面&#xff0c;积极推动了生物学研究和科学的发展。 世界各地正在创建各种类型的通路数据库&#xff0c;每个数据库都反映了其创…

【大数据】基于 Flink CDC 高效构建入湖通道

基于 Flink CDC 高效构建入湖通道 1.Flink CDC 核心技术解析2.CDC 数据入湖入仓的挑战2.1 CDC 数据入湖架构2.2 CDC 数据 ETL 架构 3.基于 Flink CDC 的入湖入仓方案3.1 Flink CDC 入湖入仓架构3.2 Flink CDC ETL 分析3.3 存储友好的写入设计3.4 Flink CDC 实现异构数据源集成3…

UI库DHTMLX Suite v8.2发布全新表单组件,让Web表单实现高度可定制!

DHTMLX Suite v8.2日前已正式发布&#xff0c;此版本的核心是DHTMLX Form&#xff0c;这个小部件接收了4个备受期待的新控件&#xff0c;如Fieldset、Avatar、Toggle和ToggleGroup。官方技术团队还为Grid和TreeGrid小部件中的页眉/页脚工具提示提供了一系列新的配置选项等。 在…

Unity和C#游戏编程入门:创建迷宫小球游戏示例

&#x1f482; 个人网站:【工具大全】【游戏大全】【神级源码资源网】&#x1f91f; 前端学习课程&#xff1a;&#x1f449;【28个案例趣学前端】【400个JS面试题】&#x1f485; 寻找学习交流、摸鱼划水的小伙伴&#xff0c;请点击【摸鱼学习交流群】 当涉及到Unity和C#游戏编…

【软件测试】Postman中变量的使用

Postman中可设置的变量类型有全局变量&#xff0c;环境变量&#xff0c;集合变量&#xff0c;数据变量及局部变量。区别则是各变量作用域不同&#xff0c;全局变量适用于所有集合&#xff0c;环境变量适用于当前所选环境&#xff08;所有集合中均可使用不同环境变量&#xff09…

Vscode 快速下载

https://vscode.cdn.azure.cn/stable/8b617bd08fd9e3fc94d14adb8d358b56e3f72314/VSCodeUserSetup-x64-1.82.0.exe https://vscode.cdn.azure.cn/------>镜像&#xff0c;将官网的下载地址复制过来&#xff0c;stable开始拼接到后面

配置远程访问:让外部网络用户能够使用公司内部的OA办公系统

文章目录 前言1. 确认在内网下能够使用IP端口号登录OA办公系统2. 安装cpolar内网穿透3. 创建隧道映射内网OA系统服务端口4. 实现外网访问公司内网OA系统总结 前言 现在大部分公司都会在公司内网搭建使用自己的办公管理系统&#xff0c;如OA、ERP、金蝶等&#xff0c;员工只需要…

SpringBoot 拦截org.thymeleaf.exceptions.TemplateInputException异常

SpringBoot 拦截thymeleaf异常 org.thymeleaf.exceptions.TemplateInputException异常 org.thymeleaf.exceptions.TemplateProcessingE xception: Could not parse as each: "message : xxx " (template: “xxxx” - line xx, col xx) thymeleaf异常复现 你是故意的…

数据结构:线性表之-循环双向链表(万字详解)

目录 基本概念 1&#xff0c;什么是双向链表 2&#xff0c;与单向链表的区别 双向链表详解 功能展示&#xff1a; 1. 定义链表 2&#xff0c;创建双向链表 3&#xff0c;初始化链表 4,尾插 5&#xff0c;头插 6&#xff0c;尾删 判断链表是否被删空 尾删代码 7&a…

pdf文件过大如何缩小上传?pdf压缩跟我学

在我们日常工作和生活中&#xff0c;经常会遇到PDF文件过大的问题&#xff0c;给文件传输和存储带来了很大的不便。那么&#xff0c;如何缩小PDF文件大小以便上传呢&#xff1f;下面就给大家分享几个压缩方法&#xff0c;一起来了解下PDF文件压缩方法吧~ 方法一&#xff1a;嗨格…

斐波那契堆——怎么发明一种非常聪明的数据结构——学习笔记

我是目录 0. 前言1. Fibonacci Heap介绍1.1 简单回顾堆和优先队列1.2 二项树1.3 二项堆 2. 那怎么推导出Fibonacci Heap&#xff1f;2.1 实现GetMin2.2 实现Insert2.3 实现ExtractMin2.4 实现DecreaseKey2.5 关键部分 3. 那么&#xff0c;和斐波那契数列有什么关系&#xff1f;…

(10)(10.9) 术语表(一)

文章目录 前言 1 2.4Ghz 2 AGL 3 AHRS 4 APM 5 AMA 6 Arduino 7 APM (AutoPilot Mega) 8 ATC 9 Copter 10 Plane 11 Rover 12 BEC 13 Bootloader 14 COA 15 DCM 16 Eagle file 17 ESC 18 Firmware 19 FPV 20 FTDI 前言 &#xff01;Note 术语表未编入索…

2023最新计算机信息管理毕设选题分享

文章目录 0 前言1 java web 管理系统 毕设选题2 java web 平台/业务系统 毕设选题3 游戏设计、动画设计类 毕设选题 (适合数媒的同学)4 算法开发5 数据挖掘 毕设选题6 大数据处理、云计算、区块链 毕设选题7 网络安全 毕设选题8 通信类/网络工程 毕设选题9 嵌入式 毕设选题10 开…

C#__基本的读写文件方式

// 代码注释 class Program{/// <summary>/// Path类&#xff1a;/// 不能实例化&#xff1b;提供了一些静态方法&#xff0c;更容易对路径名执行操作&#xff1b;(有兴趣可以自行了解)/// /// 读写文件&#xff1a;File类/// </summary>/// <param name"…