NLP(六十九)智能文档问答助手升级

本文在笔者之前研发的大模型智能文档问答项目中,开发更进一步,支持多种类型文档和URL链接,支持多种大模型接入,且使用更方便、高效。

项目介绍

在文章NLP(六十一)使用Baichuan-13B-Chat模型构建智能文档中,笔者详细介绍了如何使用Baichuan-13B-Chat模型来构建智能文档问答助手。

一般,使用大模型来实现文档问答功能的流程图如下:

LangChain文档问答流程

本次,笔者在之前的项目中更进一步,支持的功能如下:

  • 支持多种格式文档(包括txt, pdf, docx)和URL链接
  • 问答可视化页面
  • 问答可追溯,加入高亮显示
  • 单/多模型调用
  • 模型效果对比

说明如下:

  1. 支持的文档格式由LangChain提供,URL链接的解析由LangChain中的 seleniumunstructured,可支持JavaScript渲染的页面。但网页解析(或者说爬虫)是一项复杂而艰巨的任务,不可能在本项目中实现所有的网页解析。
  2. 可视化问答页面由Gradio模块实现
  3. 支持单模型或多模型调用,并且可以提供问答溯源。同时,还支持不同模型回答结果的比对,该想法来源于OpenCompass .

在工程开发上,加入的特性(features)如下:

  • 丰富使用文档
  • 加入配置文件
  • 增加日志调用
  • ES分词器支持用户词典
  • Milvus支持初步筛选的阈值配置

本项目已开源至Github,代码实现可参考document_qa_with_llm,这里不再讲解代码细节。

支持文档格式

本项目原先只支持txt格式,现在已支持多种格式文档(包括txt, pdf, docx)和URL链接,这得益于LangChain框架中的文档加载模块,使得各种格式的文档加载变得更加统一、简洁、高效。

本项目中的文件解析脚本如下:

# -*- coding: utf-8 -*-
from langchain.document_loaders import TextLoader, PyPDFLoader, Docx2txtLoader, SeleniumURLLoaderfrom utils.logger import loggerclass FileParser(object):def __init__(self, file_path):self.file_path = file_pathdef txt_loader(self):documents = TextLoader(self.file_path, encoding='utf-8').load()return documentsdef pdf_loader(self):loader = PyPDFLoader(self.file_path)documents = loader.load_and_split()return documentsdef docx_loader(self):loader = Docx2txtLoader(self.file_path)documents = loader.load()return documentsdef url_loader(self):loader = SeleniumURLLoader(urls=[self.file_path])documents = loader.load()return documentsdef parse(self):logger.info(f'parse file: {self.file_path}')if self.file_path.endswith(".txt"):return self.txt_loader()elif self.file_path.endswith(".pdf"):return self.pdf_loader()elif self.file_path.endswith(".docx"):return self.docx_loader()elif "http" in self.file_path:return self.url_loader()else:logger.error("unsupported document type!")return []if __name__ == '__main__':txt_file_path = "/Users/admin/PycharmProjects/document_qa_with_llm/files/gdp.txt"content = FileParser(txt_file_path).parse()print(content)pdf_file_path = "/Users/admin/PycharmProjects/document_qa_with_llm/files/oppo_n3_flip.pdf"content = FileParser(pdf_file_path).parse()print(content)docx_file_path = "/Users/admin/PycharmProjects/document_qa_with_llm/files/haicaihua.docx"content = FileParser(docx_file_path).parse()print(content)url = "https://gaokao.xdf.cn/202303/12967078.html"url = "https://www.hntv.tv/50rd/article/1/1700396378818207745?v=1.0"content = FileParser(url).parse()print(content)

问答测试

文档上传页面如下,支持多种格式文档上传和URL解析(依赖于页面解析能力),页面较为粗糙。

文件上传页面

上传后的文件会放至files文件夹上,示例文档可在Github项目中files文件夹中参考。

  • txt文件

我们以files/dengyue.txt为例,问答如下:

你知道格里芬的职务吗?
格里芬的职务是美国宇航局局长。

格里芬发表演说时讲了什么?
根据文档知识,格里芬发表演说时讲了如下内容:他认为如果中国人愿意,2020年他们可以实现载人登月工程。此外,叶培建院士也曾发表自己的观点,认为2025年比较合适。然而,根据中国科学院编制的50年长远规划,中国要实现载人登月工程是2030年。

  • pdf文件

我们以files/oppo_n3_flip.pdf为例,回答如下:

OPPO最新款折叠屏手机叫什么?
OPPO最新款折叠屏手机是OPPO Find N3 Flip。

腾讯有发布自研的大模型吗,什么时候发布的?
是的,腾讯已经发布了自研的大语言模型,名为 “ 混元大模型 ” 。它在 2023 年腾讯全球数字生态大会上正式对外亮相。具体时间为 9 月 7 日。

  • docx文件

我们以files/haicaihua.docx为例,回答如下:

海菜花对生长环境有什么要求?
海菜花对生长环境要求极高,只能在水体洁净、透明度较高的水体中生长,被誉为水质的“试金石”。

  • URL链接

我们以https://gaokao.xdf.cn/202303/12967078.html 为例,回答如下:

电子科技大学2022年招生多少人?
电子科技大学2022年招生总计划是5030人,其中“电子科技大学”将面向全国招生3300余人,“电子科技大学(沙河校区)”将面向部分省份招生1700余人。

电子科技大学的官网?
电子科技大学的官网是:http://www.zs.uestc.edu.cn/

可视化问答

除了之前的API调用,本项目还支持可视化问答。该功能由Gradio模块实现,支持在页面上进行可视化问答,同时还支持多模型调用,支持的大模型如下:

  • Baichuan-13B-Chat: 百川智能发布的模型,现已更新至Baichuan2
  • LLAMA-2-Chinese-13b-Chat: 在LLAMA 2模型上进行微调得到的中文对话模型
  • internlm-chat-7b:上海人工智能实验室发布的书生(InternLM)对话模型

这些都是中文大模型。理论上,支持的模型由FastChat 和 部署的GPU型号、数量决定,本项目只考虑以上三种。

该页面支持多模型或单模型的问答。多模型问答时,可比较不同模型在相同的Prompt下的回答效果,作为模型评估的一种方式。

单模型问答

多模型问答

同时,该页面还支持问答溯源,可追踪文档问答得到的答案所需的引用文本和对用的数据来源。

问答溯源

问答溯源中的文本高亮

由于Gradio中的表格不支持单元格内文本高亮,因此,我们所用它自带的高亮文本控件对问答溯源中的引用文本进行文本高亮,方便我们对回答内容在原文中的位置进行确认,避免大模型幻觉问题。

问答溯源中的文本高亮算法如下:

  1. 找到问答所在的引用文本列表,由ES和Milvus产生
  2. 对引用文本拆分成列表
  3. 得到与回答相似度最高的文本,相似度采用Jaccard系数
  4. 将相似度最高文本中与回答重合的部分,进行高亮显示

问答溯源中的文本高亮

总结

本项目在之前开源的基础上,加入了更丰富的功能,包括支持多种格式文档解析和URL解析,支持问答可视化页面,支持单/多模型调用,支持多模型效果对比。

本项目已开源至Github,代码实现可参考document_qa_with_llm 。

推荐阅读

  • NLP(六十一)使用Baichuan-13B-Chat模型构建智能文档
  • Gradio入门(1)输入输出、表格、文本高亮

欢迎关注我的公众号NLP奇幻之旅,原创技术文章第一时间推送。

欢迎关注我的知识星球“自然语言处理奇幻之旅”,笔者正在努力构建自己的技术社区。

引用链接

[1] 大模型智能文档问答项目: https://github.com/percent4/document_qa_with_llm
[2] OpenCompass: https://opencompass.org.cn/
[3] document_qa_with_llm: https://github.com/percent4/document_qa_with_llm
[4] 文档加载模块: https://python.langchain.com/docs/integrations/document_loaders/
[5] FastChat: https://github.com/lm-sys/FastChat
[6] document_qa_with_llm: https://github.com/percent4/document_qa_with_llm

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/131048.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

pandas 筛选数据的 8 个骚操作

日常用Python做数据分析最常用到的就是查询筛选了,按各种条件、各种维度以及组合挑出我们想要的数据,以方便我们分析挖掘。 东哥总结了日常查询和筛选常用的种骚操作,供各位学习参考。本文采用sklearn的boston数据举例介绍。 from sklearn …

《深入分布式追踪:OpenTracing 实践手册》

🌷🍁 博主猫头虎(🐅🐾)带您 Go to New World✨🍁 🐅🐾猫头虎建议程序员必备技术栈一览表📖: 🛠️ 全栈技术 Full Stack: &#x1f4da…

澄海区图书馆《乡村振兴战略下传统村落文化旅游设计》许少辉八一新著

澄海区图书馆《乡村振兴战略下传统村落文化旅游设计》许少辉八一新著

Android Aidl跨进程通讯(四)--接口回调,服务端向客户端发送数据

学更好的别人, 做更好的自己。 ——《微卡智享》 本文长度为3325字,预计阅读9分钟 前言 前几篇介绍了AIDL通讯的基础,进阶和异常捕获,本篇就来看看服务端怎么向客户端来实现发送消息。 实现服务端往客户端发送消息,主要…

opencv(python)视频按帧切片/cv2.VideoCapture()用法

一、介绍 cv2.VideoCapture是OpenCV中一个用于捕捉视频的类。它可以访问计算机的摄像头,或从视频文件中读取图像。通过cv2.VideoCapture,用户可以轻松地捕捉、保存、编辑和传输视频流数据。 使用cv2.VideoCapture可以实现以下功能: 1. 打开…

Spring-Cloud GateWay+Vue 跨域方案汇总

文章目录 一、简介背景和概述 二、前端跨域解决方案Axios跨域CORS跨域 三、后端跨域解决方案反向代理服务器 四、Spring Cloud中的跨域解决方案Gateway网关的跨域配置 五、基于Vue和Spring Cloud的跨域整合实践**这两种配置只需配置一种即可生效(前端or后端&#xf…

原型链解释

一、什么是原型链 原型链是javascript中用来实现类似类继承的一套机制。像链条一样把javascript中的对象连接起来,实现类似子联系父的现象。 二、原型链的实现 总的来说,就是: 对象的__proto__指向其构造器的prototype对象,然后…

分布式id的概述与实现

文章目录 前言一、分布式id技术选型二、雪花算法三、在项目中集成雪花算法 前言 随着业务的增长,数据表可能要占用很大的物理存储空间,为了解决该问题,后期使用数据库分片技术。将一个数据库进行拆分,通过数据库中间件连接。如果…

postgresql -数据库事务与并发控制

postgresql -数据库事务与并发控制 数据库事务事务控制语句并发与隔离数据库事务 事务控制语句 -- serial 自增 CREATE TABLE accounts(id serial PRIMARY KEY,user_name varchar(50),balance numeric

[php] 文件上传的一个项目emmm

项目完整地址 <!DOCTYPE html> <html lang"zh"> <head><meta charset"UTF-8"><title>上传文件</title><link href"./css/bootstrap.min.css" rel"stylesheet"><style>font-face {fo…

广州xx策划公司MongoDB恢复-2023.09.09

2023.09.08用户的MongoDB数据库被勒索病毒攻击&#xff0c;数据全部被清空。 提示&#xff1a; mongoDB的默认端口为27017&#xff0c;黑客通常通过全网段扫描27017是否开放判断是否是MongoDB服务器。一旦发现27017开放&#xff0c;黑客就会用空密码、弱密码尝试连接数据库。黑…

经典排序算法总结

&#x1f353; 简介&#xff1a;java系列技术分享(&#x1f449;持续更新中…&#x1f525;) &#x1f353; 初衷:一起学习、一起进步、坚持不懈 &#x1f353; 如果文章内容有误与您的想法不一致,欢迎大家在评论区指正&#x1f64f; &#x1f353; 希望这篇文章对你有所帮助,欢…

深入理解JVM虚拟机第四篇:一些常用的JVM虚拟机

一&#xff1a;Sun Classic VM虚拟机 早在1996年Java1.0版本的时候&#xff0c;Sun公司发布了一款名为Sun classic VM的Java虚拟机&#xff0c;它同时也是世界上第一款商用Java虚拟机&#xff0c;JDK1.4时完全被淘汰。 现在hotspot内置了此虚拟机。 这款虚拟机内部只提供解释器…

银行笔试篇---职业能力测试(行测)

数字推理 数字推理可分为等差数列、等比数列、和数列、积数列、幂数列以及分数数列六类&#xff0c;做题时的总体原则为&#xff1a; 关键点1&#xff1a;凡是一次变化找不到规律的&#xff0c;直接放弃&#xff01;所谓一次变化指的是&#xff1a;1.通过一次相邻两数作差、作…

【数据库】Navicate运行数据区sql文件 1046 no database selected

文章目录 前言一、现象二、解决 前言 要通过Navicat导入数据库文件&#xff0c;但是不成功报错1046 no database selected 一、现象 选中已经建立的连接&#xff0c;右键运行sql文件&#xff0c;报错 二、解决 1、先在建立的localhost中右键建立和要导入数据库同名的数据…

C++信息学奥赛1170:计算2的N次方

#include <iostream> #include <string> #include <cstring>using namespace std;int main() {int n;cin >> n; // 输入一个整数nint arr[100];memset(arr, -1, sizeof(arr)); // 将数组arr的元素初始化为-1&#xff0c;sizeof(arr)表示arr数组的字节…

【STM32】影子寄存器

不可操作但是真正起作用的寄存器是影子寄存器 定时器框图中&#xff0c;有些寄存器下有个阴影 这些阴影的表示这些寄存器存在影子寄存器。 图中也有对这些影子的说明&#xff0c;在U事件时传送预装载寄存器至实际寄存器。 有阴影的寄存器(AutoReloadRegister)&#xff0c;表…

数据库管理软件NoSQLBooster for MongoDB 8.1 Mac

NoSQLBooster for MongoDB 是一款功能强大的 MongoDB 数据库管理工具。它提供了一个直观的用户界面&#xff0c;使用户能够轻松地浏览、查询和修改 MongoDB 数据库中的数据。 NoSQLBooster for MongoDB 支持多种查询方式&#xff0c;包括基本查询、聚合管道、地理空间查询等。它…

Python解析MDX词典数据并保存到Excel

原始数据和处理结果&#xff1a; https://gitcode.net/as604049322/blog_data/-/tree/master/mdx 下载help.mdx词典后&#xff0c;我们无法直接查看&#xff0c;我们可以使用readmdict库来完成对mdx文件的读取。 安装库&#xff1a; pip install readmdict对于Windows平台还…

【建站教程】使用阿里云服务器怎么搭建网站?

使用阿里云服务器快速搭建网站教程&#xff0c;先为云服务器安装宝塔面板&#xff0c;然后在宝塔面板上新建站点&#xff0c;阿里云服务器网以搭建WordPress网站博客为例&#xff0c;阿小云来详细说下从阿里云服务器CPU内存配置选择、Web环境、域名解析到网站上线全流程&#x…