FPGA 图像缩放 千兆网 UDP 网络视频传输,基于B50610 PHY实现,提供工程和QT上位机源码加技术支持

目录

  • 1、前言
    • 版本更新说明
    • 免责声明
  • 2、相关方案推荐
    • UDP视频传输--无缩放
    • FPGA图像缩放方案
    • 我这里已有的以太网方案
  • 3、设计思路框架
    • 视频源选择
    • IT6802解码芯片配置及采集
    • 动态彩条
    • 跨时钟FIFO
    • 图像缩放模块详解
      • 设计框图
      • 代码框图
      • 2种插值算法的整合与选择
    • UDP协议栈
    • UDP视频数据组包
    • UDP协议栈数据发送
    • UDP协议栈数据缓冲
    • IP地址、端口号的修改
    • Tri Mode Ethernet MAC介绍以及移植注意事项
    • B50610 PHY
    • QT上位机和源码
  • 4、vivado工程详解
  • 5、工程移植说明
    • vivado版本不一致处理
    • FPGA型号不一致处理
    • 其他注意事项
  • 6、上板调试验证并演示
    • 准备工作
    • ping一下
    • 静态演示
    • 动态演示
  • 7、福利:工程源码获取

1、前言

没玩过UDP协议栈都不好意思说自己玩儿过FPGA,这是CSDN某大佬说过的一句话,鄙人深信不疑。。。
UDP协议栈在实际项目中应用广泛,特别是在医疗和军工行业,目前市面上的图像拼接方案主要有Xilinx官方推出的Video Mixer方案和自己手撕代码的自定义方案;Xilinx官方推出的Video Mixer方案直接调用IP,通过SDK配置即可实现,但他的使能难度较高,且对FPGA资源要求也很高,不太适合小规模FPGA,在zynq和K7以上平台倒是很使用,如果对Video Mixer方案感兴趣,可以参考我之前的博客,博客地址:
点击直接前往

本文使用Xilinx的Kintex7 FPGA基于B50610网络PHY芯片实现千兆网UDP视频传输(视频缩放后再传输),视频源有两种,分别对应开发者手里有没有摄像头的情况,一种是使用板载的HDMI输入接口(笔记本电脑输入模拟HDMI输入源);另一种是如果你的手里没有摄像头,或者你的开发板没HDMI输入接口,则可使用代码内部生成的动态彩条模拟摄像头视频,视频源的选择通过代码顶层的`define宏定义进行,上电默认选择HDMI输入接口作为视频输入源;FPGA采集视频后,首先使用纯verilog实现的图像缩放模块对视频进行缩小操作,即从输入的1920x1080分辨率缩小为1280x720,因为我们的QT上位机目前只支持1280x720,所以才需要缩放;使用FDMA将视频缓存到DDR3中,然后将视频读出,根据与QT上位机的通信协议将视频进行UDP数据组包,然后使用我们的UDP协议栈对视频进行UDP数据封装,再将数据送入Tri Mode Ethernet MAC IP,输出给开发板板载的B50610网络PHY,然后UDP视频通过开发板板载的RJ45网口经网线传输给电脑主机,电脑端用我们提供的QT上位机采集图像并显示;提供vivado2019.1版本的FPGA工程源码和QT上位机及其源码;

本博客详细描述了FPGA基于B50610网络PHY芯片实现千兆网UDP视频传输的设计方案,工程代码可综合编译上板调试,可直接项目移植,适用于在校学生、研究生项目开发,也适用于在职工程师做学习提升,可应用于医疗、军工等行业的高速接口或图像处理领域;
提供完整的、跑通的工程源码和技术支持;
工程源码和技术支持的获取方式放在了文章末尾,请耐心看到最后;

版本更新说明

此版本为第2版,根据读者的建议,对第1版工程做了如下改进和更新:
1:增加了输入视频动态彩条的选择,有的读者说他手里没有OV5640摄像头,或者摄像头原理图和我的不一致,导致在移植过程中困难很大,基于此,增加了动态彩条,它由FPGA内部产生,不需要外接摄像头就可以使用,使用方法在后文有说明,本例程板载的是HDMI输入接口,没有该接口的朋友可以选择使用动态彩条;
2:优化了FDMA,之前的FDMA内AXI4的数据读写突发长度为256,导致在低端FPGA上带宽不够,从而图像质量不佳,基于此,将FDMA内AXI4的数据读写突发长度改为128;
3:优化了UDP协议栈及其数据缓冲FIFO组的代码,并在博文里增加了这一部分的代码说明;
4:增加了Tri Mode Ethernet MAC IP核的使用、更新、修改等说明,以单独文档形式放在了资料包中;
5:优化了整体代码架构,使得之前看起来杂乱无章的代码变得清爽简洁;

免责声明

本工程及其源码即有自己写的一部分,也有网络公开渠道获取的一部分(包括CSDN、Xilinx官网、Altera官网等等),若大佬们觉得有所冒犯,请私信批评教育;基于此,本工程及其源码仅限于读者或粉丝个人学习和研究,禁止用于商业用途,若由于读者或粉丝自身原因用于商业用途所导致的法律问题,与本博客及博主无关,请谨慎使用。。。

2、相关方案推荐

UDP视频传输–无缩放

我这里有与本博客相似的UDP视频传输方案,但他的输入视频没有进行缩放操作,而是直接缓存后送UDP协议栈输出,博客链接如下:直接点击前往

FPGA图像缩放方案

本博客使用到的图像缩放方案,是我之前发布过的一篇博文的内容,对该图像缩放部分感兴趣的可以参考,博客链接如下:直接点击前往

我这里已有的以太网方案

目前我这里有大量UDP协议的工程源码,包括UDP数据回环,视频传输,AD采集传输等,也有TCP协议的工程,还有RDMA的NIC 10G 25G 100G网卡工程源码,对网络通信有需求的兄弟可以去看看:直接点击前往
其中千兆TCP协议的工程博客如下:
直接点击前往

3、设计思路框架

FPGA工程设计框图如下:
在这里插入图片描述

视频源选择

视频源有两种,分别对应开发者手里有没有摄像头的情况,一种是使用板载的HDMI输入接口;另一种是如果你的手里没有摄像头,或者你的开发板没HDMI输入接口,则可使用代码内部生成的动态彩条模拟摄像头视频,视频源的选择通过代码顶层的宏定义进行,上电默认选择HDMI输入接口作为视频输入源;
视频源的选择通过代码顶层的`define宏定义进行;如下:
在这里插入图片描述
选择逻辑代码部分如下:
在这里插入图片描述
选择逻辑如下:
当(注释) define COLOR_IN时,输入源视频是动态彩条;
当(不注释) define COLOR_IN时,输入源视频是HDMI输入;

IT6802解码芯片配置及采集

IT6802解码芯片需要i2c配置才能使用,关于IT6802解码芯片的配置和使用,请参考我往期的博客,博客地址:点击直接前往
IT6802解码芯片配置及采集这两部分均用verilog代码模块实现,代码位置如下:
在这里插入图片描述
代码中配置为1920x1080分辨率;

动态彩条

动态彩条可配置为不同分辨率的视频,视频的边框宽度,动态移动方块的大小,移动速度等都可以参数化配置,我这里配置为辨率1920x1080,动态彩条模块代码位置和顶层接口和例化如下:
在这里插入图片描述
在这里插入图片描述

跨时钟FIFO

跨时钟FIFO的作用是为了解决跨时钟域的问题,当视频不进行缩放时不存在视频跨时钟域问题,但当视频缩小或放大时就存在此问题,用FIFO缓冲可以使图像缩放模块每次读到的都是有效的输入数据,注意,原视频的输入时序在这里就已经被打乱了;

图像缩放模块详解

因为我们的QT上位机目前只支持1280x720,所以才需要缩放,即从输入的1920x1080分辨率缩小为1280x720;用笔记本电脑模拟HDMI视频输入源;

设计框图

本设计将常用的双线性插值和邻域插值算法融合为一个代码中,通过输入参数选择某一种算法;代码使用纯verilog实现,没有任何ip,可在Xilinx、Intel、国产FPGA间任意移植;代码以ram和fifo为核心进行数据缓存和插值实现,设计架构如下:
在这里插入图片描述
视频输入时序要求如下:
在这里插入图片描述
输入像素数据在dInValid和nextDin同时为高时方可改变;
视频输出时序要求如下:
在这里插入图片描述
输出像素数据在dOutValid 和nextdOut同时为高时才能输出;

代码框图

代码使用纯verilog实现,没有任何ip,可在Xilinx、Intel、国产FPGA间任意移植;
图像缩放的实现方式很多,最简单的莫过于Xilinx的HLS方式实现,用opencv的库,以c++语言几行代码即可完成,关于HLS实现图像缩放请参考我之前写的文章HLS实现图像缩放
网上也有其他图像缩放例程代码,但大多使用了IP,导致在其他FPGA器件上移植变得困难,通用性不好;相比之下,本设计代码就具有通用性;代码架构如图;
在这里插入图片描述
其中顶层接口部分如下:
在这里插入图片描述

2种插值算法的整合与选择

本设计将常用的双线性插值和邻域插值算法融合为一个代码中,通过输入参数选择某一种算法;
具体选择参数如下:

input  wire i_scaler_type //0-->bilinear;1-->neighbor

通过输入i_scaler_type 的值即可选择;

输入0选择双线性插值算法;
输入1选择邻域插值算法;

关于这两种算法的数学差异,请参考我之前写的文章HLS实现图像缩放

UDP协议栈

本UDP协议栈方案需配合Xilinx的Tri Mode Ethernet MAC三速网IP一起使用,使用UDP协议栈网表文件,虽看不见源码但可正常实现UDP通信,该协议栈目前并不开源,只提供网表文件,但不影响使用,该协议栈带有用户接口,使得用户无需关心复杂的UDP协议而只需关心简单的用户接口时序即可操作UDP收发,非常简单;
协议栈架构如下:
在这里插入图片描述
协议栈性能表现如下:
1:支持 UDP 接收校验和检验功能,暂不支持 UDP 发送校验和生成;
2:支持 IP 首部校验和的生成和校验,同时支持 ICMP 协议中的 PING 功能,可接收并响应同一个子网内部设备的 PING 请求;
3:可自动发起或响应同一个子网内设备的 ARP 请求,ARP 收发完全自适应。ARP 表可保存同一个子网内部256 个 IP 和 MAC 地址对;
4:支持 ARP 超时机制,可检测所需发送数据包的目的 IP 地址是否可达;
5:协议栈发送带宽利用率可达 93%,高发送带宽下,内部仲裁机制保证 PING 和 ARP 功能不受任何影响;
6:发送过程不会造成丢包;
7:提供64bit位宽AXI4-Stream形式的MAC接口,可与Xilinx官方的千兆以太网IP核Tri Mode Ethernet MAC,以及万兆以太网 IP 核 10 Gigabit Ethernet Subsystem、10 Gigabit Ethernet MAC 配合使用;
有了此协议栈,我们无需关心复杂的UDP协议的实现了,直接调用接口即可使用。。。
本UDP协议栈用户接口发送时序如下:
在这里插入图片描述
本UDP协议栈用户接口接收时序如下:
在这里插入图片描述

UDP视频数据组包

实现UDP视频数据的组包,UDP数据发送必须与QT上位机的接受程序一致,上位机定义的UDP帧格式包括帧头个UDP数据,帧头定义如下:
在这里插入图片描述
FPGA端的UDP数据组包代码必须与上图的数据帧格式对应,否则QT无法解析,代码中定义了数据组包状态机以及数据帧,如下:
在这里插入图片描述
另外,由于UDP发送是64位数据位宽,而图像像素数据是24bit位宽,所以必须将UDP数据重新组合,以保证像素数据的对齐,这部分是整个工程的难点,也是所有FPGA做UDP数据传输的难点;

UDP协议栈数据发送

UDP协议栈具有发送和接收功能,但这里仅用到了发送,此部分代码架构如下:
在这里插入图片描述
UDP协议栈代码组我已经做好,用户可直接拿去使用;

UDP协议栈数据缓冲

这里对代码中用到的数据缓冲FIFO组做如下解释:
由于 UDP IP 协议栈的 AXI-Stream 数据接口位宽为 64bit,而 Tri Mode Ethernet MAC 的 AXI-Stream数据接口位宽为 8bit。因此,要将 UDP IP 协议栈与 Tri Mode Ethernet MAC 之间通过 AXI-Stream 接口互联,需要进行时钟域和数据位宽的转换。实现方案如下图所示:
在这里插入图片描述
收发路径(本设计只用到了发送)都使用了2个AXI-Stream DATA FIFO,通过其中1个FIFO实现异步时钟域的转换,1个FIFO实
现数据缓冲和同步Packet mode功能;由于千兆速率下Tri Mode Ethernet MAC的AXI-Stream数据接口同步时钟信号为125MHz,此时,UDP协议栈64bit的AXI-Stream数据接口同步时钟信号应该为125MHz/(64/8)=15.625MHz,因此,异步
AXI-Stream DATA FIFO两端的时钟分别为125MHz(8bit),15.625MHz(64bit);UDP IP协议栈的AXI-Stream接口经过FIFO时钟域转换后,还需要进行数据数据位宽转换,数据位宽的转换通过AXI4-Stream Data Width Converter完成,在接收路径中,进行 8bit 到 64bit 的转换;在发送路径中,进行 64bit 到 8bit 的转换;

IP地址、端口号的修改

UDP协议栈留出了IP地址、端口号的修改端口供用户自由修改,位置如下:
在这里插入图片描述

Tri Mode Ethernet MAC介绍以及移植注意事项

本设计调用了Xilinx官方IP:Tri Mode Ethernet MAC,其在代码中的位置如下:
在这里插入图片描述
可以看到其中泰处于被锁定状态,这是我们故意为之,目的是根据不同的PHY延时参数而修改其内部代码和内部时序约束代码,由于本设计使用的网络PHY为B50610,所以这里重点介绍使用B50610时Tri Mode Ethernet MAC的修改和移植事项,当你需要工程移植,或者你的vivado版本与我的不一致时,Tri Mode Ethernet MAC都需要在vivado中进行升级,但由于该IP已被我们人为锁定,所以升级和修改需要一些高端操作,关于操作方法,我专门写了一篇文档,已附在资料包里,如下:
在这里插入图片描述

B50610 PHY

本设计开发板使用的网络PHY为B50610,工作在延时模式下,原理图引出了MDIO,但代码中不需要MDIO配置,通过上下拉电阻即可使B50610工作于延时模式,该PHY最高支持千兆,且能在10M/100M/1000M之间自动协商,但本设计在Tri Mode Ethernet MAC端固定为1000M;在资料包中,我们提供B50610的原理图;
在这里插入图片描述

QT上位机和源码

我们提供和UDP通信协议相匹配的QT抓图显示上位机及其源代码,目录如下:
在这里插入图片描述
我们的QT目前仅支持1280x720分辨率的视频抓图显示,但同时预留了1080P接口,对QT开发感兴趣的朋友可以尝试修改代码以适应1080P,因为QT在这里只是验证工具,不是本工程的重点,所以不再过多赘述,详情请参考资料包的QT源码,位置如下:
在这里插入图片描述

4、vivado工程详解

开发板FPGA型号:Xilinx–Kintex7–xc7k325tffg676-2;
开发环境:Vivado2019.1;
输入:HDMI或动态彩条,分辨率1920x1080;
输出:千兆UDP协议栈,B50610 PHY,RJ45网口;
工程作用:千兆UDP网络视频传输;
工程BD如下:
在这里插入图片描述
工程代码架构如下:
在这里插入图片描述
工程的资源消耗和功耗如下:
在这里插入图片描述

5、工程移植说明

vivado版本不一致处理

1:如果你的vivado版本与本工程vivado版本一致,则直接打开工程;
2:如果你的vivado版本低于本工程vivado版本,则需要打开工程后,点击文件–>另存为;但此方法并不保险,最保险的方法是将你的vivado版本升级到本工程vivado的版本或者更高版本;
在这里插入图片描述
3:如果你的vivado版本高于本工程vivado版本,解决如下:
在这里插入图片描述
打开工程后会发现IP都被锁住了,如下:
在这里插入图片描述
此时需要升级IP,操作如下:
在这里插入图片描述
在这里插入图片描述

FPGA型号不一致处理

如果你的FPGA型号与我的不一致,则需要更改FPGA型号,操作如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
更改FPGA型号后还需要升级IP,升级IP的方法前面已经讲述了;

其他注意事项

1:由于每个板子的DDR不一定完全一样,所以MIG IP需要根据你自己的原理图进行配置,甚至可以直接删掉我这里原工程的MIG并重新添加IP,重新配置;
2:根据你自己的原理图修改引脚约束,在xdc文件中修改即可;
3:纯FPGA移植到Zynq需要在工程中添加zynq软核;

6、上板调试验证并演示

准备工作

首先连接开发板和电脑,开发板端连接后如下图:
在这里插入图片描述
然后将你的电脑IP地址改为和代码里规定的IP一致,当然,代码里的IP是可以任意设置的,但代码里的IP修改后,电脑端的IP也要跟着改,我的设置如下:
在这里插入图片描述

ping一下

在开始测试前,我们先ping一下,测试UDP是否连通,如下:
在这里插入图片描述

静态演示

HDMI输入1920x1080缩小到1280x720后UDP网络传输QT上位机显示如下:
在这里插入图片描述
动态彩条1920x1080缩小到1280x720后UDP网络传输QT上位机显示如下:
在这里插入图片描述

动态演示

动态视频演示如下:

FPGA-UDP-视频缩放传输-K7-16比9

7、福利:工程源码获取

福利:工程代码的获取
代码太大,无法邮箱发送,以某度网盘链接方式发送,
资料获取方式:私,或者文章末尾的V名片。
网盘资料如下:
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/139297.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在Windos 10专业版搭建Fyne(Go 跨平台GUI)开发环境

目录 在Windos 10专业版搭建Fyne(Go 跨平台GUI)开发环境一 Fyne 和 MSYS2简介1.1 Fyne1.2 MSYS2 二 安装 MSYS22.1 下载MSYS22.2 安装2.3 环境变量设置2.4 检测安装环境 三 参考文档 在Windos 10专业版搭建Fyne(Go 跨平台GUI)开发…

DataLink-可视化数据流程编排(一)

DATALINK DataLink是一款基于Actor模型开发的数据流程编排工具,通过拖拽方式在画布中添加各类节点,创建数据处理规则。支持监听多种协议端口,订阅消息中间件,以及读写不同类型的数据库。并提供分发、过滤、打包、延迟、限流、脚本…

小程序开发一个多少钱啊

在今天的数字化时代,小程序已经成为一种非常流行的应用程序形式。由于它们的便捷性、易用性和多功能性,小程序吸引了越来越多的用户和企业。但是,很多人在考虑开发一个小程序时,都会遇到同一个问题:开发一个小程序需要…

Java多线程(三)

文章目录 一、线程通信1.涉及到的三个方法2.说明3.线程通信的例子:使用两个线程打印 1-100 交替打印 二、sleep()和wait()的异同?1.相同点2.不同点 三、线程通信的应用:经典例题:生产者/消费者问题1.问题描述2.代码实现 四、创建线…

【Spatial-Temporal Action Localization(二)】论文阅读2017年

文章目录 1. ActionVLAD: Learning spatio-temporal aggregation for action classification [code](https://github.com/rohitgirdhar/ActionVLAD/)[](https://github.com/rohitgirdhar/ActionVLAD/)摘要和结论引言:针对痛点和贡献相关工作模型框架思考不足之处 2.…

大数取模运算Barrett reduction

Barrett reduction 约减概述 约减的定义(reduction): z ( m o d p ) z \pmod p z(modp) 优化约减的目的:取模操作的底层实现往往使用到的是除法,而除法操作往往是较为耗时的,因此需要把除法操作替换为不那么费时的其他操作。 Barrett 约减概述 单模数…

识别准确率达 95%,华能东方电厂财务机器人实践探索

摘 要:基于华能集团公司大数据与人工智能构想理念,结合东方电厂实际工作需要,财务工作要向数字化、智能化纵深推进,随着财务数字化转型和升级加速,信息化水平不断提升,以及内部信息互联互通不断加深&#x…

基于Xml方式Bean的配置-命名空间种类

Spring的标签 Spring的xml标签大体上分为两类&#xff0c;一种是默认标签&#xff0c;一种是自定义标签 默认标签&#xff1a;就是不用额外导入其它命名空间约束的标签&#xff0c;例如<bean>标签 标签作用 <beans> 一般作为xml配置根标签&#xff0c;其他标签都是…

20230919在WIN10下使用python3将PDF文档转为DOCX格式的WORD文档

20230919在WIN10下使用python3将PDF文档转为DOCX格式的WORD文档 2023/9/19 11:20 python pdf word https://blog.csdn.net/u013185349/article/details/130059657 Python实现PDF转Word文档 AcceptedLin 已于 2023-04-10 14:45:17 修改 1243 收藏 1 文章标签&#xff1a; pd…

蓝牙技术|蓝牙轻松部署物联网项目,智能照明利用蓝牙特性快速发展

蓝牙物联网&#xff0c;特别是在低功耗蓝牙(BLE)普及的推动下&#xff0c;在物联网领域取得了显著增长和采用。由于低能耗和长时间使用小型电池的能力&#xff0c;BLE已成为许多物联网应用的首选无线技术。 BLE使用与蓝牙相同的无线电频段&#xff0c;同样可以实现两个设备之…

Java面试题整理(带答案)

目录 TCP和UDP的区别 get和post的区别 Cookie和session的区别 Java的基本类型有哪些&#xff1f; 抽象类和接口区别&#xff1f; 对于堆栈的理解 和equals区别 如何理解Java多态&#xff1f; 创建线程都有哪些方式 脏读、不可重复度、幻读都是什么&#xff1f; Jav…

impala常用时间函数,date->string->timestamp互转

impala 和hive不一样&#xff0c;hive是弱类型&#xff0c;比如int和string在大部分条件下可以比较 比如hive select 11 --结果true或false 但是impala select 11 报错 operands of type TINYINT and STRING are not comparable: 1 1 这样带来的好处是 类型一致结果更…

【Vue】修饰符、表单提交方式、自定义组件的关键步骤

&#x1f389;&#x1f389;欢迎来到我的CSDN主页&#xff01;&#x1f389;&#x1f389; &#x1f3c5;我是Java方文山&#xff0c;一个在CSDN分享笔记的博主。&#x1f4da;&#x1f4da; &#x1f31f;推荐给大家我的专栏《Vue快速入门》。&#x1f3af;&#x1f3af; &…

从Langchain到ReAct,在大模型时代下全新的应用开发核心

简介&#xff1a; 什么是ReAct框架关于什么是langchain&#xff0c;可以参考&#xff1a;https://ata.alibaba-inc.com/articles/266839?spmata.23639420.0.0.1dea7536uD7yhh在使用langchain的过程中&#xff0c;大模型给人留下最深刻的印象无疑是Agent功能。大模型会自己分析…

可转债实战与案例分析——成功的和失败的可转债投资案例、教训与经验分享

实战与案例分析——投资案例研究 股票量化程序化自动交易接口 一、成功的可转债投资案例 成功的可转债投资案例提供了有价值的经验教训&#xff0c;以下是一个典型的成功案例&#xff1a; 案例&#xff1a;投资者B的成功可转债投资 投资者B是一位懂得风险管理的投资者&#…

【Node.js】定时任务cron:

文章目录 一、文档&#xff1a;【Nodejs 插件】 二、安装与使用【1】安装【2】使用 三、cron表达式&#xff1a;{秒数} {分钟} {小时} {日期} {月份} {星期} {年份(可为空)}四、案例&#xff1a; 一、文档&#xff1a; 【说明文档】https://www.npmjs.com/package/cron 【Cron表…

python使用apscheduler每隔一段时间自动化运行程序

apscheduler使用比较简单&#xff0c;每隔一段时间自动化运行的步骤是&#xff1a; 创建调度器scheduler BlockingScheduler()添加任务scheduler.add_job(函数名, interval, minutes30) # 每隔30分钟运行一次直接执行&#xff1a;scheduler.start()示例代码 from datetime i…

主动写入流对@ResponseBody注解的影响 | 京东云技术团队

问题回溯 2023年Q2某日运营反馈一个问题&#xff0c;商品系统商家中心某批量工具模板无法下载&#xff0c;导致功能无法使用&#xff08;因为模板是动态变化的&#xff09; 商家中心报错&#xff08;JSON串&#xff09;&#xff1a; {"code":-1,"msg":&…

科目三基础四项(一)

​ 第一天&#xff0c;基础操作&#xff0c;仪表&#xff0c;方向&#xff0c;挡位 按照模块来 1、方向盘两手在两侧 ​ 编辑 转向时的角度&#xff0c;只用&#xff1a;向左540&#xff0c;向右180 向左打和向右打的角度要抵消&#xff0c;回正 掉头向左打满再回 注意…

vue 使用cornerstone解析 .dcm 文件

// 首先下载依赖 npm install --save cornerstone-core cornerstone-math cornerstone-tools hammerjs cornerstone-web-image-loader 下载之后再package.json中可以看到最后图片的依赖// 下面是完成的组件代码 <template><div id"dicom_canvas" refdicom_c…