机器学习第十一课--K-Means聚类

一.聚类的概念

K-Means算法是最经典的聚类算法,几乎所有的聚类分析场景,你都可以使用K-Means,而且在营销场景上,它就是"King",所以不管从事数据分析师甚至是AI工程师,不知道K-Means是”不可原谅“的一件事情。在面试中,面试官也经常问关于K-Means的问题。虽然算法简单,但也有一些需要深入理解的点,这些都会在本章节所涉及到。

二.K-Means的迭代过程

在进入K-Means算法的细节之前,我们先了解一下它整个的计算过程,理解起来很简单。整个过程是迭代式的算法,每次迭代过程包含如下两步操作:

  • 根据给定的中心点,计算出每一个样本的所属的类别(cluster),这个过程结束之后每一个样本都会有自己所属的类别。
  • 之后把每一个类别所属的所有样本提取出来,计算平均值并作为新的中心点。

    上述过程会不断循环,直到算法停止为止。

 

先第一步,固定uk也就是中点,去对样本做标记,标记完用标记后的样本求均值

在第一节里我们已经讲过k-Means的实现细节,而且在实现细节上也有分两步骤循环迭代的过程,其实那个过程正好对应现在讲的优化方案:固定中心点,求出每一个样本所属的最佳中心点的过程为算法里的第一步; 固定每个样本的类别,重新计算中心点的过程为算法里的第二步。

三.不同初始化对参数的影响

那这个说明什么问题呢?问题的本质在于我们每次得到的不是全局最优解,而是局部最优解!类似的现象也会发生在神经网络当中,不同的初始化结果会带来不一样的结果。所以当我们使用神经网络的时候会通过一些技巧去更好地初始化参数的。因为,对于这类的模型,好的初始化值会带来更好的最终结果的,也相当于得到了更好的局部最优解。那为什么k-means只能得到局部最优解呢? 其核心是非凸函数。 如果一个目标函数是非凸函数,那我们其实不能保证或者没有办法得到全局最优解的!如果想深入理解这些理论,建议大家去学习一下凸优化理论,所有的细节都会在凸优化领域涉及到的。

四.层次聚类

在上一节为止,我们讨论了如何使用K-Means算法来做聚类。总体来讲,算法通过迭代的方式最后找出聚类的结果。在这里,我们来学习一下另外一种聚类方法叫作层次聚类,通过层次聚类我们可以对原有样本数据做层次上的划分。相反,K-Means算法本身是扁平化的,不具备任何层次的概念,而且使用K-Means的是需要提前指定K值的, 但很多时候我们并不能提前知道到底有分成多少个clusters。
层次聚类,另一方面,不需要提前指定K,而是在学习过程中动态地去选定一个合适的K值。

 对于不规则的样本,K-Means算法的表现也会比较差。接下来,我们说一下层次关系。如上所述, K-Means算法在聚类时是不能捕获层次关系的。但层次关系有些时候还是挺有用的,比如通过观察人和人之间的关系来挖掘哪些是事件的发起者、组织是如何运作的。层次聚类算法的好处就是通过算法自动给数据做分层,数据之间的层次关系一目了然,当然这也取决于数据和算法的准确性了。通过层次聚类算法最终我们得到的是一个叫作Dendrogram的图,就是最后的结果。

4.1从下到上的层次聚类

我们来学习一下如何使用自下而上的方式来做层次聚类,这是两种层次聚类算法中最为常见的一种。它的核心思想是:一开始每一个点是一个cluster, 然后把类似的cluster慢慢做合并,到了最后就只剩一个cluster了,这个时候即可以停下来。等做完所有步骤之后,我们就可以从现有的结果中选择合理的聚类结果了。比如我们设定一个阈值,然后基于这个阈值就可以得到相应的clusters了。自下而上层次聚类过程的一个核心是:相似度的计算,因为涉及到了不同cluster之间的合并。下面给大家介绍三种常见的距离计算的方法:

第一种情况是两个cluster的合并是基于最短距离来完成的,第二种情况是根据最长的距离,最后一种情况是通过平均距离来做合并的。

max还是根据最短的来合并,但是距离根据最大距离来算

4.2 从上到下的层次聚类

 在这里,我们看另外一种层次聚类算法:自上而下的方法。这个方法恰恰跟自下而上的方法相反。一开始我们只有一个大的cluster, 由所有的样本组成,之后逐步把每一个cluster切分成更小的,直到每一个cluster只包含一个样本为止,这也意味着整个流程已完成。这个过程跟上节课里讲过的恰恰相反,每次需要考虑的是如何把一个大的cluster切分成两个clusters,所以这里的切分标准格外重要。但相比自下而上的方法,自上而下的聚类算法用的并不是那么多,大致了解一下就可以了。

在这里,我来介绍一个比较经典的自上而下的方法。 这个方案基于大家所熟悉的图算法,叫作最小生成树(minimum spanning tree)。

感觉连错了

对于最小生成树,有几个比较常见的算法,分别是Prime和Kruskal算法。具体细节不在这里做详细阐述,感兴趣的朋友们可以自行去查看这两种算法。理解了MST之后,我们就可以开始谈论自上而下的方法了。其实之后的操作非常简单,请看下面的一段视频。

把最大的砍掉。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/139087.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

spring:实现初始化动态bean|获取对象型数组配置文件

0. 引言 近期因为要完成实现中间件的工具包组件,其中涉及要读取对象型的数组配置文件,并且还要将其加载为bean,因为使用了spring 4.3.25.RELEASE版本,很多springboot的相关特性无法支持,因此特此记录,以方…

Mac配置iTerm样式终端

一、MacOs系统 MacOs中终端使用iTerm2 1. 配置oh-my-zsh oh my zsh 的地址: https//github.com/ohmyzsh/ohmyzsh 插件存放位置:~/.oh-my-zsh/plugins 下载常用的插件 git clone http://github.com/zsh-users/zsh-syntax-highlighting.git 修改配…

怎么将几张图片做成pdf合在一起

怎么将几张图片做成pdf合在一起?在我们平时的工作中,图片和pdf都是非常重要的电脑文件,使用也非常频繁,图片能够更为直观的展示内容,而pdf则更加的正规,很多重要文件大多会做成pdf格式的。在职场人的日常工…

TypeError: res.data.map is not a function微信小程序报错

从数据库查: 调用的是: 访问的springboot后端是这个: 打印出来如下: 看到是json格式的数据 [Users [id3, name刘雨昕, phone18094637788, admintrue, actionsJsonadmin, createAtSat Sep 16 10:11:20 CST 2023, tokentest], User…

深入了解队列数据结构:定义、特性和实际应用

文章目录 🍋引言🍋队列的定义🍋队列的实现🍋队列的应用🍋练习题🍋结语 🍋引言 队列(Queue)是计算机科学中一种重要的数据结构,它常用于各种应用程序中&#x…

拼多多API接口解析,实现根据ID取商品详情

拼多多是一个流行的电商平台,它提供了API接口供开发者使用。要根据ID获取商品详情,您需要使用拼多多API接口并进行相应的请求。 以下是使用拼多多API接口根据ID获取商品详情的示例代码(使用Python编写): import requ…

​专业图像处理软件 Photoshop 2023 mac版本更新(ps2023中文)

​Photoshop 2023 mac是一款图像编辑和图形设计软件,广泛应用于专业人士和爱好者。它提供了许多工具和功能,用于创建、编辑和增强数字图像,包括图层、蒙版、滤镜和各种选择工具。Photoshop还支持多种文件格式,包括psD、JPEG、PNG和…

全套办公软件Office 2019 mac专业版功能

Microsoft office 2019 Beta for Mac 是一款办公软件套装,它包含常用的办公应用程序,如 Word、Excel、PowerPoint 和 Outlook 等。office 2019 Beta 版本是一个测试版本,旨在让用户提前体验下一个版本的 office 套件,以便用户可以…

全国职业技能大赛云计算--高职组赛题卷③(私有云)

全国职业技能大赛云计算--高职组赛题卷③(私有云) 第一场次题目:OpenStack平台部署与运维任务1 基础运维任务(5分)任务2 OpenStack搭建任务(15分)任务3 OpenStack云平台运维(15分&am…

2023!6招玩转 Appium 自动化测试

Appium是个什么鬼 Appium是一个移动端的自动化框架,可用于测试原生应用,移动网页应用和混合型应用,且是跨平台的。可用于IOS和Android以及firefox的操作系统。原生的应用是指用android或ios的sdk编写的应用,移动网页应用是指网页…

Leetcode198. 打家劫舍

https://leetcode.cn/problems/house-robber/description/ 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入&…

网络初识

一 IP 地址 概念: IP 地址主要用于表示网络主机、其他网络设备(如路由器)的网络地址。简单说,IP地址用于定位主机的网络地址 格式 IP 地址是一个32为的二进制数,通常被分割为4个“8位二进制数“(也就是4个字节&…

layui框架学习(45: 工具集模块)

layui的工具集模块util支持固定条、倒计时等组件,同时提供辅助函数处理时间数据、字符转义、批量事件处理等操作。   util模块中的fixbar函数支持设置固定条(2.7版本的帮助文档中叫固定块),是指固定在页面一侧的工具条元素&…

机器学习第五课--广告点击率预测项目以及特征选择的介绍

这个项目的主要的目的是通过给定的广告信息和用户信息来预测一个广告被点击与否。 如果广告有很大概率被点击就展示广告,如果概率低,就不展示。 因为如果广告没有被点击,对双方(广告主、平台)来讲都没有好处。所以预测…

软件测试/测试开发丨利用人工智能ChatGPT自动生成架构图

点此获取更多相关资料 简介 架构图通过图形化的表达方式,用于呈现系统、软件的结构、组件、关系和交互方式。一个明确的架构图可以更好地辅助业务分析、技术架构分析的工作。架构图的设计是一个有难度的任务,设计者必须要对业务、相关技术栈都非常清晰…

【PLC GX Works2】创建一个工程

PLC GX Works2软件安装 https://www.jcpeixun.com/software/375 程序编写 1、工程中找到新建 2、新建 3、导航栏中选择第三行第一个,是全局软元件注释 4、修改软元件名x0为点动按钮,y1为电机,之后关闭即可。 5、左母线,右…

多输入多输出 | MATLAB实现GA-BP遗传算法优化BP神经网络多输入多输出

多输入多输出 | MATLAB实现GA-BP遗传算法优化BP神经网络多输入多输出 目录 多输入多输出 | MATLAB实现GA-BP遗传算法优化BP神经网络多输入多输出预测效果基本介绍程序设计往期精彩参考资料 预测效果 基本介绍 多输入多输出 | MATLAB实现GA-BP遗传算法优化BP神经网络多输入多输出…

uniapp获取一周日期和星期

UniApp可以使用JavaScript中的Date对象来获取当前日期和星期几。以下是一个示例代码,可以获取当前日期和星期几,并输出在一周内的每天早上和晚上: // 获取当前日期和星期 let date new Date(); let weekdays ["Sunday", "M…

React(react18)中组件通信03——简单使用 Context 深层传递参数

React(react18)中组件通信03——简单使用 Context 深层传递参数 1. 前言1.1 React中组件通信的其他方式1.2 引出 Context 2. 简单例子3. 语法说明3.1 createContext(defaultValue)3.2 value3.3 useContext(SomeContext) 4. 总结4.1 Context4.1.1 Context…

解决方案| anyRTC远程检修应用场景

背景 在这个科技飞速发展的时代,各行各业都要求高效运转。然而,当出现问题时,我们却常常因为无法及时解决而感到困扰,传统解决问题的方式是邀请技术人员现场解决问题,如果技术人员解决不了,还要邀请专家从…