浮点数在内存中的存储
上⾯的代码中, num 和 *pFloat 在内存中明明是同⼀个数,为什么浮点数和整数的解读结果会差别 这么⼤?
要理解这个结果,⼀定要搞懂浮点数在计算机内部的表⽰⽅法。 根据国际标准IEEE(电⽓和电⼦⼯程协会) 754,任意⼀个⼆进制浮点数V可以表⽰成下⾯的形式:
V = (−1) ∗ S M ∗ 2E • (−1)S 表⽰符号位,当S=0,V为正数;当S=1,V为负数
• M 表⽰有效数字,M是⼤于等于1,⼩于2的 • 2 E 表⽰指数位 举例来说: ⼗进制的5.0,写成⼆进制是 101.0 ,相当于 1.01×2^2 。 那么,按照上⾯V的格式,可以得出S=0,M=1.01,E=2。 ⼗进制的-5.0,写成⼆进制是 -101.0 ,相当于 -1.01×2^2 。
那么,S=1,M=1.01,E=2。 IEEE 754规定: 对于32位的浮点数,最⾼的1位存储符号位S,接着的8位存储指数E,剩下的23位存储有效数字M 对于64位的浮点数,最⾼的1位存储符号位S,接着的11位存储指数E,剩下的52位存储有效数字M
浮点数存的过程
IEEE 754对有效数字M和指数E,还有⼀些特别规定。 前⾯说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中xxxxxx表⽰⼩数部分。 IEEE 754规定,在计算机内部保存M时,默认这个数的第⼀位总是1,因此可以被舍去,只保存后⾯的 xxxxxx部分。⽐如保存1.01的时候,只保存01,等到读取的时候,再把第⼀位的1加上去。这样做的⽬ 的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第⼀位的1舍去以后,等于可以保 存24位有效数字。
⾄于指数E,情况就⽐较复杂。 ⾸先,E为⼀个⽆符号整数(unsigned int) 这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我 们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存⼊内存时E的真实值必须再加上 ⼀个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。⽐如,2^10的E是 10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。
浮点数取的过程
指数E从内存中取出还可以再分成三种情况: E不全为0或不全为1 这时,浮点数就采⽤下⾯的规则表⽰,即指数E的计算值减去127(或1023),得到真实值,再将有效 数字M前加上第⼀位的1。 ⽐如:0.5 的⼆进制形式为0.1,由于规定正数部分必须为1,即将⼩数点右移1位,则为1.0*2^(-1),其 阶码为-1+127(中间值)=126,表⽰为01111110,⽽尾数1.0去掉整数部分为0,补⻬0到23位
E全为0 这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第⼀位的1,⽽是还 原为0.xxxxxx的⼩数。这样做是为了表⽰±0,以及接近于0的很⼩的数字。 E全为1 这时,如果有效数字M全为0,表⽰±⽆穷⼤(正负取决于符号位s); 好了,关于浮点数的表⽰规则,就说到这⾥。
更好的理解S M E
代码详解:
#include <stdio.h>
int main()
{int n = 9;//整数在内存中的存储形式:补码//00000000000000000000000000001001 9的补码float* pFloat = (float*)&n;//0 00000000 00000000000000000001001 //E为全0//(-1)^0*0.00000000000000000001001*2^-126 //即为---->1*0.000000printf("n的值为:%d\n", n);printf("*pFloat的值为:%f\n", *pFloat);*pFloat = 9.0;//1001.0//(-1)^0*1.001*2^3//S=0//E=3//M=1.001//0 10000010 00100000000000000000000(最终应补全32位)// E+127//01000001000100000000000000000000//1, 091, 567, 616printf("num的值为:%d\n", n);//整数原反补相同printf("*pFloat的值为:%f\n", *pFloat);return 0;
}