Flutter框架和原理剖析

Flutter是Google推出并开源的跨平台开发框架,主打跨平台、高保真、高性能。开发者可以通过Dart语言开发Flutter应用,一套代码同时运行在ios和Android平台。不仅如此,flutter还支持web、桌面、嵌入应用的开发。flutter提供了丰富的组件、接口,开发者可以很快地为flutter添加native扩展。同时flutter还使用skia引擎(其实Android原生中页面绘制也是由skia引擎来渲染的)渲染视图,这无疑为用户提供良好地体验

Flutter框架地整体架构

在这里插入图片描述
简单来讲,Flutter 从上到下可以分为三层:框架层、引擎层和嵌入层。

框架层

Flutter Framework,即框架层。这是一个纯 Dart实现的 SDK,它实现了一套基础库,自底向上,我们来简单介绍一下:

  • 底下两层(Foundation 和 Animation、Painting、Gestures)在 Google 的一些视频中被合并为一个dart UI层,对应的是Flutter中的dart:ui包,它是 Flutter Engine 暴露的底层UI库,提供动画、手势及绘制能力。
  • Rendering 层,即渲染层,这一层是一个抽象的布局层,它依赖于 Dart UI 层,渲染层会构建一棵由可渲染对象组成的渲染树,当动态更新这些对象时,渲染树会找出变化的部分,然后更新渲染。渲染层可以说是Flutter 框架层中最核心的部分,它除了确定每个渲染对象的位置、大小之外还要进行坐标变换、绘制(调用底层 dart:ui )。
  • Widgets 层是 Flutter 提供的一套基础组件库,在基础组件库之上,Flutter 还提供了 Material 和 Cupertino 两种视觉风格的组件库,它们分别实现了 Material 和 iOS 设计规范。

引擎层

Engine,即引擎层。毫无疑问是 Flutter 的核心, 该层主要是 C++ 实现,其中包括了 Skia 引擎、Dart 运行时(Dart runtime)、文字排版引擎等。在代码调用 dart:ui库时,调用最终会走到引擎层,然后实现真正的绘制和显示。

嵌入层

Embedder,即嵌入层。Flutter 最终渲染、交互是要依赖其所在平台的操作系统 API,嵌入层主要是将 Flutter 引擎 ”安装“ 到特定平台上。嵌入层采用了当前平台的语言编写,例如 Android 使用的是 Java 和 C++, iOS 和 macOS 使用的是 Objective-C 和 Objective-C++,Windows 和 Linux 使用的是 C++。 Flutter 代码可以通过嵌入层,以模块方式集成到现有的应用中,也可以作为应用的主体。Flutter 本身包含了各个常见平台的嵌入层,假如以后 Flutter 要支持新的平台,则需要针对该新的平台编写一个嵌入层。

Flutter绘制原理

为了熟悉flutter地绘制原理,我们先从屏幕显示图像地基本原理说起:我们在买显示器时,都会关注显示器地刷新频率;那么对于手机屏幕也是一样,通常手机屏幕地刷新频率是60Hz,当然现在也有不少高刷新频率地手机也在推出,如:90Hz,120Hz。
在这里插入图片描述
一般来说,计算机系统中,CPU、GPU和显示器以一种特定地方式协作:CPU将计算好地显示内容提交给GPU,GPU渲染后放入帧缓冲区,然后视频控制器按照VSync信号从帧缓冲区取帧数据传递给显示器显示。当一帧图像绘制完毕后准备绘制下一帧时,显示器会发出一个垂直同步信号(VSync),所以60Hz的屏幕就会一秒内发出60次这样的信号。

上面是CPU、GPU和显示器协作方式,对于Flutter也不例外,Flutter也遵循了这种模式:
在这里插入图片描述
GPU的VSync信号同步给到UI线程,UI线程使用Dart来构建抽象的视图结构(这一步是在Framework层中实现的),绘制好的抽象视图结构会在GPU线程中进行图像的合成(这一步在引擎层中完成),然后提供给skia渲染成GPU所需要的数据,最终提供给GPU进行渲染。由此可知,flutter高性能的核心其实就在于根据vsync信号进行图像的快速构建,也就是上图中的绿色部分

Flutter渲染流程

在这里插入图片描述
在Flutter框架中存在着一个渲染流程。这个渲染流水线是由垂直同步信号驱动的,而Vsync信号由系统提供的,如果你的Flutter app是运行在Android上,那Vsync信号就是我们熟悉的Android的那个Vsync信号。

当Vsync信号到来了以后,Flutter框架会按照图里的顺序执行一系列动作:

  • 动画
  • 构建
  • 布局
  • 绘制

最终生成一个场景之后送往底层,由GPU绘制到屏幕上。

  • 动画阶段:因为动画会随着每个Vsync信号的到来而改变状态(State),所以动画阶段是流水线的第一个阶段;
  • 构建阶段:在这个阶段那些需要被重新构建的Widget会在此时被重新构建。也就是我们熟悉的build()方法被调用的时候。
  • 布局阶段:这时会确定各个显示元素的位置、尺寸;此时是RenderObject.performLayout()被调用的时候;
  • 绘制阶段:此时是RenderObject.paint()被调用的时候

Flutter组件的生命周期

在这里插入图片描述

  • createState():当框架要创建一个StatefulWidget时,它会立即调用State的createState()
  • initState():当State的构造方法被执行后,会调用一次initState(),需要指出的是initState在State生命周期中只会被调用一次
  • build():这个方法会被经常调用,比如:setState以及配置改变都会触发build方法的调用
  • didUpdateConfig():当收到一个新的config时调用
  • setState():当需要修改页面状态,比如刷新数据等的时候我们可以通过调用setState来实现
  • dispose():当移除State对象时,将调用dispose方法;通常在该方法中进行取消订阅,取消所有动画、流等操作。

Flutter渲染机制——为了高性能而生的三棵树

在 Flutter 中, widget 的功能是“描述一个UI元素的配置信息”,它就是说, Widget 其实并不是表示最终绘制在设备屏幕上的显示元素,所谓的配置信息就是 Widget 接收的参数,比如对于 Text 来讲,文本的内容、对齐方式、文本样式都是它的配置信息。

既然 Widget 只是描述一个UI元素的配置信息,那么真正的布局、绘制是由谁来完成的呢?Flutter 框架的处理流程是这样的:

  1. 根据 Widget 树生成一个 Element 树,Element 树中的节点都继承自 Element 类。
  2. 根据 Element 树生成 Render 树(渲染树),渲染树中的节点都继承自RenderObject 类。
    3。 根据渲染树生成 Layer 树,然后上屏显示,Layer 树中的节点都继承自 Layer 类。

真正的布局和渲染逻辑在 Render 树中,Element 是 Widget 和 RenderObject 的粘合剂,可以理解为一个中间代理。

从创建到渲染的大体流程是:根据Widget生成Element,然后创建相应的RenderObject并关联到Element.renderObject属性上,最后再通过RenderObject来完成布局排列和绘制。

接下来,我们重点看下Element这个东西,Element的生命周期如下:

  1. Framework 调用Widget.createElement 创建一个Element实例,记为element。
  2. Framework 调用 element.mount(parentElement,newSlot) ,mount方法中首先调用element所对应Widget的createRenderObject方法创建与element相关联的RenderObject对象,然后调用element.attachRenderObject方法将element.renderObject添加到渲染树中插槽指定的位置(这一步不是必须的,一般发生在Element树结构发生变化时才需要重新添加)。插入到渲染树后的element就处于“active”状态,处于“active”状态后就可以显示在屏幕上了(可以隐藏)。
  3. 当有父Widget的配置数据改变时,同时其State.build返回的Widget结构与之前不同,此时就需要重新构建对应的Element树。为了进行Element复用,在Element重新构建前会先尝试是否可以复用旧树上相同位置的element,element节点在更新前都会调用其对应Widget的canUpdate方法,如果返回true,则复用旧Element,旧的Element会使用新Widget配置数据更新,反之则会创建一个新的Element。Widget.canUpdate主要是判断newWidget与oldWidget的runtimeType和key是否同时相等,如果同时相等就返回true,否则就会返回false。根据这个原理,当我们需要强制更新一个Widget时,可以通过指定不同的Key来避免复用。
  4. 当有祖先Element决定要移除element 时(如Widget树结构发生了变化,导致element对应的Widget被移除),这时该祖先Element就会调用deactivateChild 方法来移除它,移除后element.renderObject也会被从渲染树中移除,然后Framework会调用element.deactivate 方法,这时element状态变为“inactive”状态。
  5. “inactive”态的element将不会再显示到屏幕。为了避免在一次动画执行过程中反复创建、移除某个特定element,“inactive”态的element在当前动画最后一帧结束前都会保留,如果在动画执行结束后它还未能重新变成“active”状态,Framework就会调用其unmount方法将其彻底移除,这时element的状态为defunct,它将永远不会再被插入到树中。
  6. 如果element要重新插入到Element树的其他位置,如element或element的祖先拥有一个GlobalKey(用于全局复用元素),那么Framework会先将element从现有位置移除,然后再调用其activate方法,并将其renderObject重新attach到渲染树。

现在,读者应该能够知道为什么笔者说:“三棵树是为了性能而生的”。因为,视图中的控件都是Render树中的对象,我们知道new出一个对象都是需要消耗操作系统很多资源的,通过三棵树就可以做到对已有render树中的对象进行复用,而不是每更改一个widget就new出一个新的render对象。

这里额外多提一嘴:我们在日常开发的过程中经常会接触到BuildContext这个东西。那这个东西究竟是什么呢?笔者就直接说答案了,有兴趣的同学可以看下源码。BuildContext就是widget对应的Element,所以我们可以通过context在StatelessWidget和StatefulWidget的build方法中直接访问Element对象。我们获取主题数据的代码Theme.of(context)内部正是调用了Element的dependOnInheritedWidgetOfExactType()方法。

三棵树的运用

我们可以看到Element是Flutter UI框架内部连接widget和RenderObject的纽带,大多数时候开发者只需要关注widget层即可,但是widget层有时候并不能完全屏蔽Element细节,所以Framework在StatelessWidget和StatefulWidget中通过build方法参数又将Element对象也传递给了开发者,这样一来,开发者便可以在需要时直接操作Element对象。
那么,现在笔者有个问题:如果没有widget层,单靠Element层是否可以搭建起一个可用的UI框架?如果可以应该是什么样子?

  • 案例如下:
class HomeView extends ComponentElement{HomeView(Widget widget) : super(widget);String text = "123456789";Widget build() {Color primary=Theme.of(this).primaryColor; //1return GestureDetector(child: Center(child: TextButton(child: Text(text, style: TextStyle(color: primary),),onPressed: () {var t = text.split("")..shuffle();text = t.join();markNeedsBuild(); //点击后将该Element标记为dirty,Element将会rebuild},),),);}
}
  1. 上面build方法不接收参数,这一点和在StatelessWidget和StatefulWidget中build(BuildContext)方法不同。代码中需要用到BuildContext的地方直接用this代替即可,如代码注释1处Theme.of(this)参数直接传this即可,因为当前对象本身就是Element实例。

  2. 当text发生改变时,我们调用markNeedsBuild()方法将当前Element标记为dirty即可,标记为dirty的Element会在下一帧中重建。实际上,State.setState()在内部也是调用的markNeedsBuild()方法。

  3. 上面代码中build方法返回的仍然是一个widget,这是由于Flutter框架中已经有了widget这一层,并且组件库都已经是以widget的形式提供了,如果在Flutter框架中所有组件都像示例的HomeView一样以Element形式提供,那么就可以用纯Element来构建UI了HomeView的build方法返回值类型就可以是Element了。

如果我们需要将上面代码在现有Flutter框架中跑起来,那么还是得提供一个“适配器”widget将HomeView结合到现有框架中,下面CustomHome就相当于“适配器”:

class CustomHome extends Widget {Element createElement() {return HomeView(this);}
}

后记

给大家推荐一本flutter相关的电子书籍:《Flutter实战·第二版》

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/136474.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【后端速成 Vue】初识指令(上)

前言&#xff1a; Vue 会根据不同的指令&#xff0c;针对标签实现不同的功能。 在 Vue 中&#xff0c;指定就是带有 v- 前缀 的特殊 标签属性&#xff0c;比如&#xff1a; <div v-htmlstr> </div> 这里问题就来了&#xff0c;既然 Vue 会更具不同的指令&#…

在SpringBoot项目中整合SpringSession,基于Redis实现对Session的管理和事件监听

1、SpringSession简介 SpringSession是基于Spring框架的Session管理解决方案。它基于标准的Servlet容器API&#xff0c;提供了Session的分布式管理解决方案&#xff0c;支持把Session存储在多种场景下&#xff0c;比如内存、MongoDB、Redis等&#xff0c;并且能够快速集成到Spr…

微服务07-认识MQ+RabbitMQ入门

1.前言 了解同步调用和异步调用 1.1.同步调用 比如这里的支付服务&#xff0c;需要等待订单服务、短信服务…执行完毕才能执行&#xff0c;这样支付整个流程完毕需要500ms 然后如果订单、仓储等其中一个服务挂掉了&#xff0c;那么支付服务请求请求不了&#xff0c;挂掉的服…

一文读懂SSL、TLS和mTLS的通信安全协议

今天让我们深入探讨一下SSL、TLS和mTLS等一系列重要的通信安全协议。尽管从整体系统设计的角度来看,这个主题可能并不是至关重要,但仍然值得我们深入了解。 1. SSL协议 SSL,即安全套接字层(Secure Socket Layer),是一种通信协议,旨在加密和保护互联网通信的安全性。虽…

Windows+Pycharm 如何创建虚拟环境

当我们开发一个别人的项目的时候,因为项目里有很多特有的包,比如 Pyqt5.我们不想破坏电脑上原来的包版本,这个时候,新建一个虚拟环境,专门针对这个项目就很有必要了. 简略步骤: 1.新建虚拟环境 1.打开 pycharm 终端(Terminal)安装虚拟环境工具: pip install virtualenv2.创…

2023年度教育部人文社会科学研究一般项目评审结果,已公布!

【SciencePub学术】 9月15日&#xff0c;教育部社科司公示了2023年度教育部人文社会科学研究一般项目评审结果&#xff0c;共3482项。 其中&#xff0c;规划基金、青年基金、自筹经费项目共3029项通过专家评审&#xff1b;西部和边疆地区项目200项&#xff0c;新疆项目20项&a…

【C++面向对象侯捷】5.操作符重载与临时对象

文章目录 operator loading&#xff08;操作符重载-1&#xff0c;成员函数&#xff09; this返回值&#xff1a;引用 分析Header&#xff08;头文件&#xff09;的布局操作符重载-2&#xff0c;非成员函数&#xff08;无 this&#xff09;临时对象&#xff1a;返回的 绝不可能是…

经验分享|作为程序员之后了解到的算法知识

欢迎关注博主 六月暴雪飞梨花 或加入【六月暴雪飞梨花】一起学习和分享Linux、C、C、Python、Matlab&#xff0c;机器人运动控制、多机器人协作&#xff0c;智能优化算法&#xff0c;滤波估计、多传感器信息融合&#xff0c;机器学习&#xff0c;人工智能等相关领域的知识和技术…

LabVIEW开发航天器模拟器的姿态控制和反作用轮动量管理

LabVIEW开发航天器模拟器的姿态控制和反作用轮动量管理 在过去十年中&#xff0c;航天器一直是现代技术进步的先决条件。迄今为止&#xff0c;为了更好地完成各种实际任务&#xff0c;已经在航天器姿态控制领域进行了大量研究。航天器一旦进入太空&#xff0c;就容易出现不确定…

【深度学习实验】前馈神经网络(一):使用PyTorch构建神经网络的基本步骤

目录 一、实验介绍 二、实验环境 1. 配置虚拟环境 2. 库版本介绍 三、实验内容 0. 导入库 1. 定义x,w,b 2. 计算净活性值z 3. 实例化线性层并进行前向传播 4. 打印结果 5. 代码整合 一、实验介绍 本实验使用了PyTorch库来构建和操作神经网络模型&#xff0c;主要是关…

算法训练 第三周

二、环形链表 本题给了我们一个链表的头节点&#xff0c;需要我们判断这个链表之中是否存在环状结构&#xff0c;如果存在返回true&#xff0c;如果不存在则返回false。 1.hash表 我们可以从头遍历整个链表&#xff0c;并将遍历到的节点放入一个hashset中&#xff0c;当我们遍…

北邮22级信通院数电:Verilog-FPGA(2)modelsim北邮信通专属下载、破解教程

北邮22信通一枚~ 跟随课程进度更新北邮信通院数字系统设计的笔记、代码和文章 持续关注作者 迎接数电实验学习~ 获取更多文章&#xff0c;请访问专栏&#xff1a; 北邮22级信通院数电实验_青山如墨雨如画的博客-CSDN博客 目录 1.下载 2.解压打开 3.modelsim初安装 4.…

深度剖析Linux信号机制

文章目录 信号的概念信号的分类信号的产生方式从键盘获取通过系统调用硬件异常软件条件 如何处理信号的到来信号的更深入剖析信号的处理动作是何时进行的&#xff1f;当有一大批同种信号到来时会怎样&#xff1f;Linux也提供了一批信号相关的系统调用 信号的概念 Linux中的信号…

C语言——通讯录管理系统

通讯录管理系统项目简介 功能说明 控制台黑窗口实现程序需要满足以下几个功能 程序开始运行时首先显示选择菜单界面&#xff0c;根据用户输入确定实现何种功能 程序界面 代码实现 多文件实现 和之前写的实战项目类似&#xff0c;这里同样采用多文件实现的方式 多文件写代码…

day3_QT

day3_QT 1、文件保存2、始终事件 -闹钟 1、文件保存 2、始终事件 -闹钟 widget.h #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QTimerEvent> #include <QTime> #include <QTextToSpeech>QT_BEGIN_NAMESPACE namespace Ui { clas…

Qt --- Day03

<?xml version"1.0" encoding"UTF-8"?> <ui version"4.0"><class>Widget</class><widget class"QWidget" name"Widget"><property name"geometry"><rect><x>0…

fatal error: linux/compiler-gcc9.h: No such file or directory

linux 找到README文件 cd /mnt/e/CLionProjects/linux-3.10.99 sudo useradd linux3x sudo passwd linux3x sudo mkdir /home/linux3x sudo chown linux3x:linu3x /home/linux3x sudo chmod 755 /home/linux3x su - linux3x mkdir ~/build mkdir ~/build/kernel exit make O/…

目标检测Neck:FPN(Feature Pyramid Network)与PAN(附torch代码)

文章目录 0. 前言1. FPN1.1 FPN核心思想与步骤1.2 FPN的融合过程2. PAN2.1 PANet2.2 原版2.3 mmdetection中yolo_neck版本2.4 nanodet版本ReferenceFPN和PAN都是用于解决在目标检测中特征金字塔网络(FPN)在多尺度检测任务上的不足的方法。下面分别详细介绍一下它们的原理和区别…

Docker 容器设置为自动重启

Docker自动重启原因 Docker自动重启通常是由以下几个原因导致的&#xff1a; 程序崩溃系统内存不足系统进程使用过多CPU和RAM导致的阻塞docker容器被杀死或重新启动&#xff0c;导致应用程序中断网络中断 当这些问题出现时&#xff0c;Docker会自动重启运行中的服务来尝试解…

malloc与free

目录 前提须知&#xff1a; malloc&#xff1a; 大意&#xff1a; 头文件&#xff1a; 申请空间&#xff1a; 判断是否申请成功&#xff1a; 使用空间&#xff1a; 结果&#xff1a; 整体代码&#xff1a; malloc申请的空间怎么回收呢? 注意事项&#xff1a; free:…