YOLOv5、YOLOv8改进:Decoupled Head解耦头

目录

 

1.Decoupled Head介绍

 2.Yolov5加入Decoupled_Detect

2.1 DecoupledHead加入common.py中:

2.2 Decoupled_Detect加入yolo.py中:

2.3修改yolov5s_decoupled.yaml 


1.Decoupled Head介绍

Decoupled Head是一种图像分割任务中常用的网络结构,用于提取图像特征并预测每个像素的类别。传统的图像分割网络通常将特征提取和像素预测过程集成在同一个网络中,而Decoupled Head则将这两个过程进行解耦,分别处理。

Decoupled Head的核心思想是通过引入额外的分支网络来进行像素级的预测。这个分支网络通常被称为“头”(head),因此得名Decoupled Head。具体而言,Decoupled Head网络在主干网络的特征图上添加一个或多个额外的分支,用于预测像素的类别。

Decoupled Head的优势在于可以更好地处理不同尺度和精细度的语义信息。通过将像素级的预测与特征提取分开,可以更好地利用底层和高层特征之间的语义信息,从而提高分割的准确性和细节保留能力。

Decoupled Head的优点:

  1. 分离特征提取和像素预测:Decoupled Head将特征提取和像素级预测分离开来,使得网络可以更加灵活地处理不同尺度和语义信息。

  2. 多尺度特征融合:通过在主干网络的不同层级添加分支,Decoupled Head可以融合来自不同尺度的特征信息,从而提高对多尺度目标的分割能力。

  3. 更好的像素级预测:由于Decoupled Head将像素级的预测作为独立的任务进行处理,可以更好地保留细节和边缘信息,提高分割的精确性。

  4. 可扩展性:Decoupled Head结构可以根据需要进行扩展和修改,例如添加更多的分支或调整分支的结构,以适应不同的任务和数据集需求。

 YOLOv6 采用了解耦检测头(Decoupled Head)结构,同时综合考虑到相关算子表征能力和硬件上计算开销这两者的平衡,采用 Hybrid Channels 策略重新设计了一个更高效的解耦头结构,在维持精度的同时降低了延时,缓解了解耦头中 3x3 卷积带来的额外延时开销。

原始 YOLOv5 的检测头是通过分类和回归分支融合共享的方式来实现的,因此加入 Decoupled Head。

为什么要用到解耦头?

因为分类和定位的关注点不同;
分类更关注目标的纹理内容;
定位更关注目标的边缘信息

 2.Yolov5加入Decoupled_Detect

2.1 DecoupledHead加入common.py中:

#======================= 解耦头=============================#
class DecoupledHead(nn.Module):def __init__(self, ch=256, nc=80,  anchors=()):super().__init__()self.nc = nc  # number of classesself.nl = len(anchors)  # number of detection layersself.na = len(anchors[0]) // 2  # number of anchorsself.merge = Conv(ch, 256 , 1, 1)self.cls_convs1 = Conv(256 , 256 , 3, 1, 1)self.cls_convs2 = Conv(256 , 256 , 3, 1, 1)self.reg_convs1 = Conv(256 , 256 , 3, 1, 1)self.reg_convs2 = Conv(256 , 256 , 3, 1, 1)self.cls_preds = nn.Conv2d(256 , self.nc * self.na, 1) # 一个1x1的卷积,把通道数变成类别数,比如coco 80类(主要对目标框的类别,预测分数)self.reg_preds = nn.Conv2d(256 , 4 * self.na, 1)       # 一个1x1的卷积,把通道数变成4通道,因为位置是xywhself.obj_preds = nn.Conv2d(256 , 1 * self.na, 1)       # 一个1x1的卷积,把通道数变成1通道,通过一个值即可判断有无目标(置信度)def forward(self, x):x = self.merge(x)x1 = self.cls_convs1(x)x1 = self.cls_convs2(x1)x1 = self.cls_preds(x1)x2 = self.reg_convs1(x)x2 = self.reg_convs2(x2)x21 = self.reg_preds(x2)x22 = self.obj_preds(x2)out = torch.cat([x21, x22, x1], 1) # 把分类和回归结果按channel维度,即dim=1拼接return outclass Decoupled_Detect(nn.Module):stride = None  # strides computed during buildonnx_dynamic = False  # ONNX export parameterexport = False  # export modedef __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layersuper().__init__()self.nc = nc  # number of classesself.no = nc + 5  # number of outputs per anchorself.nl = len(anchors)  # number of detection layersself.na = len(anchors[0]) // 2  # number of anchorsself.grid = [torch.zeros(1)] * self.nl  # init gridself.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor gridself.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)self.m = nn.ModuleList(DecoupledHead(x, nc, anchors) for x in ch)self.inplace = inplace  # use in-place ops (e.g. slice assignment)def forward(self, x):z = []  # inference outputfor i in range(self.nl):x[i] = self.m[i](x[i])  # convbs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()if not self.training:  # inferenceif self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)y = x[i].sigmoid()if self.inplace:y[..., 0:2] = (y[..., 0:2] * 2 + self.grid[i]) * self.stride[i]  # xyy[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # whelse:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953xy, wh, conf = y.split((2, 2, self.nc + 1), 4)  # y.tensor_split((2, 4, 5), 4)  # torch 1.8.0xy = (xy * 2 + self.grid[i]) * self.stride[i]  # xywh = (wh * 2) ** 2 * self.anchor_grid[i]  # why = torch.cat((xy, wh, conf), 4)z.append(y.view(bs, -1, self.no))return x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x)def _make_grid(self, nx=20, ny=20, i=0):d = self.anchors[i].devicet = self.anchors[i].dtypeshape = 1, self.na, ny, nx, 2  # grid shapey, x = torch.arange(ny, device=d, dtype=t), torch.arange(nx, device=d, dtype=t)if check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibilityyv, xv = torch.meshgrid(y, x, indexing='ij')else:yv, xv = torch.meshgrid(y, x)grid = torch.stack((xv, yv), 2).expand(shape) - 0.5  # add grid offset, i.e. y = 2.0 * x - 0.5anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape)return grid, anchor_grid

2.2 Decoupled_Detect加入yolo.py中:

class BaseModel(nn.Module):

    def _apply(self, fn):# Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffersself = super()._apply(fn)m = self.model[-1]  # Detect()if isinstance(m, (Detect, Segment,Decoupled_Detect)):m.stride = fn(m.stride)m.grid = list(map(fn, m.grid))if isinstance(m.anchor_grid, list):m.anchor_grid = list(map(fn, m.anchor_grid))return self

class DetectionModel(BaseModel):

    def _initialize_dh_biases(self, cf=None):  # initialize biases into Detect(), cf is class frequency# https://arxiv.org/abs/1708.02002 section 3.3# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.m = self.model[-1]  # Detect() modulefor mi, s in zip(m.m, m.stride):  # from# reg_bias = mi.reg_preds.bias.view(m.na, -1).detach()# reg_bias += math.log(8 / (640 / s) ** 2)# mi.reg_preds.bias = torch.nn.Parameter(reg_bias.view(-1), requires_grad=True)# cls_bias = mi.cls_preds.bias.view(m.na, -1).detach()# cls_bias += math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # cls# mi.cls_preds.bias = torch.nn.Parameter(cls_bias.view(-1), requires_grad=True)b = mi.b3.bias.view(m.na, -1)b.data[:, 4] += math.log(8 / (640 / s) ** 2)  # obj (8 objects per 640 image)mi.b3.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)b = mi.c3.bias.datab += math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # clsmi.c3.bias = torch.nn.Parameter(b, requires_grad=True)
  if isinstance(m, (Detect, Segment,ASFF_Detect)):s = 256  # 2x min stridem.inplace = self.inplaceforward = lambda x: self.forward(x)[0] if isinstance(m, Segment) else self.forward(x)m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))])  # forwardcheck_anchor_order(m)m.anchors /= m.stride.view(-1, 1, 1)self.stride = m.strideself._initialize_biases()  # only run onceelif isinstance(m, Decoupled_Detect):s = 256  # 2x min stridem.inplace = self.inplacem.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))])  # forwardcheck_anchor_order(m)  # must be in pixel-space (not grid-space)m.anchors /= m.stride.view(-1, 1, 1)self.stride = m.strideself._initialize_dh_biases()  # only run once

def parse_model(d, ch):  # model_dict, input_channels(3)

        elif m in {Detect, Segment,Decoupled_Detect}:args.append([ch[x] for x in f])if isinstance(args[1], int):  # number of anchorsargs[1] = [list(range(args[1] * 2))] * len(f)if m is Segment:args[3] = make_divisible(args[3] * gw, 8)

2.3修改yolov5s_decoupled.yaml 

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license# Parameters
nc: 1  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [1024, False]],  # 23 (P5/32-large)[[17, 20, 23], 1, Decoupled_Detect, [nc, anchors]],  # Detect(P3, P4, P5),解耦]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/139038.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MySQL进阶 —— 超详细操作演示!!!(中)

MySQL进阶 —— 超详细操作演示!!!(中) 三、SQL 优化3.1 插入数据3.2 主键优化3.3 order by 优化3.4 group by 优化3.5 limit 优化3.6 count 优化3.7 update 优化 四、视图/存储过程/触发器4.1 视图4.2 存储过程4.3 存…

阿里云大数据实战记录10:Hive 兼容模式的坑

文章目录 1、前言2、什么是 Hive 兼容模式?3、为什么要开启 Hive 模式?4、有什么副作用?5、如何开启 Hive 兼容模式?6、该场景下,能不能不开启 Hive 兼容模式?7、为什么不是DATE_FORMAT(datetime, string)&…

【Qt-17】Qt调用matlab生成的dll库

matlab生成dll库 1、matlab示例代码 function BDCube(x,y)[x,y,z] cylinder(x,y);t1 hgtransform;s1 surf(3*x,3*y,4*z,Parent,t1);grid onview(3)shading interp end 2、matlab环境配置 首先检查自己的mcc编译器是否可用,输出以下命令: &#x…

如何在没有第三方.NET库源码的情况,调试第三库代码?

大家好,我是沙漠尽头的狼。 本方首发于Dotnet9,介绍使用dnSpy调试第三方.NET库源码,行文目录: 安装dnSpy编写示例程序调试示例程序调试.NET库原生方法总结 1. 安装dnSpy dnSpy是一款功能强大的.NET程序反编译工具,…

【Java 基础篇】Java线程安全与并发问题详解

多线程编程在Java中是一个常见的需求,它可以提高程序的性能和响应能力。然而,多线程编程也带来了一系列的线程安全与并发问题。在本文中,我们将深入探讨这些问题,以及如何解决它们,适用于Java初学者和基础用户。 什么…

【AI视野·今日NLP 自然语言处理论文速览 第三十六期】Wed, 20 Sep 2023

AI视野今日CS.NLP 自然语言处理论文速览 Wed, 20 Sep 2023 Totally 64 papers 👉上期速览✈更多精彩请移步主页 Daily Computation and Language Papers SlimPajama-DC: Understanding Data Combinations for LLM Training Authors Zhiqiang Shen, Tianhua Tao, Li…

原生js值之数据类型详解

js的数据类型 数据类型分类基本数据类型boolean:布尔类undefined:未定义的值null类型数值转换 NumberparseInt 转换整数 parseFloat转换浮点数 String类型特点如何转换成字符串模板字面量字符串插值模板字面量标签函数 symbol类型特性使用 BigInt类型复杂数据类型Object类属性与…

[杂谈]-八进制数

八进制数 文章目录 八进制数1、概述2、八进制数的表示2.1 八进制数2.2 以八进制计数2.3 二进制数补零 3、八进制到十进制转换4、十进制到八进制转换5、二进制到八进制转换示例6、八进制到二进制和十进制转换示例7、总结 1、概述 八进制编号系统是另一种使用基数为8计数系统&am…

【Stm32】【Lin通信协议】Lin通信点亮灯实验

Lin通信点亮灯实验 通过STM32的串口发送数据,然后通过串口转换模块将数据转换成LIN(Local Interconnect Network)协议,最终控制点亮灯。需要工程和入门资料的可以私信我,看到了马上回。 入门书本推荐: 一…

【C++面向对象侯捷下】2.转换函数 | 3.non-explicit-one-argument ctor

文章目录 operator double() const {} 歧义了 标准库的转换函数

exe文件运行后无输出直接闪退如何找解决办法

一.搜索栏搜事件查看器 二.点开windows日志下的应用程序 三.找到错误处 四.搜索异常代码 点开有错误的详细信息,直接用搜索引擎搜索这个异常代码能大致判断是什么问题,给了一个解决思路,不至于不知道到底哪里出了问题

AUTOSAR词典:CAN驱动Mailbox配置技术要点全解析

AUTOSAR词典:CAN驱动Mailbox配置技术要点全解析 前言 首先,请问大家几个小小问题,你清楚: AUTOSAR框架下的CAN驱动关键词定义吗?是不是有些总是傻傻分不清楚呢?CAN驱动Mailbox配置过程中有哪些关键配置参…

Angular变更检测机制

前段时间遇到这样一个 bug,通过一个 click 事件跳转到一个新页面,新页面迟迟不加载; 经过多次测试发现,将鼠标移入某个 tab ,页面就加载出来了。 举个例子,页面内容无法加载,但是将鼠标移入下图…

[面试] k8s面试题 2

文章目录 核心组件1.什么是 Kubernetes 中的控制器(Controller)?请提供一些常见的控制器类型。2.请解释一下 Kubernetes 中的 Ingress 是什么,以及它的作用。3.如何通过命令行在 Kubernetes 中创建一个 Pod?4.Stateful…

Pdf文件签名检查

如何检查pdf的签名 首先这里有一个已经签名的pdf文件&#xff0c;通过pdf软件可以看到文件的数字签名。 图1为签名后的文件&#xff0c;图2为签名后文件被篡改。 下面就是如何代码检查这里pdf文件的签名 1.引入依赖 <dependency><groupId>org.projectlombok<…

数据结构——单链表

目录 一.前言 二.链表表示和实现&#xff08;单链表&#xff09; 1.1 顺序表的优缺点 1.2 链表的概念及结构 1.3 打印函数 1.4 空间函数 1.5 尾插函数&#xff08;最最最麻烦的&#xff09; 1.5.1 尾插最关键部分&#xff01; 1.6 头插函数 1.7 尾删函数…

云流化:XR扩展现实应用发展的一个新方向!

扩展现实的发展已经改变了我们工作、生活和娱乐的方式&#xff0c;而且这才刚刚开始。扩展现实 (Extended reality, XR) 涵盖了沉浸式技术&#xff0c;包括虚拟现实、增强现实和混合现实。从游戏到虚拟制作再到产品设计&#xff0c;XR 使人们能够以前所未有的方式在计算机生成的…

#循循渐进学51单片机#指针基础与1602液晶的初步认识#not.11

1、把本节课的指针相关内容&#xff0c;反复学习3到5遍&#xff0c;彻底弄懂指针是怎么回事&#xff0c;即使是死记硬背也要记住&#xff0c;等到后边用的时候可以实现顿悟。学会指针&#xff0c;就是突破了C语言的一道壁垒。 2&#xff0c;1602所有的指令功能都应用一遍&#…

vue3——pixi初学,编写一个简单的小游戏,复制粘贴可用学习

pixi官网 小游戏效果 两个文件夹 一个index.html 一个data.js //data.js import { reactive } from "vue"; import { Sprite, utils, Rectangle, Application, Text, Graphics } from "pixi.js";//首先 先创建一个舞台 export const app new Applicat…

[Go疑难杂症]为什么nil不等于nil

现象 在日常开发中&#xff0c;可能一不小心就会掉进 Go 语言的某些陷阱里&#xff0c;而本文要介绍的 nil ≠ nil 问题&#xff0c;便是其中一个&#xff0c;初看起来会让人觉得很诡异&#xff0c;摸不着头脑。 先来看个例子&#xff1a; type CustomizedError struct {Err…