C【动态内存管理】

1. 为什么存在动态内存分配

int val = 20;//在栈空间上开辟四个字节
char arr[10] = {0};//在栈空间上开辟10个字节的连续空间

2. 动态内存函数的介绍

2.1 malloc:stdlib.h

void* malloc (size_t size);
int* p = (int*)malloc(40);

#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <stdio.h>int main()
{//向内存申请10个整形的空间int* p = (int*)malloc(40);if (p == NULL){//打印错误原因的一个方式printf("%s\n", strerror(errno));}else{//正常使用空间int i = 0;for (i = 0; i < 10; i++){*(p + i) = i;}for (i = 0; i < 10; i++){printf("%d ", *(p + i));}}//当动态申请的空间不再使用的时候//就应该还给操作系统free(p);//上面是将p断开,但是实际上p还是存储内容,所以我们手动设置为nullp = NULL;return 0;
}

2.2 free:stdlib.h

是用来做动态内存的释放和回收的

注意点:free(str)后,实际上str还执行一个空的地址,所以此时str!=NULL

void free (void* ptr);

2.3 calloc

calloc 函数也用来动态内存分配。可以初始化空间。

void* calloc (size_t num, size_t size);
int*p = (int*)calloc(10, sizeof(int));
int main()
{//malloc(10*sizeof(int))int*p = (int*)calloc(10, sizeof(int));if (p == NULL){printf("%s\n", strerror(errno));}else{int i = 0;for (i = 0; i < 10; i++){printf("%d ", *(p + i));}}//释放空间//free函数是用来释放动态开辟的空间的free(p);p = NULL;return 0;
}

2.4 realloc

当初始申请空间不够,这时使用realloc开辟新的空间【调整动态开辟内存空间的大小】

使用注意点:

1. 如果p指向的空间之后有足够的内存空间可以追加,则直接追加,后返回p
2. 如果p指向的空间之后没有足够的内存空间可以追加,则realloc函数会重新找一个新的内存区域
开辟一块满足需求的空间,并且把原来内存中的数据拷贝回来,释放旧的内存空间
最后返回新开辟的内存空间地址
3. 得用一个新的变量来接受realloc函数的返回值

void* realloc (void* ptr, size_t size);

#include <stdio.h>
int main()
{int *ptr = (int*)malloc(100);if(ptr != NULL){//业务处理}else{exit(EXIT_FAILURE);    }//扩展容量//代码1ptr = (int*)realloc(ptr, 1000);//这样可以吗?(如果申请失败会如何?)//代码2int*p = NULL;p = realloc(ptr, 1000);if(p != NULL){ptr = p;}//业务处理free(ptr);return 0;
}

3. 常见的动态内存错误

3.1 对NULL指针的解引用操作

//1. 对NULL进行解引用操作int *p = (int*)malloc(40);//万一malloc失败了,p就被赋值为NULL//所以我们在申请完一块空间之后,一定要进行判空操作*p = 0;//errint i = 0;for (i = 0; i < 10; i++){*(p + i) = i;//err}free(p);p = NULL;

3.2 对动态开辟空间的越界访问

//2. 对动态开辟的内存的越界访问int *p = (int*)malloc(5 * sizeof(int));if (p == NULL){return 0;}else{int i = 0;for (i = 0; i < 10; i++){*(p + i) = i;}}//free(p);p = NULL;

3.3 对非动态开辟内存使用free释放

//栈区开辟出来的,不是动态开辟int a = 10;int* p = &a;*p = 20;//3. 对非动态开辟内存的freefree(p);p = NULL;return 0;

3.4 使用free释放一块动态开辟内存的一部分

int*p = (int*)malloc(40);if (p == NULL){return 0;}int i = 0;for (i = 0; i < 5; i++){*p++ = i;}//回收空间// 使用free释放动态开辟内存的一部分free(p);p =NULL;

3.5 对同一块动态内存多次释放

int *p = (int*)malloc(40);if (p == NULL){return 0;}//使用//释放free(p);//将p设置为空指针,可以防止重复释放产生的错误p = NULL;

3.6 动态开辟内存忘记释放(内存泄漏)

while (1){malloc(1);}

4. 几个经典的笔试题

4.1 题目1:

//面试1:
void GetMemory(char *p)
{p = (char *)malloc(100);
}void Test(void)
{char *str = NULL;GetMemory(str);strcpy(str, "hello world");printf(str);
}int main()
{Test();char*str = "abcdef";printf("%s\n", str);printf(str);printf("abcdef");return 0;
}

修改结果

void GetMemory(char **p)//**p:是p的地址
{//*p:是p的内容*p = (char *)malloc(100);
}void Test(void)
{char *str = NULL;GetMemory(&str);//传地址strcpy(str, "hello world");printf(str);free(str);str = NULL;
}int main()
{Test();return 0;
}
char* GetMemory(char *p)
{p = (char *)malloc(100);//将p传递除去return p;
}void Test(void)
{char *str = NULL;str = GetMemory(str);strcpy(str, "hello world");printf(str);free(str);str = NULL;
}int main()
{Test();return 0;
}

4.2 题目2:

​​​​​​​

【存储在栈区中的数据,出了函数则就会被销毁】

//面试2
char *GetMemory(void)
{char p[] = "hello world";//局部变量//跳出此函数,则p被销毁return p;
}void Test(void)
{char *str = NULL;str = GetMemory();//此时str的p的地址printf(str);//非法地址访问,故输出随机值
}int main()
{Test();return 0;
}

【数据存储在静态区(static),出了函数数据还是存在】

//在静态区,出了函数还是可以继续使用
int* test()
{//使用static,将a放入静态区,出了这个函数,内存并没有被销毁,故在外面还可以访问到static int a = 10;//静态区int a = 10;//栈区 return &a;
}int main()
{int*p = test();//此时p接收到a的地址*p = 20;//将a修改为20return 0;//20
}

【数据存储在堆区,出了函数数据还是存在】

//在堆区,出函数还是存在
int* test()
{int *ptr = malloc(100);//堆区return ptr;
}int main()
{int *p = test();return 0;
}

4.3 题目3:

void GetMemory(char **p, int num)
{*p = (char *)malloc(num);//给p创建100个新的char
}
void Test(void)
{char *str = NULL;GetMemory(&str, 100);strcpy(str, "hello");//可以输出printf(str);//改:忘记free内容,导致内存泄露free(str);str = NULL;
}

4.4 题目4:

void Test(void)
{char *str = (char *)malloc(100);strcpy(str, "hello");free(str);//free了但是没有把指针置为null//此处的问题:已经释放的空间,还被使用if (str != NULL)//则此时str还不为NUll,则进入判断{strcpy(str, "world");printf(str);}
}int main()
{Test();//worldreturn 0;
}

解决:

void Test(void)
{char* str = (char*)malloc(100);strcpy(str, "hello");free(str);//解决:将str置为NULLstr = NULL;if (str != NULL){strcpy(str, "world");printf(str);}
}int main()
{Test();//worldreturn 0;
}

5. C/C++程序的内存开辟

C/C++程序内存分配的几个区域:

1. 栈区(stack):在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结 束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是 分配的内存容量有限。 栈区主要存放运行函数而分配的局部变量、函数参数、返回数据、返 回地址等。

2. 堆区(heap):一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。分 配方式类似于链表。

3. 数据段(静态区)(static)存放全局变量、静态数据。程序结束后由系统释放。

4. 代码段:存放函数体(类成员函数和全局函数)的二进制代码。

6. 柔性数组

结构中的最后一个元素允许是未知大小的数组,这就叫做『柔性数组』成员。

struct S
{int n;int arr[10];
};struct S
{int n;int arr[];//未知大小的
};struct S
{int n;int arr[0];//未知大小的-柔性数组成员-数组的大小是可以调整的
};

6.1 柔性数组的特点:

  • 结构中的柔性数组成员前面必须至少一个其他成员。
  • sizeof 返回的这种结构大小不包括柔性数组的内存。
  • 包含柔性数组成员的结构用malloc ()函数进行内存的动态分配,并且分配的内存应该大于结构的大 小,以适应柔性数组的预期大小。
//代码1
int i = 0;
type_a *p = (type_a*)malloc(sizeof(type_a)+100*sizeof(int));
//业务处理
p->i = 100;
for(i=0; i<100; i++)
{p->a[i] = i;
}
free(p);

6.2 柔性数组的使用--int[] a

struct S
{int n;int arr[0];//未知大小的-柔性数组成员-数组的大小是可以调整的
};int main()
{struct S s;printf("%d\n", sizeof(s));////sizeof(struct S):不包括int arr的大小//5*sizeof(int):手动的给arr赋值struct S* ps = (struct S*)malloc(sizeof(struct S)+5*sizeof(int));ps->n = 100;int i = 0;for (i = 0; i < 5; i++){ps->arr[i] = i;//0 1 2 3 4}//开辟内存struct S* ptr = realloc(ps, 44);if (ptr != NULL){ps = ptr;}for (i = 5; i < 10; i++){ps->arr[i] = i;}//打印arr所有数值for (i = 0; i < 10; i++){printf("%d ", ps->arr[i]);}//释放free(ps);ps = NULL;return 0;
}

6.3 柔性数组的扩展:int* arr

struct S
{int n;int* arr;
};
int main()
{//sizeof(struct S):此时包括int* arrstruct S* ps = (struct S*)malloc(sizeof(struct S));//再一次给arr创建动态内存ps->arr = malloc(5 * sizeof(int));int i = 0;for (i = 0; i < 5; i++){ps->arr[i] = i;}for (i = 0; i < 5; i++){printf("%d ", ps->arr[i]);}//调整大小int* ptr = realloc(ps->arr, 10 * sizeof(int));if (ptr != NULL){ps->arr = ptr;}for (i = 5; i < 10; i++){ps->arr[i] = i;}for (i = 0; i < 10; i++){printf("%d ", ps->arr[i]);}//释放内存:注意释放顺序free(ps->arr);ps->arr = NULL;free(ps);ps = NULL;return 0;
}

6.4 int arr[0] 和 int* arr的区别

上述 代码1 和 代码2 可以完成同样的功能,但是 方法1 的实现有两个好处:

​​​​​​​

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/134264.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

9.3.5网络原理(应用层HTTP/HTTPS)

一.HTTP: 1. HTTP是超文本传输协议,除了传输字符串,还可以传输图片,字体,视频,音频. 2. 3.HTTP协议报文格式:a.首行,b.请求头(header),c.空行(相当于一个分隔符,分隔了header和body),d.正文(body). 4. 5.URL:唯一资源描述符(长度不限制). a. b.注意:查询字符串(query stri…

MediaPipe+OpenCV 实现实时手势识别(附Python源码)

MediaPipe官网&#xff1a;https://developers.google.com/mediapipe MediaPipe仓库&#xff1a;https://github.com/google/mediapipe 一、MediaPipe介绍 MediaPipe 是一个由 Google 开发的开源跨平台机器学习框架&#xff0c;用于构建视觉和感知应用程序。它提供了一系列预训…

【SPI读取外部Flash】使用逻辑分析仪来读取FLASH Device ID

实验设备&#xff1a;25块钱的 逻辑分析仪 和 野火F429开发板 注意点&#xff0c;这个逻辑分析仪最大只能检测24M的波形&#xff0c;而SPI是在外部通道2&#xff0c;所以我们对系统时钟的分频&#xff0c;也就是给到通道2的时钟速度要在24M内&#xff0c;不然检测到的数据是有…

RFID车辆自动化称重管理

应用背景 随着物流和交通管理的发展&#xff0c;车辆称重成为了不可忽视的环节&#xff0c;传统的车辆称重管理方式存在诸多问题&#xff0c;如人工操作繁琐、数据准确性低、容易出现作弊等&#xff0c;为了提高车辆称重管理的效率和准确性&#xff0c;RFID技术被引入到车辆称…

Vue ——09、路由模式,404和路由勾子

路由嵌套&#xff0c;参数传递及重定向 一、路由模式&#xff08;有#号&#xff0c;跟没#号&#xff09;二、404三、路由勾子四、在钩子函数中使用异步请求————————创作不易&#xff0c;如觉不错&#xff0c;随手点赞&#xff0c;关注&#xff0c;收藏(*&#xffe3;︶…

Windows开机密码破解

Windows11以及Windows10(21H2)以上版本 先开机&#xff0c;不进行任何操作&#xff0c;静静的等待登录界面 按住Shift重启 进入“选择一个选项”界面&#xff0c;点击疑难解答 点击高级选项 点击命令提示符 输入两行命令 copy C:\windows\system32\uti1man.exe C: \Window…

面相面试知识--Lottery项目

面相面试知识–Lottery项目 1.设计模式 为什么需要设计模式&#xff1f; &#xff08;设计模式是什么&#xff1f;优点有哪些&#xff1f;&#xff09; 设计模式是一套经过验证的有效的软件开发指导思想/解决方案&#xff1b;提高代码的可重用性和可维护性&#xff1b;提高团…

【python之经验模态分解EMD实现】PyEMD库的安装和导入EMD, Visualisation问题解决方法[完整可运行]

现有的导入问题 目前网上的办法&#xff0c;直接导入&#xff1a;from PyEMD import EMD, Visualisation 是有问题的 可能会出现 在 ‘init.py | init.py’ 中找不到引用 ‘Visualisation’ 的报错。 原因似乎是现在导入的命令改了&#xff0c;这是一个坑&#xff0c;解决的…

算法简述-串和串的匹配、排序、深度/广度优先搜索、动态规划、分治、贪心、回溯、分支限界

目录 算法简述 基本 典型算法列举 串和串的匹配 排序 深度/广度优先搜索 动态规划 分治 贪心 回溯 分支限界 算法简述 基本 咳咳嗯…算法嘛&#xff0c;咱也不是 CS 科班学生&#xff0c;咱就说&#xff0c;算法是对已经建模后的问题的解决的具体途径和方法&#x…

Linux 多线程( 进程VS线程 | 线程控制 )

文章目录 Linux进程 VS 线程进程的多个线程共享 进程和线程的关系线程创建 pthread_create获取线程ID pthread_self线程等待 pthread_join终止线程进程分离线程ID及进程地址空间布局 Linux进程 VS 线程 进程是资源分配的基本单位。线程是OS调度的基本单位。 线程共享进程数据…

医院如何实现安全又稳定的跨网文件数据交换呢?

随着医疗信息化的发展&#xff0c;医院之间需要频繁地进行文件数据交换&#xff0c;以实现诊疗、科研、管理等方面的协同和共享。然而&#xff0c;由于医院网络环境的复杂性和敏感性&#xff0c;跨网文件数据交换面临着安全性和稳定性的双重挑战。如何在保证文件数据不被泄露、…

神经网络常用模型与应用

上手AI的一个捷径就是了解和使用各种网络模型&#xff0c;结合实际场景去打造自己的应用。神经网络模型是人类的共同财富。 神经网络 神经网络可以分为三种主要类型&#xff1a;前馈神经网络、反馈神经网络和图神经网络。 前馈神经⽹络&#xff08;feedforward neural netwo…

Unity SteamVR 开发教程:用摇杆/触摸板控制人物持续移动(2.x 以上版本)

文章目录 &#x1f4d5;教程说明&#x1f4d5;场景搭建&#x1f4d5;创建移动的动作&#x1f4d5;移动脚本⭐移动⭐实时调整 CharacterController 的高度 &#x1f4d5;取消手部和 CharacterController 的碰撞 持续移动是 VR 开发中的一个常用功能。一般是用户推动手柄摇杆&…

elasticsearch8-坐标查询和复合查询

个人名片&#xff1a; 博主&#xff1a;酒徒ᝰ. 个人简介&#xff1a;沉醉在酒中&#xff0c;借着一股酒劲&#xff0c;去拼搏一个未来。 本篇励志&#xff1a;三人行&#xff0c;必有我师焉。 本项目基于B站黑马程序员Java《SpringCloud微服务技术栈》&#xff0c;SpringCloud…

【计算机网络】75 张图详解:网络设备、网络地址规划、静态路由(万字长文)

75 张图详解&#xff1a;网络设备、网络地址规划、静态路由 1.网络设备1.1 交换机1.2 路由器 2.网络地址规划2.1 IP 地址2.2 分类地址2.3 子网掩码2.4 无类地址2.5 子网划分2.5.1 示例一2.5.2 示例二 2.6 超网合并 3.静态路由3.1 路由表3.2 直连路由3.3 静态路由3.4 默认路由3.…

图文文案音视频素材库流量主小程序开发

适用于全行业的资源素材运营变现小程序&#xff0c;支持文档、图片、文件、图文、音视频、网盘等多种资源形式&#xff0c;多种功能组合运营变现的小程序。 适用领域&#xff1a; 公司/微商素材、学习/考研/论文资料分享、PPT模板/背景图/壁纸/头像、知识付费、抖音素材等等…

代码随想录算法训练营第三十五天| 860.柠檬水找零 406.根据身高重建队列 452. 用最少数量的箭引爆气球

860.柠檬水找零 本题看上好像挺难&#xff0c;其实挺简单的&#xff0c;大家先尝试自己做一做。 代码随想录 public boolean lemonadeChange(int[] bills) {int five 0;int ten 0;for (int i 0; i < bills.length; i) {if (bills[i] 5) {five;} else if (bills[i] 10)…

golang for循环append的数据重复

原因&#xff0c;因为使用了& 需要增加一行&#xff0c;问题解决

进程创建fork函数

#include <sys/types.h> #include <unistd.h> pid_t fork(void); 函数的作用&#xff1a;用于创建子进程。 返回值&#xff1a; fork()的返回值会返回两次。一次是在父进程&#xff0c;一次是在子进程。 父进程中&#xff1a;返回创建的子进程的ID&#xff0c;返回…

Mysql的逻辑架构、存储引擎

1. 逻辑架构剖析 1.1 服务器处理客户端请求 首先MySQL是典型的C/S架构&#xff0c;即Clinet/Server 架构&#xff0c;服务端程序使用的mysqld。 不论客户端进程和服务器进程是采用哪种方式进行通信&#xff0c;最后实现的效果是&#xff1a;客户端进程向服务器进程发送一段文…