多输入多输出 | MATLAB实现GA-BP遗传算法优化BP神经网络多输入多输出

多输入多输出 | MATLAB实现GA-BP遗传算法优化BP神经网络多输入多输出

目录

    • 多输入多输出 | MATLAB实现GA-BP遗传算法优化BP神经网络多输入多输出
      • 预测效果
      • 基本介绍
      • 程序设计
      • 往期精彩
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

多输入多输出 | MATLAB实现GA-BP遗传算法优化BP神经网络多输入多输出
1.data为数据集,10个输入特征,3个输出变量。
2.main.m为主程序文件。
3.命令窗口输出MBE、MAE和R2,可在下载区获取数据和程序内容。

程序设计

  • 完整程序和数据下载方式:私信博主回复MATLAB实现GA-BP遗传算法优化BP神经网络多输入多输出
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
function [x, endPop, bPop, traceInfo] = ga(bounds, evalFN, evalOps, startPop, opts, ...
termFN, termOps, selectFN, selectOps, xOverFNs, xOverOps, mutFNs, mutOps)% Output Arguments:
%   x            - the best solution found during the course of the run
%   endPop       - the final population 
%   bPop         - a trace of the best population
%   traceInfo    - a matrix of best and means of the ga for each generation
%
% Input Arguments:
%   bounds       - a matrix of upper and lower bounds on the variables
%   evalFN       - the name of the evaluation .m function
%   evalOps      - options to pass to the evaluation function ([NULL])
%   startPop     - a matrix of solutions that can be initialized
%                  from initialize.m
%   opts         - [epsilon prob_ops display] change required to consider two 
%                  solutions different, prob_ops 0 if you want to apply the
%                  genetic operators probabilisticly to each solution, 1 if
%                  you are supplying a deterministic number of operator
%                  applications and display is 1 to output progress 0 for
%                  quiet. ([1e-6 1 0])
%   termFN       - name of the .m termination function (['maxGenTerm'])
%   termOps      - options string to be passed to the termination function
%                  ([100]).
%   selectFN     - name of the .m selection function (['normGeomSelect'])
%   selectOpts   - options string to be passed to select after
%                  select(pop,#,opts) ([0.08])
%   xOverFNS     - a string containing blank seperated names of Xover.m
%                  files (['arithXover heuristicXover simpleXover']) 
%   xOverOps     - A matrix of options to pass to Xover.m files with the
%                  first column being the number of that xOver to perform
%                  similiarly for mutation ([2 0;2 3;2 0])
%   mutFNs       - a string containing blank seperated names of mutation.m 
%                  files (['boundaryMutation multiNonUnifMutation ...
%                           nonUnifMutation unifMutation'])
%   mutOps       - A matrix of options to pass to Xover.m files with the
%                  first column being the number of that xOver to perform
%                  similiarly for mutation ([4 0 0;6 100 3;4 100 3;4 0 0])%%  初始化参数
n = nargin;
if n < 2 || n == 6 || n == 10 || n == 12disp('Insufficient arguements') 
end% 默认评估选项
if n < 3 evalOps = [];
end% 默认参数
if n < 5opts = [1e-6, 1, 0];
end% 默认参数
if isempty(opts)opts = [1e-6, 1, 0];
end%%  判断是否为m文件
if any(evalFN < 48)% 浮点数编码 if opts(2) == 1e1str = ['x=c1; c1(xZomeLength)=', evalFN ';'];  e2str = ['x=c2; c2(xZomeLength)=', evalFN ';']; % 二进制编码elsee1str = ['x=b2f(endPop(j,:),bounds,bits); endPop(j,xZomeLength)=', evalFN ';'];end
else% 浮点数编码if opts(2) == 1e1str = ['[c1 c1(xZomeLength)]=' evalFN '(c1,[gen evalOps]);'];  e2str = ['[c2 c2(xZomeLength)]=' evalFN '(c2,[gen evalOps]);'];% 二进制编码elsee1str=['x=b2f(endPop(j,:),bounds,bits);[x v]=' evalFN ...'(x,[gen evalOps]); endPop(j,:)=[f2b(x,bounds,bits) v];'];  end
end%%  默认终止信息
if n < 6termOps = 100;termFN = 'maxGenTerm';
end%%  默认变异信息
if n < 12% 浮点数编码if opts(2) == 1mutFNs = 'boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation';mutOps = [4, 0, 0; 6, termOps(1), 3; 4, termOps(1), 3;4, 0, 0];% 二进制编码elsemutFNs = 'binaryMutation';mutOps = 0.05;end
end%%  默认交叉信息
if n < 10% 浮点数编码if opts(2) == 1xOverFNs = 'arithXover heuristicXover simpleXover';xOverOps = [2, 0; 2, 3; 2, 0];% 二进制编码elsexOverFNs = 'simpleXover';xOverOps = 0.6;end
end%%  仅默认选择选项,即轮盘赌。
if n < 9selectOps = [];
end%%  默认选择信息
if n < 8selectFN = 'normGeomSelect';selectOps = 0.08;
end%%  默认终止信息
if n < 6termOps = 100;termFN = 'maxGenTerm';
end%%  没有定的初始种群
if n < 4startPop = [];
end%%  随机生成种群
if isempty(startPop)startPop = initializega(80, bounds, evalFN, evalOps, opts(1: 2));
end%%  二进制编码
if opts(2) == 0bits = calcbits(bounds, opts(1));
end%%  参数设置
xOverFNs     = parse(xOverFNs);
mutFNs       = parse(mutFNs);
xZomeLength  = size(startPop, 2); 	          % xzome 的长度
numVar       = xZomeLength - 1; 	          % 变量数
popSize      = size(startPop,1); 	          % 种群人口个数
endPop       = zeros(popSize, xZomeLength);   % 第二种群矩阵
numXOvers    = size(xOverFNs, 1);             % Number of Crossover operators
numMuts      = size(mutFNs, 1); 		      % Number of Mutation operators
epsilon      = opts(1);                       % Threshold for two fittness to differ
oval         = max(startPop(:, xZomeLength)); % Best value in start pop
bFoundIn     = 1; 			                  % Number of times best has changed
done         = 0;                             % Done with simulated evolution
gen          = 1; 			                  % Current Generation Number
collectTrace = (nargout > 3); 		          % Should we collect info every gen
floatGA      = opts(2) == 1;                  % Probabilistic application of ops
display      = opts(3);                       % Display progress %%  精英模型
while(~done)[bval, bindx] = max(startPop(:, xZomeLength));            % Best of current popbest =  startPop(bindx, :);if collectTracetraceInfo(gen, 1) = gen; 		                        % current generationtraceInfo(gen, 2) = startPop(bindx,  xZomeLength);      % Best fittnesstraceInfo(gen, 3) = mean(startPop(:, xZomeLength));     % Avg fittnesstraceInfo(gen, 4) = std(startPop(:,  xZomeLength)); end%%  最佳解if ( (abs(bval - oval) > epsilon) || (gen==1))% 更新显示if displayfprintf(1, '\n%d %f\n', gen, bval);          end% 更新种群矩阵if floatGAbPop(bFoundIn, :) = [gen, startPop(bindx, :)]; elsebPop(bFoundIn, :) = [gen, b2f(startPop(bindx, 1 : numVar), bounds, bits)...startPop(bindx, xZomeLength)];endbFoundIn = bFoundIn + 1;                      % Update number of changesoval = bval;                                  % Update the best valelseif displayfprintf(1,'%d ',gen);	                      % Otherwise just update num genendend
%%  选择种群endPop = feval(selectFN, startPop, [gen, selectOps]);% 以参数为操作数的模型运行if floatGAfor i = 1 : numXOversfor j = 1 : xOverOps(i, 1)a = round(rand * (popSize - 1) + 1); 	     % Pick a parentb = round(rand * (popSize - 1) + 1); 	     % Pick another parentxN = deblank(xOverFNs(i, :)); 	         % Get the name of crossover function[c1, c2] = feval(xN, endPop(a, :), endPop(b, :), bounds, [gen, xOverOps(i, :)]);% Make sure we created a new if c1(1 : numVar) == endPop(a, (1 : numVar)) c1(xZomeLength) = endPop(a, xZomeLength);elseif c1(1:numVar) == endPop(b, (1 : numVar))c1(xZomeLength) = endPop(b, xZomeLength);elseeval(e1str);endif c2(1 : numVar) == endPop(a, (1 : numVar))c2(xZomeLength) = endPop(a, xZomeLength);elseif c2(1 : numVar) == endPop(b, (1 : numVar))c2(xZomeLength) = endPop(b, xZomeLength);elseeval(e2str);endendPop(a, :) = c1;endPop(b, :) = c2;endendfor i = 1 : numMutsfor j = 1 : mutOps(i, 1)a = round(rand * (popSize - 1) + 1);c1 = feval(deblank(mutFNs(i, :)), endPop(a, :), bounds, [gen, mutOps(i, :)]);if c1(1 : numVar) == endPop(a, (1 : numVar)) c1(xZomeLength) = endPop(a, xZomeLength);elseeval(e1str);endendPop(a, :) = c1;endend%%  运行遗传算子的概率模型else for i = 1 : numXOversxN = deblank(xOverFNs(i, :));cp = find((rand(popSize, 1) < xOverOps(i, 1)) == 1);if rem(size(cp, 1), 2) cp = cp(1 : (size(cp, 1) - 1)); endcp = reshape(cp, size(cp, 1) / 2, 2);for j = 1 : size(cp, 1)a = cp(j, 1); b = cp(j, 2); [endPop(a, :), endPop(b, :)] = feval(xN, endPop(a, :), endPop(b, :), ...bounds, [gen, xOverOps(i, :)]);endendfor i = 1 : numMutsmN = deblank(mutFNs(i, :));for j = 1 : popSizeendPop(j, :) = feval(mN, endPop(j, :), bounds, [gen, mutOps(i, :)]);eval(e1str);endendend%  更新记录gen = gen + 1;done = feval(termFN, [gen, termOps], bPop, endPop); % See if the ga is donestartPop = endPop; 			                      % Swap the populations[~, bindx] = min(startPop(:, xZomeLength));         % Keep the best solutionstartPop(bindx, :) = best; 		                  % replace it with the worstend
[bval, bindx] = max(startPop(:, xZomeLength));%%  显示结果
if display fprintf(1, '\n%d %f\n', gen, bval);	  
end%%  二进制编码
x = startPop(bindx, :);
if opts(2) == 0x = b2f(x, bounds,bits);bPop(bFoundIn, :) = [gen, b2f(startPop(bindx, 1 : numVar), bounds, bits)...startPop(bindx, xZomeLength)];
elsebPop(bFoundIn, :) = [gen, startPop(bindx, :)];
end%%  赋值
if collectTracetraceInfo(gen, 1) = gen; 		                      % 当前迭代次数traceInfo(gen, 2) = startPop(bindx, xZomeLength);   % 最佳适应度traceInfo(gen, 3) = mean(startPop(:, xZomeLength)); % 平均适应度
end

往期精彩

MATLAB实现RBF径向基神经网络多输入多输出预测
MATLAB实现BP神经网络多输入多输出预测
MATLAB实现DNN神经网络多输入多输出预测

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/116377961
[2] https://blog.csdn.net/kjm13182345320/article/details/127931217
[3] https://blog.csdn.net/kjm13182345320/article/details/127894261

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/139062.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

uniapp获取一周日期和星期

UniApp可以使用JavaScript中的Date对象来获取当前日期和星期几。以下是一个示例代码&#xff0c;可以获取当前日期和星期几&#xff0c;并输出在一周内的每天早上和晚上&#xff1a; // 获取当前日期和星期 let date new Date(); let weekdays ["Sunday", "M…

React(react18)中组件通信03——简单使用 Context 深层传递参数

React&#xff08;react18&#xff09;中组件通信03——简单使用 Context 深层传递参数 1. 前言1.1 React中组件通信的其他方式1.2 引出 Context 2. 简单例子3. 语法说明3.1 createContext(defaultValue)3.2 value3.3 useContext(SomeContext) 4. 总结4.1 Context4.1.1 Context…

解决方案| anyRTC远程检修应用场景

背景 在这个科技飞速发展的时代&#xff0c;各行各业都要求高效运转。然而&#xff0c;当出现问题时&#xff0c;我们却常常因为无法及时解决而感到困扰&#xff0c;传统解决问题的方式是邀请技术人员现场解决问题&#xff0c;如果技术人员解决不了&#xff0c;还要邀请专家从…

23年下考前须知-软考中级信息安全工程师

信息安全工程师主要涉及计算机信息安全方面&#xff0c;在计算机软硬件、网络、应用相关领域从事安全系统设计、安全产品开发、产品集成、信息系统安全检测与审计等方面工作&#xff0c;服务单位可以是国家机关、企事业单位及科研教学单位等。 一、考试报名时间 信安考试一年…

《深度学习工业缺陷检测》专栏介绍 CSDN独家改进实战

&#x1f4a1;&#x1f4a1;&#x1f4a1;深度学习工业缺陷检测 1&#xff09;提供工业小缺陷检测性能提升方案&#xff0c;满足部署条件&#xff1b; 2&#xff09;针对缺陷样品少等难点&#xff0c;引入无监督检测&#xff1b; 3&#xff09;深度学习 C、C#部署方案&#…

若依cloud -【 100 ~ 】

100 分布式日志介绍 | RuoYi 分布式日志就相当于把日志存储在不同的设备上面。比如若依项目中有ruoyi-modules-file、ruoyi-modules-gen、ruoyi-modules-job、ruoyi-modules-system四个应用&#xff0c;每个应用都部署在单独的一台机器里边&#xff0c;应用对应的日志的也单独存…

doxygen c++ 语法

c基本语法模板 以 /*! 开头, */ 结尾 /*!\关键字1\关键字2 */1 文件头部信息 /*! \file ClassA.h* \brief 文件说明 定义了类fatherA* \details This class is used to demonstrate a number of section commands.* \author John Doe* \author Jan Doe* \v…

虚拟机部署linux网络连接配置

1、虚拟机安装linux后&#xff0c;配置网络访问 虚拟机网络设置为NAT模式 linux网络配置好IP&#xff0c;主要是以下网络配置 2、linux没有ifconfig命令&#xff0c;ifconfig命令是在net-tools.x86_64包里 yum install net-tools.x86_64安装

【校招VIP】专业课考点之TCP连接

考点介绍&#xff1a; 在TCP&#xff0f;IP中&#xff0c;TCP协议通过三次握手来建立连接&#xff0c;从而提供可靠的连接服务。本专题主要介绍一线互联网大厂面试关于TCP连接的相关问题。 专业课考点之TCP连接-相关题目及解析内容可点击文章末尾链接查看&#xff01; 一、考…

八大排序(四)--------直接插入排序

本专栏内容为&#xff1a;八大排序汇总 通过本专栏的深入学习&#xff0c;你可以了解并掌握八大排序以及相关的排序算法。 &#x1f493;博主csdn个人主页&#xff1a;小小unicorn ⏩专栏分类&#xff1a;八大排序汇总 &#x1f69a;代码仓库&#xff1a;小小unicorn的代码仓库…

uniappAndroid平台签名证书(.keystore)生成

一、安装JRE环境 https://www.oracle.com/java/technologies/downloads/#java8 记住下载默认安装地址。ps&#xff1a;我都默认安装地址C:\Program Files\Java\jdk-1.8 二、安装成功后配置环境变量 系统变量配置 AVA_HOME 放到环境变量去 %JAVA_HOME%\bin 三、生成签名证书…

【开发篇】二、属性绑定与校验

文章目录 1、ConfigurationProperties自定义Bean属性绑定2、EnableConfigurationProperties注解3、ConfigurationProperties第三方Bean属性绑定4、松散绑定5、常用计量单位6、数据校验7、yaml绑定值的坑--关于进制 1、ConfigurationProperties自定义Bean属性绑定 前面读取yaml…

【Python Fastapi】js上传文件,fastapi处理,js显示回传信息

python from fastapi import FastAPI, File, UploadFile, HTTPException from fastapi.staticfiles import StaticFiles from fastapi.responses import HTMLResponse from typing import List import requestsapp FastAPI()# 配置静态文件目录 app.mount("/static"…

【深度学习实验】前馈神经网络(四):自定义逻辑回归模型:前向传播、反向传播算法

目录 一、实验介绍 二、实验环境 1. 配置虚拟环境 2. 库版本介绍 三、实验内容 0. 导入必要的工具包 1. 逻辑回归Logistic类 a. 构造函数__init__ b. __call__(self, x)方法 c. 前向传播forward d. 反向传播backward 2. 模型训练 3. 代码整合 一、实验介绍 实现逻…

YOLOv5、YOLOv8改进:Decoupled Head解耦头

目录 1.Decoupled Head介绍 2.Yolov5加入Decoupled_Detect 2.1 DecoupledHead加入common.py中&#xff1a; 2.2 Decoupled_Detect加入yolo.py中&#xff1a; 2.3修改yolov5s_decoupled.yaml 1.Decoupled Head介绍 Decoupled Head是一种图像分割任务中常用的网络结构&#…

MySQL进阶 —— 超详细操作演示!!!(中)

MySQL进阶 —— 超详细操作演示&#xff01;&#xff01;&#xff01;&#xff08;中&#xff09; 三、SQL 优化3.1 插入数据3.2 主键优化3.3 order by 优化3.4 group by 优化3.5 limit 优化3.6 count 优化3.7 update 优化 四、视图/存储过程/触发器4.1 视图4.2 存储过程4.3 存…

阿里云大数据实战记录10:Hive 兼容模式的坑

文章目录 1、前言2、什么是 Hive 兼容模式&#xff1f;3、为什么要开启 Hive 模式&#xff1f;4、有什么副作用&#xff1f;5、如何开启 Hive 兼容模式&#xff1f;6、该场景下&#xff0c;能不能不开启 Hive 兼容模式&#xff1f;7、为什么不是DATE_FORMAT(datetime, string)&…

【Qt-17】Qt调用matlab生成的dll库

matlab生成dll库 1、matlab示例代码 function BDCube(x,y)[x,y,z] cylinder(x,y);t1 hgtransform;s1 surf(3*x,3*y,4*z,Parent,t1);grid onview(3)shading interp end 2、matlab环境配置 首先检查自己的mcc编译器是否可用&#xff0c;输出以下命令&#xff1a; &#x…

如何在没有第三方.NET库源码的情况,调试第三库代码?

大家好&#xff0c;我是沙漠尽头的狼。 本方首发于Dotnet9&#xff0c;介绍使用dnSpy调试第三方.NET库源码&#xff0c;行文目录&#xff1a; 安装dnSpy编写示例程序调试示例程序调试.NET库原生方法总结 1. 安装dnSpy dnSpy是一款功能强大的.NET程序反编译工具&#xff0c;…

【Java 基础篇】Java线程安全与并发问题详解

多线程编程在Java中是一个常见的需求&#xff0c;它可以提高程序的性能和响应能力。然而&#xff0c;多线程编程也带来了一系列的线程安全与并发问题。在本文中&#xff0c;我们将深入探讨这些问题&#xff0c;以及如何解决它们&#xff0c;适用于Java初学者和基础用户。 什么…