【深度学习实验】前馈神经网络(一):使用PyTorch构建神经网络的基本步骤

目录

一、实验介绍

 二、实验环境

1. 配置虚拟环境

2. 库版本介绍

三、实验内容

0. 导入库

1. 定义x,w,b

2. 计算净活性值z

3. 实例化线性层并进行前向传播

4. 打印结果

5. 代码整合


一、实验介绍

        本实验使用了PyTorch库来构建和操作神经网络模型,主要是关于线性层(Linear Layer)的使用。

 二、实验环境

        本系列实验使用了PyTorch深度学习框架,相关操作如下:

1. 配置虚拟环境

conda create -n DL python=3.7 
conda activate DL
pip install torch==1.8.1+cu102 torchvision==0.9.1+cu102 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
conda install matplotlib
 conda install scikit-learn

2. 库版本介绍

软件包本实验版本目前最新版
matplotlib3.5.33.8.0
numpy1.21.61.26.0
python3.7.16
scikit-learn0.22.11.3.0
torch1.8.1+cu1022.0.1
torchaudio0.8.12.0.2
torchvision0.9.1+cu1020.15.2

三、实验内容

ChatGPT:

        前馈神经网络(Feedforward Neural Network)是一种常见的人工神经网络模型,也被称为多层感知器(Multilayer Perceptron,MLP)。它是一种基于前向传播的模型,主要用于解决分类和回归问题。

        前馈神经网络由多个层组成,包括输入层、隐藏层和输出层。它的名称"前馈"源于信号在网络中只能向前流动,即从输入层经过隐藏层最终到达输出层,没有反馈连接。

以下是前馈神经网络的一般工作原理:

  1. 输入层:接收原始数据或特征向量作为网络的输入,每个输入被表示为网络的一个神经元。每个神经元将输入加权并通过激活函数进行转换,产生一个输出信号。

  2. 隐藏层:前馈神经网络可以包含一个或多个隐藏层,每个隐藏层由多个神经元组成。隐藏层的神经元接收来自上一层的输入,并将加权和经过激活函数转换后的信号传递给下一层。

  3. 输出层:最后一个隐藏层的输出被传递到输出层,输出层通常由一个或多个神经元组成。输出层的神经元根据要解决的问题类型(分类或回归)使用适当的激活函数(如Sigmoid、Softmax等)将最终结果输出。

  4. 前向传播:信号从输入层通过隐藏层传递到输出层的过程称为前向传播。在前向传播过程中,每个神经元将前一层的输出乘以相应的权重,并将结果传递给下一层。这样的计算通过网络中的每一层逐层进行,直到产生最终的输出。

  5. 损失函数和训练:前馈神经网络的训练过程通常涉及定义一个损失函数,用于衡量模型预测输出与真实标签之间的差异。常见的损失函数包括均方误差(Mean Squared Error)和交叉熵(Cross-Entropy)。通过使用反向传播算法(Backpropagation)和优化算法(如梯度下降),网络根据损失函数的梯度进行参数调整,以最小化损失函数的值。

        前馈神经网络的优点包括能够处理复杂的非线性关系,适用于各种问题类型,并且能够通过训练来自动学习特征表示。然而,它也存在一些挑战,如容易过拟合、对大规模数据和高维数据的处理较困难等。为了应对这些挑战,一些改进的网络结构和训练技术被提出,如卷积神经网络(Convolutional Neural Networks)和循环神经网络(Recurrent Neural Networks)等。

本系列为实验内容,对理论知识不进行详细阐释

(咳咳,其实是没时间整理,待有缘之时,回来填坑)

0. 导入库

引入了PyTorch库中的相关模块和一些用于绘图和加载数据集的外部库。

import torch
from torch import nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris

加载鸢尾花数据集(此处代码未给出具体加载数据集的步骤)。

1. 定义x,w,b

        定义神经网络模型的输入张量x、权重张量w和偏置项张量b:

x = torch.randn((2, 5))
w = torch.randn((5, 1))
b = torch.randn((1, 1))

  

2. 计算净活性值z

z = torch.matmul(x, w) + b
z_2 = x @ w + b

        通过矩阵乘法计算净活性值z,其中x表示输入特征,w表示权重,b表示偏置项。两种写法都是等效的,可以使用`torch.matmul()`函数或`@`运算符进行矩阵乘法操作。

3. 实例化线性层并进行前向传播

net = nn.Linear(5, 1)
z_3 = net(x)

        `nn.Linear()`函数实例化了一个线性层,指定输入维度为5,输出维度为1。然后将输入张量x传递给该线性层进行前向传播计算,得到输出张量z_3。

4. 打印结果

print('output z:', z)
print('shape of z: ', z.shape)
print('output z_2:', z_2)
print('shape of z:', z_2.shape)
print('output z2: ', z_3)
print('shape of z2:', z_3.shape)

        打印计算结果以及张量的形状信息(方便查看和调试)。

5. 代码整合

# 导入必要的工具包
import torch
from torch import nn# x 表示两个含有5个特征的样本,x是一个二维的tensor
x = torch.randn((2, 5))
# w 表示含有5个参数的权重向量,w是一个二维的tensor
w = torch.randn((5, 1))
# 偏置项,b是一个二维的tensor,但b只有一个数值
b = torch.randn((1, 1))
# 矩阵乘法,请注意 x 和 w 的顺序,与 b 相加时使用了广播机制
z = torch.matmul(x, w) + b
# 另一种写法
z_2 = x @ w + b
# 打印结果,z是一个二维的tensor,表示两个样本经过神经元后的各自净活性值
print('output z:', z)
print('shape of z: ', z.shape)
print('output z_2:', z_2)
print('shape of z:', z_2.shape)# 实例化一个线性层,接受输入维度是5,输出维度是1
net = nn.Linear(5, 1)
z_3 = net(x)
# 打印结果,z2的形状与z一样,含义也与z一样
print('output z2: ', z_3)
print('shape of z2:', z_3.shape)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/136464.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

算法训练 第三周

二、环形链表 本题给了我们一个链表的头节点,需要我们判断这个链表之中是否存在环状结构,如果存在返回true,如果不存在则返回false。 1.hash表 我们可以从头遍历整个链表,并将遍历到的节点放入一个hashset中,当我们遍…

北邮22级信通院数电:Verilog-FPGA(2)modelsim北邮信通专属下载、破解教程

北邮22信通一枚~ 跟随课程进度更新北邮信通院数字系统设计的笔记、代码和文章 持续关注作者 迎接数电实验学习~ 获取更多文章,请访问专栏: 北邮22级信通院数电实验_青山如墨雨如画的博客-CSDN博客 目录 1.下载 2.解压打开 3.modelsim初安装 4.…

深度剖析Linux信号机制

文章目录 信号的概念信号的分类信号的产生方式从键盘获取通过系统调用硬件异常软件条件 如何处理信号的到来信号的更深入剖析信号的处理动作是何时进行的?当有一大批同种信号到来时会怎样?Linux也提供了一批信号相关的系统调用 信号的概念 Linux中的信号…

C语言——通讯录管理系统

通讯录管理系统项目简介 功能说明 控制台黑窗口实现程序需要满足以下几个功能 程序开始运行时首先显示选择菜单界面,根据用户输入确定实现何种功能 程序界面 代码实现 多文件实现 和之前写的实战项目类似,这里同样采用多文件实现的方式 多文件写代码…

day3_QT

day3_QT 1、文件保存2、始终事件 -闹钟 1、文件保存 2、始终事件 -闹钟 widget.h #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QTimerEvent> #include <QTime> #include <QTextToSpeech>QT_BEGIN_NAMESPACE namespace Ui { clas…

Qt --- Day03

<?xml version"1.0" encoding"UTF-8"?> <ui version"4.0"><class>Widget</class><widget class"QWidget" name"Widget"><property name"geometry"><rect><x>0…

fatal error: linux/compiler-gcc9.h: No such file or directory

linux 找到README文件 cd /mnt/e/CLionProjects/linux-3.10.99 sudo useradd linux3x sudo passwd linux3x sudo mkdir /home/linux3x sudo chown linux3x:linu3x /home/linux3x sudo chmod 755 /home/linux3x su - linux3x mkdir ~/build mkdir ~/build/kernel exit make O/…

目标检测Neck:FPN(Feature Pyramid Network)与PAN(附torch代码)

文章目录 0. 前言1. FPN1.1 FPN核心思想与步骤1.2 FPN的融合过程2. PAN2.1 PANet2.2 原版2.3 mmdetection中yolo_neck版本2.4 nanodet版本ReferenceFPN和PAN都是用于解决在目标检测中特征金字塔网络(FPN)在多尺度检测任务上的不足的方法。下面分别详细介绍一下它们的原理和区别…

Docker 容器设置为自动重启

Docker自动重启原因 Docker自动重启通常是由以下几个原因导致的&#xff1a; 程序崩溃系统内存不足系统进程使用过多CPU和RAM导致的阻塞docker容器被杀死或重新启动&#xff0c;导致应用程序中断网络中断 当这些问题出现时&#xff0c;Docker会自动重启运行中的服务来尝试解…

malloc与free

目录 前提须知&#xff1a; malloc&#xff1a; 大意&#xff1a; 头文件&#xff1a; 申请空间&#xff1a; 判断是否申请成功&#xff1a; 使用空间&#xff1a; 结果&#xff1a; 整体代码&#xff1a; malloc申请的空间怎么回收呢? 注意事项&#xff1a; free:…

【入门篇】ClickHouse最优秀的开源列式存储数据库

文章目录 一、什么是ClickHouse&#xff1f;OLAP场景的关键特征列式数据库更适合OLAP场景的原因输入/输出CPU 1.1 ClickHouse的定义与发展历程1.2 ClickHouse的版本介绍 二、ClickHouse的主要特性2.1 高性能的列式存储2.2 实时的分析查询2.3 高度可扩展性2.4 数据压缩2.5 SQL支…

PHP自己的框架2.0结合容器技术(重构篇二)

目录 1、使用容器实现框架加载类运行 2、 创建框架容器类core/fm/Di.php 3、框架使用容器类来执行public/index.php 4、运行效果还是一样 1、使用容器实现框架加载类运行 2、 创建框架容器类core/fm/Di.php 什么是容器&#xff1f;容器就相当于盒子&#xff0c;把很多类放里…

Postman应用——控制台调试

当你在测试脚本中遇到错误或意外行为时&#xff0c;Postman控制台可以帮助你识别&#xff0c;通过将console.log调试语句与你的测试断言相结合&#xff0c;你可以检查http请求和响应的内容&#xff0c;以及变量之类的。 通常可以使用控制台日志来标记代码执行&#xff0c;有时…

【分布式】分布式ID

目录 前言一、雪花算法snowflake1. 组成2. 优缺点3. 时钟回拨怎么解决a. 时钟回拨b. 解决方案 4. 项目中如何使用 二、基于Redis三、基于Zookeeper四、号段模式五、指定步长的自增ID六、UUID参考 六、扩展总结 前言 分布式场景下&#xff0c;一张表可能分散到多个数据结点上。因…

【JavaEE】多线程案例-单例模式

文章目录 1. 前言2. 什么是单例模式3. 如何实现单例模式3.1 饿汉模式3.2 懒汉模式4. 解决单例模式中遇到的线程安全问题4.1 加锁4.2 加上一个判断解决频繁加锁问题4.2 解决因指令重排序造成的线程不安全问题 1. 前言 单例模式是我们面试中最常考到的设计模式。什么是设计模式呢…

【Redis】深入探索 Redis 主从结构的创建、配置及其底层原理

文章目录 前言一、对 Redis 主从结构的认识1.1 什么是主从结构1.2 主从结构解决的问题 二、主从结构创建2.1 配置并建立从节点2.2.1 从节点配置文件2.2.2 启动并连接 Redis 主从节点2.2.3 SLAVEOF 命令2.2.4 断开主从关系 2.2 查看主从节点的信息2.2.1 INFO REPLICATION 命令2.…

《DevOps实践指南》- 读书笔记(六)

DevOps实践指南 Part 4 第二步 &#xff1a;反馈的技术实践17. 将假设驱动的开发和A/B测试融入日常工作17.1 A/B 测试简史17.2 在功能测试中集成 A/B 测试17.3 在发布中集成 A/B 测试17.4 在功能规划中集成 A/B 测试17.5 小结 18. 建立评审和协作流程以提升当前工作的质量18.1 …

04条件构造器和常用接口

条件构造器和常用接口 wapper介绍 条件构造器的两个条件之间默认就是AND并列关系,如果需要或者的关系则需要调用构造器的or()方法 条件构造器类型作用Wrapper条件构造抽象类,最顶端父类AbstractWrapper生成SQL的where条件QueryWrapper封装查询或删除的条件UpdateWrapper封装修…

小程序自定义tabbar

前言 使用小程序默认的tabbar可以满足常规开发&#xff0c;但是满足不了个性化需求&#xff0c;如果想个性化开发就需要用到自定义tabbar,以下图为例子 一、在app.json配置 先按照以往默认的形式配置&#xff0c;如果中间的样式特殊则不需要配置 "tabBar": {&qu…

社区分享|MeterSphere变身“啄木鸟”,助力云帐房落地接口自动化测试

云帐房网络科技有限公司&#xff08;以下简称为“云帐房”&#xff09;成立于2015年3月&#xff0c;以“成为最值得信赖的税务智能公司”为愿景&#xff0c;运用人工智能、大数据等互联网技术&#xff0c;结合深厚的财税行业服务经验&#xff0c;为代账公司和中大型企业提供智能…