MapReduce YARN 的部署

1、部署说明

Hadoop HDFS分布式文件系统,我们会启动:

  • NameNode进程作为管理节点
  • DataNode进程作为工作节点
  • SecondaryNamenode作为辅助
    在这里插入图片描述
    同理,Hadoop YARN分布式资源调度,会启动:
  • ResourceManager进程作为管理节点
  • NodeManager进程作为工作节点
  • ProxyServer、JobHistoryServer这两个辅助节点
    在这里插入图片描述

MapReduce运行在YARN容器内,无需启动独立进程。

所以关于MapReduce和YARN的部署,其实就是2件事情:

  • 关于MapReduce: 修改相关配置文件,但是没有进程可以启动。
  • 关于YARN: 修改相关配置文件, 并启动ResourceManager、NodeManager进程以及辅助进程(代理服务器、历史服务器)。

在这里插入图片描述

2、部署

2.1、MapReduce配置文件

2.1.1、配置mapred-env.sh文件

在 $HADOOP_HOME/etc/hadoop 文件夹内,修改mapred-env.sh文件

vim mapred-env.sh

在这里插入图片描述

添加如下环境变量

## 设置jdk路径
export JAVA_HOME=/export/server/jdk
## 设置JobHistoryServer进程内存为1G
export HADOOP_JOB_HISTORYSERVER_HEAPSIZE=1000
## 设置日志级别为INF
export HADOOP_MAPRED_ROOT_LOGGER=INFO,RFA

2.1.2、配置mapred-site.xml文件

mapred-site.xml文件,添加如下配置信息

vim mapred-site.xml
<configuration><property><name>mapreduce.framework.name</name><value>yarn</value><description></description></property><property><name>mapreduce.jobhistory.address</name><value>bigdatanode1:10020</value><description></description></property><property><name>mapreduce.jobhistory.webapp.address</name><value>bigdatanode1:19888</value><description></description></property><property><name>mapreduce.jobhistory.intermediate-done-dir</name><value>/data/mr-history/tmp</value><description></description></property><property><name>mapreduce.jobhistory.done-dir</name><value>/data/mr-history/done</value><description></description></property><property><name>yarn.app.mapreduce.am.env</name><value>HADOOP_MAPRED_HOME=$HADOOP_HOME</value></property><property><name>mapreduce.map.env</name><value>HADOOP_MAPRED_HOME=$HADOOP_HOME</value></property><property><name>mapreduce.reduce.env</name><value>HADOOP_MAPRED_HOME=$HADOOP_HOME</value></property>
</configuration>

2.2、YARN配置文件

2.2.1、配置yarn-env.sh文件

在 $HADOOP_HOME/etc/hadoop 文件夹内,修改:
yarn-env.sh文件

vim yarn-env.sh

yarn-env.sh文件,添加如下4行环境变量内容:

export JAVA_HOME=/export/server/jdk
export HADOOP_HOME=/export/server/hadoop
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
export HADOOP_LOG_DIR=$HADOOP_HOME/logs

2.2.2、配置yarn-site.xml文件

yarn-site.xml文件,配置如下

<property><name>yarn.log.server.url</name><value>http://bigdatanode1:19888/jobhistory/logs</value><description></description>
</property><property><name>yarn.web-proxy.address</name><value>bigdatanode1:8089</value><description>proxy server hostname and port</description></property><property><name>yarn.log-aggregation-enable</name><value>true</value><description>Configuration to enable or disable log aggregation</description></property><property><name>yarn.nodemanager.remote-app-log-dir</name><value>/tmp/logs</value><description>Configuration to enable or disable log aggregation</description></property><property><name>yarn.resourcemanager.hostname</name><value>bigdatanode1</value><description></description></property><property><name>yarn.resourcemanager.scheduler.class</name><value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler</value><description></description></property><property><name>yarn.nodemanager.local-dirs</name><value>/data/nm-local</value><description>Comma-separated list of paths on the local filesystem where intermediate data is written.</description></property><property><name>yarn.nodemanager.log-dirs</name><value>/data/nm-log</value><description>Comma-separated list of paths on the local filesystem where logs are written.</description></property><property><name>yarn.nodemanager.log.retain-seconds</name><value>10800</value><description>Default time (in seconds) to retain log files on the NodeManager Only applicable if log-aggregation is disabled.</description></property><property><name>yarn.nodemanager.aux-services</name><value>mapreduce_shuffle</value><description>Shuffle service that needs to be set for Map Reduce applications.</description></property>

2.3、分发到node2,node3节点

MapReduce和YARN的配置文件修改好后,需要分发到其它的服务器节点中。

scp mapred-env.sh mapred-site.xml yarn-env.sh yarn-site.xml bigdatanode2:`pwd`/
scp mapred-env.sh mapred-site.xml yarn-env.sh yarn-site.xml bigdatanode3:`pwd`/

在这里插入图片描述

查看其他节点是否分发成功
在这里插入图片描述

2.4、集群启动命令介绍

2.4.1、介绍

常用的进程启动命令如下:

  • 一键启动YARN集群: $HADOOP_HOME/sbin/start-yarn.sh

    • 会基于yarn-site.xml中配置的yarn.resourcemanager.hostname来决定在哪台机器上启动resourcemanager
    • 会基于workers文件配置的主机启动NodeManager
  • 一键停止YARN集群: $HADOOP_HOME/sbin/stop-yarn.sh

  • 在当前机器,单独启动或停止进程

    • $HADOOP_HOME/bin/yarn --daemon start|stop resourcemanager|nodemanager|proxyserver
    • start和stop决定启动和停止
    • 可控制resourcemanager、nodemanager、proxyserver三种进程
  • 历史服务器启动和停止

    • $HADOOP_HOME/bin/mapred --daemon start|stop historyserver

2.4.2、启动

在node1服务器,以hadoop用户执行

  • 首先执行
start-yarn.sh

在这里插入图片描述

  • 其次执行
mapred --daemon start historyserver

在这里插入图片描述

  • 一键停止
stop-yarn.sh

2.4.3、查看YARN的WEB UI页面

打开 http://bigdatanode1:8088 即可看到YARN集群的监控页面(ResourceManager的WEB UI)
在这里插入图片描述

3、提交MapReduce任务到YARN执行

3.1、提交MapReduce程序至YARN运行

在部署并成功启动YARN集群后,我们就可以在YARN上运行各类应用程序了。

YARN作为资源调度管控框架,其本身提供资源供许多程序运行,常见的有:

  • MapReduce程序
  • Spark程序
  • Flink程序

Hadoop官方内置了一些预置的MapReduce程序代码,我们无需编程,只需要通过命令即可使用。

常用的有2个MapReduce内置程序:

  • wordcount:单词计数程序。
    统计指定文件内各个单词出现的次数。
  • pi:求圆周率
    通过蒙特卡罗算法(统计模拟法)求圆周率。

这些内置的示例MapReduce程序代码,都在:
$HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.1.jar 这个文件内。

可以通过 hadoop jar 命令来运行它,提交MapReduce程序到YARN中。

语法: hadoop jar 程序文件 java类名 [程序参数] … [程序参数]

3.2、提交wordcount示例程序

3.2.1、单词计数示例程序

单词计数示例程序的功能很简单:

  • 给定数据输入的路径(HDFS)、给定结果输出的路径(HDFS)
  • 将输入路径内的数据中的单词进行计数,将结果写到输出路径

我们可以准备一份数据文件,并上传到HDFS中。

  • 创建两个文件夹
 hdfs dfs -mkdir -p /input/wordcount
hdfs dfs -mkdir -p /output

在这里插入图片描述

  • 创建一个文件,输入一些内容
vim words.txt

在这里插入图片描述

  • 上传到/input/wordcount/
hdfs dfs -put words.txt /input/wordcount/

在这里插入图片描述

  • 执行如下命令,提交示例MapReduce程序WordCount到YARN中执行
hadoop jar /export/server/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.4.jar wordcount hdfs://bigdatanode1:8020/input/wordcount/ hdfs://bigdatanode1:8020/output/wc

在这里插入图片描述

  • 执行完成后,可以查看HDFS上的输出结果
    在这里插入图片描述
hdfs dfs -cat /output/wc/part-r-00000

在这里插入图片描述

  • _SUCCESS文件是标记文件,表示运行成功,本身是空文件
  • part-r-00000,是结果文件,结果存储在以part开头的文件中

3.2.2、查看运行日志

此功能基于:

  1. 配置文件中配置了日志聚合功能,并设置了历史服务器
    在这里插入图片描述
  2. 启动了代理服务器和历史服务器
  3. 历史服务器进程会将日志收集整理,形成可以查看的网页内容供我们查看。

在这里插入图片描述
在这里插入图片描述

3.2.3、提交求圆周率示例程序

可以执行如下命令,使用蒙特卡罗算法模拟计算求PI(圆周率)

hadoop jar /export/server/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.4.jar pi 3 1000
  • 参数pi表示要运行的Java类,这里表示运行jar包中的求pi程序
  • 参数3,表示设置几个map任务
  • 参数1000,表示模拟求PI的样本数(越大求的PI越准确,但是速度越慢)

在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.3、蒙特卡罗算法求PI的基础原理

Monte Carlo蒙特卡罗算法(统计模拟法)

Monte Carlo算法的基本思想是: 以模拟的”实验”形式、以大量随机样本的统计形式,来得到问题的求解。
比如,求圆周率,以数学的方式是非常复杂的,但是我们可以以简单的形式去求解:
在这里插入图片描述

示例代码

import java.util.Random;  public class MonteCarloPi {  public static void main(String[] args) {  int totalPoints = 1000000; // 总共投点次数  int insidePoints = 0; // 落在圆内的点数  Random rand = new Random();  for (int i = 0; i < totalPoints; i++) {  // 在-1到1之间随机生成x, y值  double x = 2.0 * rand.nextDouble() - 1.0;  double y = 2.0 * rand.nextDouble() - 1.0;  // 判断该点是否在单位圆内(圆心在(0, 0),半径为1)  if (x * x + y * y <= 1.0) {  insidePoints++;  }  }  // 使用蒙特卡罗方法估算π的值,公式来源于圆的面积公式πr^2,这里r=1,所以π=4*(圆内点数/总点数)  double piEstimate = 4.0 * insidePoints / totalPoints;  System.out.println("π的估计值为: " + piEstimate);  }  
}

结束!!!!!!!
hy:37


						人最大的痛苦,就是无法跨越“知道”和“做到”的鸿沟。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/134897.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

uni-app 实现自定义按 A~Z 排序的通讯录(字母索引导航)

创建 convertPinyin.js 文件 convertPinyin.js 将下面的内容复制粘贴到其中 const pinyin (function() {let Pinyin function(ops) {this.initialize(ops);},options {checkPolyphone: false,charcase: "default"};Pinyin.fn Pinyin.prototype {init: functi…

JavaScript:二进制数组【笔记】

二进制数组【ArrayBuffer对象、Type的Array视图和DataView视图】JavaScript操作二进制数据的一个接口。 这些接口原本是和WebGL有关【WebGL是浏览器与显卡之间的通信接口】&#xff0c;为了满足JavaScript与显卡之间大量、实时数据交换&#xff0c;那么JavaScript和显卡之间的…

一款非常容易上手的报表工具,简单操作实现BI炫酷界面数据展示,驱动支持众多不同类型的数据库,可视化神器,免开源了

一款非常容易上手的报表工具&#xff0c;简单操作实现BI炫酷界面数据展示&#xff0c;驱动支持众多不同类型的数据库&#xff0c;可视化神器&#xff0c;免开源了。 在互联网数据大爆炸的这几年&#xff0c;各类数据处理、数据可视化的需求使得 GitHub 上诞生了一大批高质量的…

flink 端到端一致性

背景 我们经常会混淆flink提供的状态一致性保证和数据端到端一致性保证的关系&#xff0c;总以为他们表达的是同一个意思&#xff0c;事实上&#xff0c;他们不是一个含义&#xff0c;flink只能保证其维护的内部状态的一致性&#xff0c;而数据端到端的一致性需要数据源&#…

数据包络分析(DEA)

写在前面&#xff1a; 博主本人大学期间参加数学建模竞赛十多余次&#xff0c;获奖等级均在二等奖以上。为了让更多学生在数学建模这条路上少走弯路&#xff0c;故将数学建模常用数学模型算法汇聚于此专栏&#xff0c;希望能够对要参加数学建模比赛的同学们有所帮助。 目录 1. …

TypeScript 从入门到进阶之基础篇(一) ts类型篇

系列文章目录 文章目录 系列文章目录前言一、安装必要软件二、TypeScript 基础类型1.基础类型之 数字类型 number2.基础类型之 字符串类型 string3.基础类型之 布尔类型 boolean4.基础类型之 空值类型 void5.基础类型之 null 、undefined类型6.基础类型之 任意类型 any &#x…

第 363 场 LeetCode 周赛题解

A 计算 K 置位下标对应元素的和 模拟 class Solution { public:int pop_cnt(int x) {//求x的二进制表示中的1的位数int res 0;for (; x; x >> 1)if (x & 1)res;return res;}int sumIndicesWithKSetBits(vector<int> &nums, int k) {int res 0;for (int i…

CorelDRAW 2023怎么把图片转化为手绘素描风 简单几步轻松搞定

CorelDRAW 2023是一款非常好用的设计类软件&#xff0c;软件拥有非常多强大又好用的功能&#xff0c;可以帮助设计师快速创造出想要的效果&#xff0c;今天我们就来给大家介绍一下CDR的“素描”艺术笔触。它可以帮助用户快速将普通的图片快速转换成类似素描的风格&#xff0c;在…

接口测试——接口协议抓包分析与mock_L1

目录&#xff1a; 接口测试价值与体系常见的接口协议接口测试用例设计postman基础使用postman实战练习 1.接口测试价值与体系 接口测试概念 接口&#xff1a;不同的系统之间相互连接的部分&#xff0c;是一个传递数据的通道接口测试&#xff1a;检查数据的交换、传递和控制…

VUE build:gulp打包:测试、正式环境

目录 项目结构 Gulp VUE使用Gulp Vue安装Gulp Vue定义Gulp.js package.json build文件夹 config文件夹 static-config文件夹 项目结构 Gulp Gulp是一个自动化构建工具&#xff0c;可以帮助前端开发者通过自动化任务来管理工作流程。Gulp使用Node.js的代码编写&#xff…

使用Git把项目上传到Gitee的详细步骤

1.到Git官网下载并安装 2.到Gitee官网进行注册&#xff0c;然后在Gitee中新建一个远程仓库 3.设置远程仓库的参数 4.返回Gitee查看仓库是否生成成功 5.新建一个文件夹作为你的本地仓库 6.将新建好的文件夹初始化成本地仓库 第一步&#xff1a;右键点击刚创建的本地仓库&#…

Tomcat 的部署和优化

目录 1、什么是Tomcat 1.1、静态页面的选择 2、Tomcat是怎么运行的 3、安装jdk &#xff06; 部署jdk环境 & Tomcat 安装 1、安装jdk 2、配置jdk环境变量 3、tomcat安装 4、Tomcat启动 5.优化tomcat启动速度 6.Tomcat的主要命令 7.Tomcat 配置虚拟主机 8.Tomca…

第2章_freeRTOS入门与工程实践之单片机程序设计模式

本教程基于韦东山百问网出的 DShanMCU-F103开发板 进行编写&#xff0c;需要的同学可以在这里获取&#xff1a; https://item.taobao.com/item.htm?id724601559592 配套资料获取&#xff1a;https://rtos.100ask.net/zh/freeRTOS/DShanMCU-F103 freeRTOS系列教程之freeRTOS入…

AMS爆炸来袭,上线即巅峰

1.关于首发项目Antmons(AMS)空投结果 Gate.io Startup 首发项目Antmons代币AMS于Aug15th,AM 07:00开始下单&#xff0c;24小时内下单同等对待总共有15,950人下单&#xff0c;下单总价值超过1,000万美金分发系数约为0.001640495298341。根据上线规则AMS项目认购成功&#xff0c;…

刷一下算法

记录下自己的思路与能理解的解法,可能并不是最优解法,不定期持续更新~ 1.盛最多水的容器 给定一个长度为 n 的整数数组 height 。有 n 条垂线&#xff0c;第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。 找出其中的两条线&#xff0c;使得它们与 x 轴共同构成的容器可以容…

linux查看进程对应的线程(数)

首先&#xff0c;top或ps查看进程列表&#xff0c;确定要查看的进程pid&#xff0c;如下面40698 查看进程的线程情况 查看进程&#xff1a;top -p 40698 查看线程&#xff1a;top -p 40698 -d 3 -H 其中-d是刷新频率 可看到此进程共211个线程&#xff0c;运行中的是211个。…

QStandardItem通过setCheckable添加复选框后无法再次通过setCheckable取消复选框的问题

前言 如题所示&#xff0c;通过setCheckable添加复选框后&#xff0c;想要通过setCheckable(false)取消复选框&#xff0c;你会发现根本没有作用的。 问题复现 #include "widget.h" #include "ui_widget.h" #include <QList>Widget::Widget(QWidg…

DockerCompose

DockerCompose Docker Compose可以基于Compose文件帮我们快速的部署分布式应用&#xff0c;而无需手动一个个创建和运行容器&#xff01; 初识DockerCompose Compose文件是一个文本文件&#xff0c;通过指令定义集群中的每个容器如何运行。格式如下&#xff1a; version: &…

Spring注解家族介绍: @RequestMapping

前言&#xff1a; 今天我们来介绍RequestMapping这个注解&#xff0c;这个注解的内容相对来讲比较少&#xff0c;篇幅会比较短。 目录 前言&#xff1a; RequestMapping 应用场景&#xff1a; 总结&#xff1a; RequestMapping RequestMapping 是一个用于映射 HTTP 请求…

Jprofiler的使用查看oom

一、安装 idea安装插件 安装客户端 链接 IDEA配置Jprofiler执行文件 二、产生oom import java.util.ArrayList; import java.util.List;//测试代码 public class TestHeap {public static void main(String[] args) {int num 0;List<Heap> list new ArrayList&l…