怒刷LeetCode的第11天(Java版)

目录

第一题

题目来源

题目内容

解决方法

方法一:迭代

方法二:递归

方法三:指针转向

第二题

题目来源

题目内容

解决方法

方法一:快慢指针

方法二:Arrays类的sort方法

方法三:计数器

方法四:额外的数组

第三题

题目来源

题目内容

解决方法

方法一:双指针

方法二:List

方法三:交换元素

方法四:递归


第一题

题目来源

25. K 个一组翻转链表 - 力扣(LeetCode)

题目内容

解决方法

方法一:迭代

题目描述中要求将链表每 k 个节点作为一组进行翻转。这是一个比较经典的链表问题,可以使用迭代的方法来解决。具体思路如下:

  1. 首先定义两个指针 prev 和 curr,分别指向当前组的前一个节点和当前节点。
  2. 使用一个计数器 count 来记录当前组中已经遍历的节点数目。
  3. 遍历链表,对于每个节点 curr:
    • 将 curr 的下一个节点保存到 next。
    • 如果 count 等于 k,则说明当前组内的节点已经遍历完毕,需要进行翻转。具体操作如下:
      • 调用 reverse 函数对 prev 和 curr 之间的节点进行翻转,返回翻转后的头节点,并将它赋值给新的 prev。
      • 将翻转后的最后一个节点的 next 指向 next,即连接下一组的头节点。
      • 更新 curr 和 prev,将它们都指向 next。
      • 将 count 重置为 0,表示下一组的遍历开始。
    • 如果 count 不等于 k,则说明当前组内的节点还未满 k 个,继续遍历下一个节点。
    • 将 curr 更新为 next,继续遍历下一个节点。
    • 将 count 增加 1。
  4. 返回翻转后的链表头节点。
/*** Definition for singly-linked list.* public class ListNode {*     int val;*     ListNode next;*     ListNode() {}*     ListNode(int val) { this.val = val; }*     ListNode(int val, ListNode next) { this.val = val; this.next = next; }* }*/
class Solution {
public ListNode reverseKGroup(ListNode head, int k) {ListNode dummy = new ListNode(0);dummy.next = head;ListNode prev = dummy;ListNode curr = head;int count = 0;while (curr != null) {count++;ListNode next = curr.next;if (count == k) {prev = reverse(prev, next);count = 0;}curr = next;}return dummy.next;
}private ListNode reverse(ListNode start, ListNode end) {ListNode prev = start;ListNode curr = start.next;ListNode first = curr;while (curr != end) {ListNode next = curr.next;curr.next = prev;prev = curr;curr = next;}start.next = prev;first.next = curr;return first;
}}

复杂度分析:

时间复杂度分析:

  • 遍历链表需要 O(n) 的时间,其中 n 是链表的长度。
  • 在每个节点组内进行翻转操作时,需要遍历 k 个节点,即 O(k) 的时间复杂度。
  • 总共有 n/k 个节点组,所以翻转操作的总时间复杂度是 O((n/k) * k) = O(n)。

因此,总的时间复杂度是 O(n)。

空间复杂度分析:

  • 我们只使用了常数级别的额外空间,例如指针变量和辅助节点。
  • 因此,空间复杂度是 O(1)。

综上所述,该解法的时间复杂度为 O(n),空间复杂度为 O(1)。

LeetCode运行结果:

方法二:递归

除了迭代的解法,还可以使用递归的思路来实现链表的翻转。

具体的递归思路如下:

  1. 定义一个函数 reverseKGroupRecursive,其功能是将以 head 为头节点的链表每 k 个节点进行翻转,并返回翻转后的链表的头节点。
  2. 首先遍历链表,找到第 k+1 个节点 next
    • 如果 next!=null,说明当前组内有至少 k 个节点,可以进行翻转操作。
      • 调用 reverse 函数对以 head 为头节点、以 next 为尾节点的子链表进行翻转,并将翻转后的尾节点返回,将其赋值给 newHead
      •  head 的 next 指针指向下一组的头节点,即调用 reverseKGroupRecursive(next, k)
      • 返回 newHead,作为翻转后的链表的头节点。
    • 如果 next==null,说明剩余的节点数少于 k 个,无需翻转,直接返回 head
/*** Definition for singly-linked list.* public class ListNode {*     int val;*     ListNode next;*     ListNode() {}*     ListNode(int val) { this.val = val; }*     ListNode(int val, ListNode next) { this.val = val; this.next = next; }* }*/
class Solution {
public ListNode reverseKGroup(ListNode head, int k) {ListNode curr = head;int count = 0;while (curr != null && count < k) {curr = curr.next;count++;}if (count == k) {ListNode newHead = reverseKGroupRecursive(head, curr, k);head.next = reverseKGroup(curr, k);return newHead;}return head;
}private ListNode reverseKGroupRecursive(ListNode head, ListNode tail, int k) {ListNode prev = tail;ListNode curr = head;while (curr != tail) {ListNode next = curr.next;curr.next = prev;prev = curr;curr = next;}return prev;
}}

复杂度分析:

时间复杂度分析:

  • 遍历链表需要 O(n) 的时间,其中 n 是链表的长度。
  • 递归调用了 n/k 次,每次都需要翻转 k 个节点,因此每次递归操作的时间复杂度是 O(k)。
  • 整个算法的时间复杂度是 O((n/k) * k) = O(n)。

因此,总的时间复杂度是 O(n)。

空间复杂度分析:

  • 递归的深度是 n/k,因此递归调用栈的最大深度是 O(n/k)。
  • 每次递归操作需要常数级别的额外空间,例如指针变量和辅助节点。
  • 因此,空间复杂度是 O(n/k),在最坏情况下为 O(n)。需要注意的是,在实际使用中链表长度较大时,递归方法可能会导致递归调用栈溢出。

综上所述,递归解法的时间复杂度为 O(n),空间复杂度为 O(n/k)(在最坏情况下为 O(n))。

需要注意的是,递归方法对于链表长度较大时可能会导致递归调用栈溢出,因此在实际使用中需要注意链表长度是否适合使用递归解法。

LeetCode运行结果:

方法三:指针转向

除了迭代、递归的方法,还可以使用指针转向的思路来实现链表的翻转。

/*** Definition for singly-linked list.* public class ListNode {*     int val;*     ListNode next;*     ListNode() {}*     ListNode(int val) { this.val = val; }*     ListNode(int val, ListNode next) { this.val = val; this.next = next; }* }*/
class Solution {public ListNode reverseKGroup(ListNode head, int k) {if (head == null || k <= 1) {return head;}ListNode dummy = new ListNode(0); // 创建一个虚拟头节点dummy.next = head;ListNode prev = dummy;while (head != null) {ListNode tail = prev;// 判断剩余节点数是否大于等于 kfor (int i = 0; i < k; i++) {tail = tail.next;if (tail == null) {// 剩余的节点数不满 k 个,直接返回结果return dummy.next;}}ListNode nextGroupHead = tail.next; // 下一组节点的头节点// 翻转当前组内的节点ListNode[] reversed = reverse(head, tail);head = reversed[0];tail = reversed[1];// 将翻转后的组连接到结果链表中prev.next = head;tail.next = nextGroupHead;// 更新 prev 和 head,准备处理下一组prev = tail;head = nextGroupHead;}return dummy.next;}private ListNode[] reverse(ListNode head, ListNode tail) {ListNode prev = tail.next;ListNode curr = head;while (prev != tail) {ListNode next = curr.next;curr.next = prev;prev = curr;curr = next;}return new ListNode[] {tail, head};}
}

该方法通过指针转向的方式,每次翻转一组的节点。其中,reverse 方法用于翻转当前组内的节点。 

复杂度分析:

时间复杂度分析:

  • 翻转一组的时间复杂度为 O(k),其中 k 是每组节点的数量。
  • 对于包含 n 个节点的链表,一共有 n/k 组需要翻转。
  • 因此,总的时间复杂度为 O((n/k) * k) = O(n)。

空间复杂度分析:

  • 空间复杂度取决于额外使用的变量和递归调用栈的空间。
  • 额外使用的变量有 dummy、prev、tail 和 nextGroupHead,它们占用的空间是常数级别的,因此不会随着输入规模 n 的增加而增加。
  • 在递归实现中,递归调用栈的深度最多为 n/k,因为总共有 n/k 组需要翻转。
  • 因此,递归调用栈的空间复杂度为 O(n/k)。
  • 综上所述,总的空间复杂度为 O(1)。

综合来说,该方法的时间复杂度为 O(n),空间复杂度为 O(1)。需要注意的是,在处理不满 k 个节点的情况时,需要额外判断并返回结果。

LeetCode运行结果:

第二题

题目来源

26. 删除有序数组中的重复项 - 力扣(LeetCode)

题目内容

解决方法

方法一:快慢指针

由于数组已经按非严格递增排列,可以利用快慢指针来遍历数组。慢指针指向当前不重复的元素,快指针用于遍历整个数组。如果快指针指向的元素与慢指针指向的元素不同,说明找到了一个新的不重复元素,将其存放在慢指针的下一个位置,并将慢指针后移一位。最后返回慢指针加1即可。

class Solution {
public int removeDuplicates(int[] nums) {if(nums.length == 0){return 0;}int i = 0;for(int j = 1; j < nums.length; j++){if(nums[i] != nums[j]){i++;nums[i] = nums[j];}}return i + 1;
}}

复杂度分析:

  • 时间复杂度:O(n),其中n为数组的长度。该算法通过使用快慢指针,只需一次遍历数组即可完成操作。

  • 空间复杂度:O(1)。该算法只使用了常数级的额外空间,不随输入规模的增加而增加。

LeetCode运行结果:

方法二:Arrays类的sort方法

除了使用快慢指针的解法外,在Java中还可以使用Arrays类的sort方法来解决该问题。

该方法首先对数组进行排序,使得重复元素相邻。然后使用快慢指针的方法遍历数组,将不重复的元素放到慢指针所指向的位置,并移动慢指针。最后返回慢指针加1作为新数组的长度。

class Solution {
public int removeDuplicates(int[] nums) {Arrays.sort(nums);int i = 0;for (int j = 1; j < nums.length; j++) {if (nums[j] != nums[i]) {i++;nums[i] = nums[j];}}return i + 1;
}}

复杂度分析:

  • 时间复杂度:O(n log n),其中n为数组的长度。排序需要O(n log n)的时间复杂度,遍历数组需要O(n)的时间复杂度。
  • 空间复杂度:O(1),原地修改数组,不需要额外的空间。

LeetCode运行结果:

方法三:计数器

除了前面提到的思路和方法,还可以使用一个计数器来记录重复元素的个数,并根据计数器的值进行相应的操作。

  1. 该方法使用count变量来记录数组中不重复元素的个数,duplicateCount变量来记录重复元素的个数。
  2. 遍历数组时,如果当前元素与前一个元素相同,则将duplicateCount加1;否则将count加1。
  3. 同时,如果duplicateCount大于0,则将当前元素向前移动duplicateCount个位置,相当于删除了重复元素。
  4. 最后返回count作为新数组的长度。
class Solution {
public int removeDuplicates(int[] nums) {if (nums.length == 0) {return 0;}int count = 1;int duplicateCount = 0;for (int i = 1; i < nums.length; i++) {if (nums[i] == nums[i - 1]) {duplicateCount++;} else {count++;}if (duplicateCount > 0) {nums[i - duplicateCount] = nums[i];}}return count;
}}

复杂度分析:

  • 时间复杂度:O(n),其中n为数组的长度。需要遍历整个数组一次。
  • 空间复杂度:O(1),原地修改数组,不需要额外的空间。

在遍历数组时,只有在出现重复元素时才会对数组进行修改。对数组的修改是通过将重复元素向前移动来实现的,而不是删除重复元素。因此,不需要额外的空间来存储删除后的新数组。这种方法的空间复杂度是常数级别的。

综上所述,使用计数器的解法是一种高效的解决方案,具有线性的时间复杂度和常数级别的空间复杂度。

LeetCode运行结果:

方法四:额外的数组

除了之前提到的思路和方法,还可以使用额外的数组来存储不重复的元素。

该方法创建一个新的数组uniqueNums,用于存储不重复的元素。遍历原始数组时,如果当前元素与前一个元素不相同,则将当前元素添加到uniqueNums数组中,并将计数器count加1。最后,将uniqueNums数组中的元素赋值回原数组nums,并返回count作为新数组的长度。

class Solution {
public int removeDuplicates(int[] nums) {if (nums.length == 0) {return 0;}int[] uniqueNums = new int[nums.length];uniqueNums[0] = nums[0];int count = 1;for (int i = 1; i < nums.length; i++) {if (nums[i] != nums[i - 1]) {uniqueNums[count] = nums[i];count++;}}// 将uniqueNums数组中的元素赋值回原数组for (int i = 0; i < count; i++) {nums[i] = uniqueNums[i];}return count;
}}

复杂度分析:

  • 时间复杂度:O(n),其中n为数组的长度。需要遍历整个数组一次,并进行一次数组元素的复制操作。
  • 空间复杂度:O(n),因为需要使用额外的数组来存储不重复的元素。

在遍历原始数组时,只有在出现与前一个元素不相同的元素时才将其添加到新数组中。因此,新数组的长度最多为原数组的长度,即使用了额外的O(n)空间。

综上所述,使用额外数组的解法是一种线性时间复杂度的解决方案,但需要额外的空间来存储新的数组。这种方法适用于不要求原地修改数组的情况。

LeetCode运行结果:

第三题

题目来源

27. 移除元素 - 力扣(LeetCode)

题目内容

解决方法

方法一:双指针

这道题可以使用双指针的方法来解决。定义两个指针:慢指针slow和快指针fast。

算法的思路如下:

  1. 初始化慢指针slow为0。
  2. 遍历数组,如果当前元素nums[fast]等于给定值val,则快指针fast向前移动一步,跳过该元素。
  3. 如果当前元素nums[fast]不等于给定值val,则将nums[fast]赋值给nums[slow],同时慢指针slow向前移动一步。
  4. 重复步骤2和步骤3,直到快指针fast遍历完整个数组。
  5. 返回慢指针slow的值。
class Solution {
public int removeElement(int[] nums, int val) {int slow = 0;for (int fast = 0; fast < nums.length; fast++) {if (nums[fast] != val) {nums[slow] = nums[fast];slow++;}}return slow;
}}

复杂度分析:

  • 时间复杂度: 遍历数组所需的时间为 O(n),其中 n 是数组的长度。在每次遍历时,只有快指针需要移动,而慢指针最多移动了 n 次。因此,整个算法的时间复杂度为 O(n)。
  • 空间复杂度: 该算法使用了常数个额外变量,不随输入规模 n 变化,因此空间复杂度为 O(1)。无论输入数组的长度如何,算法都只需要固定的额外空间。

综上所述,该算法的时间复杂度为 O(n),空间复杂度为 O(1)。

LeetCode运行结果:

方法二:List

除了双指针的方法,还可以使用 Java 中的 List 来解决这个问题。具体的做法如下:

  1. 创建一个 List 集合(例如 ArrayList)来存储不等于给定值val的元素。
  2. 遍历数组,如果当前元素nums[i]不等于给定值val,则将其添加到 List 中。
  3. 将 List 转换为数组并返回。
class Solution {
public int removeElement(int[] nums, int val) {List<Integer> list = new ArrayList<>();for (int num : nums) {if (num != val) {list.add(num);}}Integer[] arr = list.toArray(new Integer[list.size()]);for (int i = 0; i < arr.length; i++) {nums[i] = arr[i];}return list.size();
}}

这种方法的本质是通过使用 List 集合来存储不等于给定值val的元素,然后将 List 转换为数组并重新赋值给原数组。最后返回 List 的大小即为移除元素后的新长度。 

复杂度分析:

时间复杂度:

  1. 遍历数组并将不等于给定值val的元素添加到 List,时间复杂度为 O(n),其中 n 是数组的长度。
  2. 将 List 转换为数组,需要遍历 List 中的元素,时间复杂度同样为 O(n)。

综上所述,整个算法的时间复杂度为 O(n)。

空间复杂度:

  1. 创建了一个大小为 n 的 List 来存储不等于给定值val的元素,占用了额外的 O(n) 空间。
  2. 将 List 转换为数组时,需要创建一个新的数组,大小为 List 的大小,同样占用了额外的 O(n) 空间。

综上所述,整个算法的空间复杂度为 O(n)。

相比之下,双指针和的方法在空间复杂度上是优于使用 List 的方法的,因为它只需要常数个额外变量,即空间复杂度为 O(1)。因此,建议使用双指针的方法来解决这个问题,以获得更好的空间效率。

LeetCode运行结果:

方法三:交换元素

除了双指针、List,还可以使用交换元素的思路来解决这个问题。具体的做法如下:

  1. 初始化两个指针i和j,初始值分别为0和数组长度-1。
  2. 循环移动指针i,直到找到第一个等于给定值val的元素。
  3. 循环移动指针j,直到找到第一个不等于给定值val的元素。
  4. 如果i小于j,则将元素nums[j]赋值给nums[i],并将指针i和j分别加1和减1。
  5. 重复步骤2到步骤4,直到i大于等于j。
  6. 返回指针i,即为移除元素后的新长度。
class Solution {
public int removeElement(int[] nums, int val) {int i = 0;int j = nums.length - 1;while (i <= j) {while (i <= j && nums[i] != val) {i++;}while (i <= j && nums[j] == val) {j--;}if (i < j) {nums[i] = nums[j];i++;j--;}}return i;
}}

这种交换元素的方法通过使用两个指针分别从头尾向中间移动,并通过交换元素的方式来实现移除元素的目的。 

复杂度分析:

  • 时间复杂度:使用两个指针分别从头尾向中间移动,最坏情况下需要遍历整个数组,时间复杂度为 O(n),其中 n 是数组的长度。
  • 空间复杂度:这种方法只使用常数个额外变量,即空间复杂度为 O(1)。

综上所述,使用交换元素的方法的时间复杂度为 O(n),空间复杂度为 O(1)。与双指针的方法相比,交换元素的方法具有相同的时间复杂度,但空间复杂度更低,因为不需要额外的数据结构(如 List)来存储元素。从空间效率的角度来看,交换元素的方法是较优的选择。

LeetCode运行结果:

方法四:递归

除了双指针、交换元素和使用 List 的方法,还可以利用递归来解决这个问题。具体的做法如下:

  1. 编写一个递归函数,传入当前遍历到的索引位置和计数器 count。
  2. 在递归函数中,判断当前遍历到的元素是否等于给定值 val:
    • 如果相等,则将计数器 count 加1,并调用递归函数继续处理下一个元素。
    • 如果不相等,则将当前元素覆盖掉索引位置 count,并调用递归函数处理下一个元素。
  3. 递归函数的终止条件是遍历完整个数组,返回计数器 count 的值。
  4. 在主函数中,调用递归函数,传入初始索引0和计数器初始值0。
class Solution {
public int removeElement(int[] nums, int val) {return removeElementRecursive(nums, val, 0, 0);
}private int removeElementRecursive(int[] nums, int val, int index, int count) {if (index == nums.length) {return count;}if (nums[index] != val) {nums[count] = nums[index];count++;}return removeElementRecursive(nums, val, index + 1, count);
}}

这种递归的方法通过逐个处理数组元素,将不等于给定值 val 的元素覆盖到数组的前部分,从而实现移除元素的目的。 

复杂度分析:

  • 时间复杂度:递归函数需要遍历整个数组,因此时间复杂度取决于数组的长度,为 O(n),其中 n 是数组的大小。
  • 空间复杂度:递归调用会占用一定的栈空间,最坏情况下递归深度为 n,因此空间复杂度为 O(n)。

综上所述,使用递归的方法的时间复杂度为 O(n),空间复杂度为 O(n)。

需要注意的是,递归方法的空间复杂度相对较高,因为每次递归调用都需要在栈上保存一些信息。在处理大规模数组时,可能会导致栈溢出。因此,如果要处理大规模数组,建议使用其他方法,如双指针或交换元素的方法,以保证较低的空间开销。

LeetCode运行结果:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/138096.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Neo4j图数据库_web页面关闭登录实现免登陆访问_常用的cypher语句_删除_查询_创建关系图谱---Neo4j图数据库工作笔记0013

由于除了安装,那么真实使用的时候,就是导入数据了,有了关系和节点的csv文件以后如果用 cypher进行导入数据和创建关系图谱,还有进行查询,以及如果导入错误如何清空,大概是这些 用的最多的,单独把这些拿进来,总结一下,用的会比较方便. 1.实现免登陆访问: /data/module/neo4j-…

【动态规划刷题 16】最长等差数列 (有难度) 等差数列划分 II - 子序列

1027. 最长等差数列 https://leetcode.cn/problems/longest-arithmetic-subsequence/ 给你一个整数数组 nums&#xff0c;返回 nums 中最长等差子序列的长度。 回想一下&#xff0c;nums 的子序列是一个列表 nums[i1], nums[i2], …, nums[ik] &#xff0c;且 0 < i1 <…

Spring Cloud Alibaba Nacos 2.2.3 (2) - 单机版启动 (winodows 和 linux )

Nacos 2.2.3 (1) - 下载与数据库配置 参考下载与数据库配置 启动服务器 执行 nacos-server-2.2.3\bin 下的startup.sh或者startup.cmd &#xff08;根据不同系统&#xff09; windows 下nacos 单机启动 方式一&#xff1a; 1&#xff0c;打开cmd 2&#xff0c;cd 到nacos-s…

什么是虚拟DOM(Virtual DOM)?它在前端框架中的作用是什么?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 什么是虚拟DOM&#xff08;Virtual DOM&#xff09;&#xff1f;⭐ 虚拟DOM 在前端框架中的作用⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 欢迎来到前端入门之旅&#xff01;感兴趣的可以订阅本专栏哦&…

sudo apt-get update失败的原因和解决方法

ubuntu更新资源包时出现连接超时的问题&#xff1a; 无法发起与 cn.archive.ubuntu.com:80 (2403:2c80:5::6) 的连接 - connect (101: 网络不可达) 无法连接上 cn.archive.ubuntu.com:80 (45.125.0.6)&#xff0c;连接超时 正在读取软件包列表… 完成 W: 无法下载 http://cn.ar…

Vue路由和Node.js环境搭建

文章目录 一、vue路由1.1 简介1.2 SPA1.3 实例 二、Node.js环境搭建2.1 Node.js简介2.2 npm2.3 环境搭建2.3.1 下载解压2.3.2 配置环境变量2.3.3 配置npm全局模块路径和cache默认安装位置2.3.4 修改npm镜像提高下载速度 2.4 运行项目 一、vue路由 1.1 简介 Vue 路由是 Vue.js…

使用GPT训练中秋古诗写作讲解

&#x1f3c6;作者简介&#xff0c;黑夜开发者&#xff0c;CSDN领军人物&#xff0c;全栈领域优质创作者✌&#xff0c;CSDN博客专家&#xff0c;阿里云社区专家博主&#xff0c;2023年6月CSDN上海赛道top4。 &#x1f3c6;数年电商行业从业经验&#xff0c;历任核心研发工程师…

PyTorch C++ 前端:张量

本篇文章将尝试了解 PyTorch 组件的高级概述以及它们如何配合。 PyTorch 组件的高级概述 后端 PyTorch 后端是用 C++ 编写的,它提供 API 来访问高度优化的库,例如:用于高效矩阵运算的张量库、用于执行 GPU 运算的 CUDA 库以及用于梯度计算的自动微分等。 前端 可以使用…

如何通过百度SEO优化提升网站排名(掌握基础概念,实现有效优化)

随着互联网的发展&#xff0c;搜索引擎优化&#xff08;SEO&#xff09;成为了网站优化中不可或缺的一部分。在中国&#xff0c;百度搜索引擎占据着主导地位&#xff0c;因此掌握百度SEO概念和优化技巧对网站的排名和曝光非常重要。 百度SEO排名的6个有效方法&#xff1a; 首…

前后端分离的低代码快速开发框架

低代码开发正逐渐成为企业创新的关键工具。通过提高开发效率、降低成本、增强灵活性以及满足不同用户需求&#xff0c;低代码开发使企业能够快速响应市场需求&#xff0c;提供创新解决方案。选择合适的低代码平台&#xff0c;小成本组建一个专属于你的应用。 项目简介 这是一个…

PHP通过pem文件校验签名异常

问题描述&#xff1a; 在对接第三方支付过程中&#xff0c;支付成功异步回调时&#xff0c;校验签名&#xff0c;一直无法通过。 但是在支付成功时有一个同步返回也需要校验签名&#xff0c;用的是同样的校验方法&#xff0c;都没有问题。 当把回调时传递的参数放在postman中&a…

测试域: 流量回放-工具篇jvm-sandbox,jvm-sandbox-repeater,gs-rest-service

JVM-Sandbox Jvm-Sandbox-Repeater架构_小小平不平凡的博客-CSDN博客 https://www.cnblogs.com/hong-fithing/p/16222644.html 流量回放框架jvm-sandbox-repeater的实践_做人&#xff0c;最重要的就是开心嘛的博客-CSDN博客 [jvm-sandbox-repeater 学习笔记][入门使用篇] 2…

MYSQL存储引擎基础知识介绍

下面重点介绍几种常用的存储引擎,并对比各个存储引擎之间的区别&#xff0c;以帮助读者理解 不同存储引擎的使用方式。 MyISAM MyISAM是 MySQL的默认存储引擎。MyISAM不支持事务、也不支持外键&#xff0c;其优势是访 问的速度快&#xff0c;对事务完整性没有要求或者以 SEL…

java面向对象(八)

文章目录 一、abstract关键字的使用1.概念2. abstract修饰类:抽象类3.abstract修饰方法&#xff0c;抽象方法4.abstract使用上的注意点&#xff1a;5.抽象类的匿名子类 二、计算一段代码执行所花费的时间三、接口的使用1.接口的使用2.定义接口中的成员3.代码demo4.Java类可以实…

stm32学习-芯片系列/选型/开发方式

【03】STM32HAL库开发-初识STM32 | STM概念、芯片分类、命名规则、选型 | STM32原理图设计、看数据手册、最小系统的组成 、STM32IO分配_小浪宝宝的博客-CSDN博客  STM32&#xff1a;ST是意法半导体&#xff0c;M是MCU/MPU&#xff0c;32是32位。  ST累计推出了&#xff1a…

爬虫 — App 爬虫(一)

目录 一、介绍二、APP 爬虫常见反爬三、APP 抓包常用工具四、模拟器五、安装 APP1、下载 APP2、安装 APP 六、fiddler1、工作原理2、安装3、基本介绍 七、环境配置1、fiddler 的配置2、夜神模拟器的配置 八、案例 一、介绍 爬虫分类——数据来源 1、PC 端爬虫&#xff08;网页…

Linux 打包压缩命令

目前 linux 中打包和压缩的命令很多&#xff0c;最常用的方法有 zip、gzip、bzip2、xz、tar 1.zip 压缩包 //制作 //-r 递归 表示将指定的目录下的所有子目录以及文件一起处理 zip -r public.zip public//解压 unzip public.zip unzip public.zip -d dir//查看 unzip -l publi…

Android嵌套事务

这时候旋转设备还是会重置秒表。旋转设备时Android会重新创建活动。如果你的活动包含一个 < fragment >元素&#xff0c;每次重新创建活动时&#xff0c;它会重新插入片段的一个新版本。老片段被丢掉&#xff0c;所有实例变量会设置其初始值。在这个特定的例子中&#xf…

Matlab图像处理-HSI模型

HSI模型 HSI模型是从人的视觉系统出发&#xff0c;直接使用颜色三要素色调(Hue)、饱和度(Saturation)和亮度&#xff08;Intensity&#xff09;来描述颜色。 亮度是指人眼感知光线的明暗程度。光的能量越大&#xff0c;亮度就越大。 色调是颜色最重要的属性。 它决定了颜色的…

基于51单片机多路DTH11温湿度检测控制系统

一、系统方案 1、本设计采用51单片机作为主控器。 2、DHT11采集温度度&#xff0c;支持3路温度度&#xff0c;液晶1602显示。 3、按键设置报警阀值。 4、系统声光报警。 二、硬件设计 原理图如下&#xff1a; 三、单片机软件设计 1、首先是系统初始化 //初始化LCD*********…