四、数学建模之图与网络模型

1.定义
2.例题及软件代码求解

一、定义

1.图和网络是相关概念

(1)(Graph):图是数学和计算机科学中的一个抽象概念,它由一组节点(顶点)和连接这些节点的边组成。图可以是有向的(有方向的,边有箭头表示方向)或无向的(没有方向的,边没有箭头表示方向)。图用于表示各种关系,如社交网络、电路、地图、组织结构等。

(2)网络(Network):网络是一个更广泛的概念,可以包括各种不同类型的连接元素,不仅仅是图中的节点和边。网络可以包括节点、边、连接线、路由器、服务器、通信协议等多种组成部分。网络的概念在各个领域都有应用,包括计算机网络、社交网络、电力网络、交通网络等。

2.图论的概念

(1)图:图是由一组节点(顶点)和连接这些节点的边组成的数学结构。图可以分为有向图和无向图,根据边是否有方向。

(2)顶点:顶点是图中的节点,它们可以代表不同的实体或对象。

(3)边:边是连接两个顶点的线段,它可以表示顶点之间的关系或连接。

(4)有向图:有向图是一种图,其中边有方向,从一个顶点指向另一个顶点。

(5)无向图:无向图是一种图,其中边没有方向,只表示两个顶点之间的连接。

(6)最小生成树问题:在一个连通图中,寻找一个包含所有顶点的子图,使得边的权重之和最小,被称为最小生成树问题。其中,Prim算法和Kruskal算法是解决这个问题的常用方法。

(7)路径:路径是图中一系列相邻的顶点,它们通过边相连。

(8)环:环是一条路径,起始点和结束点相同,形成一个闭合的循环。

(9)连通图:如果在无向图中,任意两个顶点之间都存在路径,那么这个图是连通的。对于有向图,可以有强连通图的概念。

(10)度数:一个顶点的度数是与它相邻的边的数量。在有向图中,分为入度和出度。

(11)图的表示:图可以用邻接矩阵、邻接表等不同方式来表示,这取决于需要进行的操作和问题类型。

(12)最短路径问题:寻找两个顶点之间最短路径的问题是图论中的一个经典问题,例如Dijkstra算法和Bellman-Ford算法。

3.稀疏矩阵表示法

一种用于有效存储处理稀疏矩阵(大部分元素为零)的方法。在很多实际应用中,矩阵中的许多元素都是零,因此使用传统的密集矩阵表示法会浪费大量的存储空间和计算资源。稀疏矩阵表示法可以显著减少这种浪费。

常见的稀疏矩阵表示法

(1)压缩稀疏行表示法:在CSR表示法中,矩阵被分为三个数组:值数组(非零元素的值)、列索引数组(每个值对应的列索引)、行偏移数组(每行的起始位置在值数组中的索引)。这种表示方法适用于稀疏矩阵中的非零元素分散地分布在各行中的情况。

(2)压缩稀疏列表示法:与CSR类似,CSC也使用值数组、行索引数组和列偏移数组,但是列偏移数组表示每列的起始位置。CSC适用于稀疏矩阵中的非零元素分散地分布在各列中的情况。

(3)三元组表示法:在这种表示法中,矩阵的每个非零元素都由一个三元组 (行号、列号、元素值) 来表示。适用于初始构建稀疏矩阵或者非常稀疏的情况,但不太适用于高效的矩阵操作。

(4)对角线存储法:当稀疏矩阵具有对角线稀疏性(非零元素主要分布在对角线上)时,可以使用对角线存储法,只存储对角线及其附近的元素。

(5)块压缩表示法:对于某些特定应用,可以将矩阵分成块,并对每个块使用一种稀疏矩阵表示法。这对于一些科学计算和图像处理任务中的大型稀疏矩阵很有用。

二、例题(matlab或lingo求解)

1.矩阵表示有向图
在这里插入图片描述
在这里插入图片描述
2.例 某公司在六个城市 中有分公司,从 到 的直接航程票价记在下述矩阵的 位置上。( 表示无直接航路),请帮助该公司设计一张城市 到其它城市间的票价最便宜的路线图。
在这里插入图片描述

clc,clear
a=zeros(6);
a(1,2)=50;a(1,4)=40;a(1,5)=25;a(1,6)=10;
a(2,3)=15;a(2,4)=20;a(2,6)=25;
a(3,4)=10;a(3,5)=20;
a(4,5)=10;a(4,6)=25;
a(5,6)=55;
a=a+a';
a(find(a==0))=inf;
pb(1:length(a))=0;pb(1)=1;index1=1;index2=ones(1,length(a));
d(1:length(a))=inf;d(1)=0;temp=1;
while sum(pb)<length(a)tb=find(pb==0);d(tb)=min(d(tb),d(temp)+a(temp,tb));tmpb=find(d(tb)==min(d(tb)));temp=tb(tmpb(1));pb(temp)=1;index1=[index1,temp];temp2=find(d(index1)==d(temp)-a(temp,index1));index2(temp)=index1(temp2(1));
end
d, index1, index2

3.例 在图 3 中,用点表示城市,现有 A, B1, B2 ,C1,C2 ,C3 , D 共 7 个城市。点与
点之间的连线表示城市间有道路相连。连线旁的数字表示道路的长度。现计划从城市 A到城市 D 铺设一条天然气管道,请设计出最小价格管道铺设方案。
在这里插入图片描述
编写 LINGO 程序如下:


model: 
sets: 
cities/A,B1,B2,C1,C2,C3,D/; 
roads(cities,cities)/A B1,A B2,B1 C1,B1 C2,B1 C3,B2 C1, 
B2 C2,B2 C3,C1 D,C2 D,C3 D/:w,x; 
endsets 
data: 
w=2 4 3 3 1 2 3 1 1 3 4; 
enddata 
n=@size(cities); !城市的个数; 
min=@sum(roads:w*x); 
@for(cities(i)|i #ne#1 #and# i #ne#n: 
@sum(roads(i,j):x(i,j))=@sum(roads(j,i):x(j,i))); 
@sum(roads(i,j)|i #eq#1:x(i,j))=1; 
@sum(roads(i,j)|j #eq#n:x(i,j))=1; 
end 
  1. 例无向图的最短路问题)求图 4 中 1 v 到 11 v 的最短路。

在这里插入图片描述
编写 LINGO 程序如下

:
model: 
sets: 
cities/1..11/; 
roads(cities,cities):w,x; 
endsets 
data: 
w=0; 
enddata 
calc: 
w(1,2)=2;w(1,3)=8;w(1,4)=1; 
w(2,3)=6;w(2,5)=1;
w(3,4)=7;w(3,5)=5;w(3,6)=1;w(3,7)=2; 
w(4,7)=9; 
w(5,6)=3;w(5,8)=2;w(5,9)=9; 
w(6,7)=4;w(6,9)=6; 
w(7,9)=3;w(7,10)=1; 
w(8,9)=7;w(8,11)=9; 
w(9,10)=1;w(9,11)=2;w(10,11)=4; 
@for(roads(i,j):w(i,j)=w(i,j)+w(j,i)); 
@for(roads(i,j):w(i,j)=@if(w(i,j) #eq# 0, 1000,w(i,j))); 
endcalc 
n=@size(cities); !城市的个数; 
min=@sum(roads:w*x); 
@for(cities(i)|i #ne#1 #and# i #ne# 
n:@sum(cities(j):x(i,j))=@sum(cities(j):x(j,i))); 
@sum(cities(j):x(1,j))=1; 
@sum(cities(j):x(j,1))=0; !不能回到顶点1; 
@sum(cities(j):x(j,n))=1; 
@for(roads:@bin(x)); 
end

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/138117.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vector使用和模拟实现

&#x1f493;博主个人主页:不是笨小孩&#x1f440; ⏩专栏分类:数据结构与算法&#x1f440; C&#x1f440; 刷题专栏&#x1f440; C语言&#x1f440; &#x1f69a;代码仓库:笨小孩的代码库&#x1f440; ⏩社区&#xff1a;不是笨小孩&#x1f440; &#x1f339;欢迎大…

wx.getPrivacySetting 小程序隐私保护指引的使用(复制粘贴即用)

创建privacyPopup 组件 privacyPopup.js Component({properties: {},data: {wxPrivacyName: ,showAgreement: false},lifetimes: {attached() {this.init();}},methods: {async init() {if (isLogin()) {const userPrivacy await this.getPrivacy();this.setData({wxPrivacy…

C语言文件的相关操作

C语言中文件的相关操作 文件的打开 使用文件的打开函数需要引入这个头文件&#xff1a;#include <fcntl.h> open函数 int open(char const *pathname, int flags, mode_t mode) 功能&#xff1a;打开已有的文件或者创建新文件参数 pathname&#xff1a;文件路径名&…

Vue 使用vue-cli构建SPA项目(超详细)

目录 一、什么是vue-cli 二&#xff0c;构建SPA项目 三、 运行SPA项目 前言&#xff1a; 在我们搭建SPA项目时候&#xff0c;我们必须去检查我们是否搭建好NodeJS环境 cmd窗口输入以下指令&#xff1a;去检查 node -v npm -v 一、什么是vue-cli Vue CLI&#xff08;Vu…

控制台日志打印console的封装,加入美化、行显示与打印开关,支持node.js环境

控制台日志打印console的封装&#xff0c;加入美化、行显示与打印开关&#xff0c;支持node.js环境 为什么要写这个&#xff1f; 封装这个控制台日志打印工具&#xff0c;主要是在项目中自己做的SDK需要提供给其他开发人员使用&#xff0c;加入了日志美化和打印打开&#xff…

jq命令安装与使用

目录 一、简介二、下载及安装1.Linux 安装2.Windows 安装3.测试安装结果 三、jq用法1.基本语法2.常见用法1&#xff09;格式化 JSON2&#xff09;获取属性3&#xff09;属性不存在情况处理4&#xff09;数组遍历、截取、展开5&#xff09;管道、逗号、加号6&#xff09;数据构造…

Linux 系统目录结构 终端

系统目录结构 Linux 或 Unix 操作系统中&#xff0c;所有文件和目录呈一个以根节点为始的倒置的树状结构。文件系统的最顶层是根目录&#xff0c;用 / 来表示根目录。在根目录之下的既可以是目录&#xff0c;也可以是文件&#xff0c;而每一个目录中又可以包含子目录文件。如此…

宝塔重装注意事项

欢迎关注我的公众号&#xff1a;夜说猫&#xff0c;让一个贫穷的程序员不靠打代码也能吃饭~ 前言 宝塔8.0版本&#xff0c;宝塔卸载重装&#xff0c;或者重装Linux系统后重新安装宝塔也适用。 不能上来直接就执行安装宝塔脚本&#xff0c;除非之前没有安装过宝塔。 步骤 1、…

2023年浙工商MBA新生奖学金名单公布,如何看待?

浙工商MBA项目官方最新公布了2023年的非全日制新生奖学金名单&#xff0c;按照政策约定&#xff0c;共分为特等奖学金1名&#xff0c;一等奖学金10名&#xff0c;二等奖学金15名&#xff0c;三等奖学金30名&#xff0c;额度对应3万、1万、0.8万、0.5万不等&#xff0c;主要名单…

MySQL主从数据库搭建

1 背景 最近工作需要对比几种数据库技术方案&#xff0c;主从读写分离集群也是其中之一。现将该集群搭建过程记录下来&#xff0c;以便后面查看回忆。 2 主从集群 2.1 原理 主从复制的原理如下图所示&#xff1a; 2.2 集群划分 我在搭建主从集群时已经使用用虚拟机安装了do…

面试官:你是怎么理解ES6中 Decorator 的?使用场景?

&#x1f3ac; 岸边的风&#xff1a;个人主页 &#x1f525; 个人专栏 :《 VUE 》 《 javaScript 》 ⛺️ 生活的理想&#xff0c;就是为了理想的生活 ! 目录 一、介绍 二、用法 类的装饰 类属性的装饰 注意 三、使用场景 antobind readonly deprecate 一、介绍 Dec…

BSV 上用于通用计算的隐私非交互式赏金

如何安全地外包任何计算 我们提出了一种新颖的赏金机制&#xff0c;可以在区块链上安全私密地外包任意计算。解决方案和付款的交换是原子的和无需信任的&#xff1a;赏金发布者获得解决方案而赏金收集者获得奖励&#xff0c;或者两者都不发生。赏金发布者部署一个智能合约&…

Layui + Flask | 实现注册、登录功能(案例篇)(08)

此案例内容比较多,建议滑到最后点击阅读原文,阅读体验更佳。后续也会录制案例视频,将在本周内上传到同名的 b 站账号。 已经看了 layui 表单相关的知识,接下来就可以实现注册功能,功能逻辑如下: 项目创建 新建 flask 项目下载 layui 文件,解压之后复制到指定文件编写前…

PostgreSQL设置主键为自增

1、创建自增序列 CREATE SEQUENCE table_name_id_seq START 1; 2、设置字段默认值 字段默认值中设置 nextval(table_name_id_seq) 3、常用查询 -- 查询所有序列 select * from information_schema.sequences where sequence_schema public; -- 查询自增序列的当前值 select cu…

Unity中UI组件对Shader调色

文章目录 前言一、原理在Shader中直接暴露的Color属性&#xff0c;不会与UI的Image组件中的Color形成属性绑定。因为UI的Image组件中更改的颜色是顶点颜色&#xff0c;如果需要在修改组件中的颜色时&#xff0c;使Shader中的颜色也同时改变。那么就需要在应用程序阶段传入到顶点…

自动驾驶中的决策规划

参考: 【干货篇】轻舟智航&#xff1a;自动驾驶中的决策规划技术&#xff08;附视频回放 PPT 下载&#xff09; - AIQ 如图所示, 各模块介绍 定位模块主要负责解答的问题是“车现在在哪里”&#xff0c;是在道路上还是在路口&#xff0c;是在高架桥上还是在停车场里。 感知…

Redis 集合(Set)快速指南 | Navicat

Redis 支持通过多种数据类型来存储项目集合。其中&#xff0c;包括列表、集合和哈希。上周的博文介绍了列表&#xff08;List&#xff09;数据类型并重点介绍了一些用于管理列表&#xff08;List&#xff09;的主要命令。在今天的文章中&#xff0c;我们将转向关注集合&#xf…

怒刷LeetCode的第11天(Java版)

目录 第一题 题目来源 题目内容 解决方法 方法一&#xff1a;迭代 方法二&#xff1a;递归 方法三&#xff1a;指针转向 第二题 题目来源 题目内容 解决方法 方法一&#xff1a;快慢指针 方法二&#xff1a;Arrays类的sort方法 方法三&#xff1a;计数器 方法四…

Neo4j图数据库_web页面关闭登录实现免登陆访问_常用的cypher语句_删除_查询_创建关系图谱---Neo4j图数据库工作笔记0013

由于除了安装,那么真实使用的时候,就是导入数据了,有了关系和节点的csv文件以后如果用 cypher进行导入数据和创建关系图谱,还有进行查询,以及如果导入错误如何清空,大概是这些 用的最多的,单独把这些拿进来,总结一下,用的会比较方便. 1.实现免登陆访问: /data/module/neo4j-…

【动态规划刷题 16】最长等差数列 (有难度) 等差数列划分 II - 子序列

1027. 最长等差数列 https://leetcode.cn/problems/longest-arithmetic-subsequence/ 给你一个整数数组 nums&#xff0c;返回 nums 中最长等差子序列的长度。 回想一下&#xff0c;nums 的子序列是一个列表 nums[i1], nums[i2], …, nums[ik] &#xff0c;且 0 < i1 <…