竞赛选题 基于深度学习的行人重识别(person reid)

文章目录

  • 0 前言
  • 1 技术背景
  • 2 技术介绍
  • 3 重识别技术实现
    • 3.1 数据集
    • 3.2 Person REID
      • 3.2.1 算法原理
      • 3.2.2 算法流程图
  • 4 实现效果
  • 5 部分代码
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习的行人重识别

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 技术背景

行人重识别技术,是智能视频监控系统的关键技术之一,其研宄是针对特定目标行人的视频检索识别问题。行人再识别是一种自动的目标判定识别技术,它综合地运用了计算机视觉技术、机器学习、视频处理、图像分析、模式识别等多种相关技术于监控系统中,其主要描述的是在多个无重叠视域的摄像头监控环境之下,通过相关算法判断在某个镜头下出现过的感兴趣的目标人物是否在其他摄像头下再次出现。

2 技术介绍

在视频监控系统中,行人再识别任务的整体框架如下图所示:
—个监控系统由多个视域不相交的监控摄像头组成,摄像机的位置可以随时更改,同时也可以随时增加或减少摄像机。不两监控摄像头所摄取的画面、视角等各不相同。在这样的监控系统中,对行人的动向监测是,至关重要的。

对行人的监控主要基于以下三个基本的模块:

在这里插入图片描述

  • 行人检测:
    行人检测的目标是在图片中定位到行人的具体位置。这一步骤仅涉及到对于静止的单张图片的处理,而没有动态的处理,没有时间序列上的相关分析。

  • 行人轨迹跟踪:
    行人轨迹跟踪的主要任务是在一段时间内提供目标任务的位置移动信息。与行人检测不同,轨迹跟踪与时间序列紧密相关。行人轨迹跟踪是在行人检测的基础上进行的。

  • 行人再识别:
    行人再识别任务的目标是在没有相重合视域的摄像头或摄像机网络内的不同背景下的许多行人中中识别某个特定行人。行人再识别的分析基于行人检测和轨迹跟踪的结果。其主要步骤首先是检测和跟踪视频序列中的行人,从而提取行人的特征,建立构建模型所需的行人特征集数据库。


在此基础上,用训练出的模型进行学习从而判断得出某个摄像头下的行人与另一摄像头下的目标人物为同一个人。在智能视频监控系统中的行人再识别任务具有非常广阔的应用前景。行人再识别的应用与行人检测、目标跟踪、行人行为分析、敏感事件检测等等都有着紧密的联系,这些分析处理技术对于公安部门的刑侦工作和城市安防建设工作有着重要的意义。

3 重识别技术实现

3.1 数据集

目前行人再识别的研究需要大量的行人数据集。行人再识别的数据集主要是通过在不同区域假设无重叠视域的多个摄像头来采集拍摄有行人图像的视频,然后对视频提取帧,对于视频帧图像采用人工标注或算法识别的方式进行人体检测及标注来完成的。行人再识别数据集中包含了跨背景、跨时间、不同拍摄角度下、各种不同姿势的行人图片,如下图所示。

在这里插入图片描述

3.2 Person REID

3.2.1 算法原理

给定N个不同的行人从不同的拍摄视角的无重叠视域摄像机捕获的图像集合,行人再识别的任务是学习一个模型,该模型可以尽可能减小行人姿势和背景、光照等因素带来的影响,从而更好地对行人进行整体上的描述,更准确地对不同行人图像之间的相似度进行衡量。

我这里使用注意力相关的特征的卷积神经网络。该基础卷积神经网络架构可以由任何卷积神经网络模型代替,例如,VGG-19,ResNet-101。

该算法的核心模块在于注意力学习模型。

3.2.2 算法流程图

在这里插入图片描述

4 实现效果

在多行人场景下,对特定行人进行寻找
在这里插入图片描述

5 部分代码

import argparseimport timefrom sys import platformfrom models import *from utils.datasets import *from utils.utils import *from reid.data import make_data_loaderfrom reid.data.transforms import build_transformsfrom reid.modeling import build_modelfrom reid.config import cfg as reidCfgdef detect(cfg,data,weights,images='data/samples',  # input folderoutput='output',  # output folderfourcc='mp4v',  # video codecimg_size=416,conf_thres=0.5,nms_thres=0.5,dist_thres=1.0,save_txt=False,save_images=True):# Initializedevice = torch_utils.select_device(force_cpu=False)torch.backends.cudnn.benchmark = False  # set False for reproducible resultsif os.path.exists(output):shutil.rmtree(output)  # delete output folderos.makedirs(output)  # make new output folder############# 行人重识别模型初始化 #############query_loader, num_query = make_data_loader(reidCfg)reidModel = build_model(reidCfg, num_classes=10126)reidModel.load_param(reidCfg.TEST.WEIGHT)reidModel.to(device).eval()query_feats = []query_pids  = []for i, batch in enumerate(query_loader):with torch.no_grad():img, pid, camid = batchimg = img.to(device)feat = reidModel(img)         # 一共2张待查询图片,每张图片特征向量2048 torch.Size([2, 2048])query_feats.append(feat)query_pids.extend(np.asarray(pid))  # extend() 函数用于在列表末尾一次性追加另一个序列中的多个值(用新列表扩展原来的列表)。query_feats = torch.cat(query_feats, dim=0)  # torch.Size([2, 2048])print("The query feature is normalized")query_feats = torch.nn.functional.normalize(query_feats, dim=1, p=2) # 计算出查询图片的特征向量############# 行人检测模型初始化 #############model = Darknet(cfg, img_size)# Load weightsif weights.endswith('.pt'):  # pytorch formatmodel.load_state_dict(torch.load(weights, map_location=device)['model'])else:  # darknet format_ = load_darknet_weights(model, weights)# Eval modemodel.to(device).eval()# Half precisionopt.half = opt.half and device.type != 'cpu'  # half precision only supported on CUDAif opt.half:model.half()# Set Dataloadervid_path, vid_writer = None, Noneif opt.webcam:save_images = Falsedataloader = LoadWebcam(img_size=img_size, half=opt.half)else:dataloader = LoadImages(images, img_size=img_size, half=opt.half)# Get classes and colors# parse_data_cfg(data)['names']:得到类别名称文件路径 names=data/coco.namesclasses = load_classes(parse_data_cfg(data)['names']) # 得到类别名列表: ['person', 'bicycle'...]colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(classes))] # 对于每种类别随机使用一种颜色画框# Run inferencet0 = time.time()for i, (path, img, im0, vid_cap) in enumerate(dataloader):t = time.time()# if i < 500 or i % 5 == 0:#     continuesave_path = str(Path(output) / Path(path).name) # 保存的路径# Get detections shape: (3, 416, 320)img = torch.from_numpy(img).unsqueeze(0).to(device) # torch.Size([1, 3, 416, 320])pred, _ = model(img) # 经过处理的网络预测,和原始的det = non_max_suppression(pred.float(), conf_thres, nms_thres)[0] # torch.Size([5, 7])if det is not None and len(det) > 0:# Rescale boxes from 416 to true image size 映射到原图det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()# Print results to screen image 1/3 data\samples\000493.jpg: 288x416 5 persons, Done. (0.869s)print('%gx%g ' % img.shape[2:], end='')  # print image size '288x416'for c in det[:, -1].unique():   # 对图片的所有类进行遍历循环n = (det[:, -1] == c).sum() # 得到了当前类别的个数,也可以用来统计数目if classes[int(c)] == 'person':print('%g %ss' % (n, classes[int(c)]), end=', ') # 打印个数和类别'5 persons'# Draw bounding boxes and labels of detections# (x1y1x2y2, obj_conf, class_conf, class_pred)count = 0gallery_img = []gallery_loc = []for *xyxy, conf, cls_conf, cls in det: # 对于最后的预测框进行遍历# *xyxy: 对于原图来说的左上角右下角坐标: [tensor(349.), tensor(26.), tensor(468.), tensor(341.)]if save_txt:  # Write to filewith open(save_path + '.txt', 'a') as file:file.write(('%g ' * 6 + '\n') % (*xyxy, cls, conf))# Add bbox to the imagelabel = '%s %.2f' % (classes[int(cls)], conf) # 'person 1.00'if classes[int(cls)] == 'person':#plot_one_bo x(xyxy, im0, label=label, color=colors[int(cls)])xmin = int(xyxy[0])ymin = int(xyxy[1])xmax = int(xyxy[2])ymax = int(xyxy[3])w = xmax - xmin # 233h = ymax - ymin # 602# 如果检测到的行人太小了,感觉意义也不大# 这里需要根据实际情况稍微设置下if w*h > 500:gallery_loc.append((xmin, ymin, xmax, ymax))crop_img = im0[ymin:ymax, xmin:xmax] # HWC (602, 233, 3)crop_img = Image.fromarray(cv2.cvtColor(crop_img, cv2.COLOR_BGR2RGB))  # PIL: (233, 602)crop_img = build_transforms(reidCfg)(crop_img).unsqueeze(0)  # torch.Size([1, 3, 256, 128])gallery_img.append(crop_img)if gallery_img:gallery_img = torch.cat(gallery_img, dim=0)  # torch.Size([7, 3, 256, 128])gallery_img = gallery_img.to(device)gallery_feats = reidModel(gallery_img) # torch.Size([7, 2048])print("The gallery feature is normalized")gallery_feats = torch.nn.functional.normalize(gallery_feats, dim=1, p=2)  # 计算出查询图片的特征向量# m: 2# n: 7m, n = query_feats.shape[0], gallery_feats.shape[0]distmat = torch.pow(query_feats, 2).sum(dim=1, keepdim=True).expand(m, n) + \torch.pow(gallery_feats, 2).sum(dim=1, keepdim=True).expand(n, m).t()# out=(beta∗M)+(alpha∗mat1@mat2)# qf^2 + gf^2 - 2 * qf@gf.t()# distmat - 2 * qf@gf.t()# distmat: qf^2 + gf^2# qf: torch.Size([2, 2048])# gf: torch.Size([7, 2048])distmat.addmm_(1, -2, query_feats, gallery_feats.t())# distmat = (qf - gf)^2# distmat = np.array([[1.79536, 2.00926, 0.52790, 1.98851, 2.15138, 1.75929, 1.99410],#                     [1.78843, 1.96036, 0.53674, 1.98929, 1.99490, 1.84878, 1.98575]])distmat = distmat.cpu().numpy()  # : (3, 12)distmat = distmat.sum(axis=0) / len(query_feats) # 平均一下query中同一行人的多个结果index = distmat.argmin()if distmat[index] < dist_thres:print('距离:%s'%distmat[index])plot_one_box(gallery_loc[index], im0, label='find!', color=colors[int(cls)])# cv2.imshow('person search', im0)# cv2.waitKey()print('Done. (%.3fs)' % (time.time() - t))if opt.webcam:  # Show live webcamcv2.imshow(weights, im0)if save_images:  # Save image with detectionsif dataloader.mode == 'images':cv2.imwrite(save_path, im0)else:if vid_path != save_path:  # new videovid_path = save_pathif isinstance(vid_writer, cv2.VideoWriter):vid_writer.release()  # release previous video writerfps = vid_cap.get(cv2.CAP_PROP_FPS)width = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))height = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (width, height))vid_writer.write(im0)if save_images:print('Results saved to %s' % os.getcwd() + os.sep + output)if platform == 'darwin':  # macosos.system('open ' + output + ' ' + save_path)print('Done. (%.3fs)' % (time.time() - t0))if __name__ == '__main__':parser = argparse.ArgumentParser()parser.add_argument('--cfg', type=str, default='cfg/yolov3.cfg', help="模型配置文件路径")parser.add_argument('--data', type=str, default='data/coco.data', help="数据集配置文件所在路径")parser.add_argument('--weights', type=str, default='weights/yolov3.weights', help='模型权重文件路径')parser.add_argument('--images', type=str, default='data/samples', help='需要进行检测的图片文件夹')parser.add_argument('-q', '--query', default=r'query', help='查询图片的读取路径.')parser.add_argument('--img-size', type=int, default=416, help='输入分辨率大小')parser.add_argument('--conf-thres', type=float, default=0.1, help='物体置信度阈值')parser.add_argument('--nms-thres', type=float, default=0.4, help='NMS阈值')parser.add_argument('--dist_thres', type=float, default=1.0, help='行人图片距离阈值,小于这个距离,就认为是该行人')parser.add_argument('--fourcc', type=str, default='mp4v', help='fourcc output video codec (verify ffmpeg support)')parser.add_argument('--output', type=str, default='output', help='检测后的图片或视频保存的路径')parser.add_argument('--half', default=False, help='是否采用半精度FP16进行推理')parser.add_argument('--webcam', default=False, help='是否使用摄像头进行检测')opt = parser.parse_args()print(opt)with torch.no_grad():detect(opt.cfg,opt.data,opt.weights,images=opt.images,img_size=opt.img_size,conf_thres=opt.conf_thres,nms_thres=opt.nms_thres,dist_thres=opt.dist_thres,fourcc=opt.fourcc,output=opt.output)

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/139526.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

前端JavaScript入门到精通,javascript核心进阶ES6语法、API、js高级等基础知识和实战 —— JS基础(四)

开始吧&#xff0c;做时间的主人&#xff01; 把时间分给睡眠&#xff0c;分给书籍&#xff0c;分给运动&#xff0c; 分给花鸟树木和山川湖海&#xff0c; 分给你对这个世界的热爱&#xff0c; 而不是将自己浪费在无聊的人和事上。 思维导图 函数 为什么需要函数 <!DO…

C++之类和函数权限访问总结(二百二十七)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 人生格言&#xff1a; 人生…

黑马JVM总结(十七)

&#xff08;1&#xff09;G1_简介 下面介绍一种Grabage one的垃圾回收器&#xff0c;在jdk9的时候称为默认的回收器&#xff0c;废除了之前的CMS垃圾回收器&#xff0c;它的内部也是并发的垃圾回收器 我们可以想到堆内存过大&#xff0c;肯定会导致回收速度变慢&#xff0c;因…

时序预测 | MATLAB实现NGO-GRU北方苍鹰算法优化门控循环单元时间序列预测

时序预测 | MATLAB实现NGO-GRU北方苍鹰算法优化门控循环单元时间序列预测 目录 时序预测 | MATLAB实现NGO-GRU北方苍鹰算法优化门控循环单元时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 MATLAB实现NGO-GRU北方苍鹰算法优化门控循环单元时间序列预测&#…

Matlab编程中函数的重命名方法

Matlab编程中函数的重命名方法 在进行matlab编程时候&#xff0c;有时需要根据自己的习惯&#xff0c;需要对函数重命名。本文简要介绍重命名的方法。 一、重命名的方法 通过和赋值号实现&#xff0c;如下所示&#xff1a; 新函数名原函数名二、具体举例 clc clear all %将…

C 初级学习笔记(基础)

目录 1.预处理器指令 预定义宏 预处理器运算符 &#xff08;\&#xff09; 参数化的宏 头文件 .h 引用头文件操作 2.函数&#xff08;标识符&关键字&运算符&#xff09;存储类 函数参数 a. 标识符&关键字 b. 运算符&#xff08;算术、关系、逻辑、位、赋…

手动部署 OceanBase 集群

手动部署一个 OB 单副本集群&#xff0c;包括一个 OBProxy 节点 部署环境 服务器信息 IP地址 192.168.0.26 网卡名 ifcfg-enp1s0 OS Kylin Linux Advanced Server release V10 CPU 8C 内存 32G 磁盘1 本地盘 /data/1 磁盘2 本地盘 /data/log1 机器和角色划分 …

软件设计模式

1.UML 1.1类图表示法 uml类图中&#xff0c;类使用包含类名、属性、方法 属性或方法前的加好和减号表示了这个方法的可见性&#xff0c;可见性的符号有三种&#xff1a; 表示public -表示private #表示protected 1.2 类与类之间关系 关联关系 单向关联 双向关系 自关联 聚合关…

WebRTC系列--sdp协商中的answer编解码协商过程

关于createAnswer的流程在前面的文章WebRTC系列-SDP之CreateAnswer这篇文章中有详细的分析。 这篇文章主要对于MediaSessionDescriptionFactory的AddAudioContentForAnswer做详细的分析,也就是说对于音频编码的匹配也是在这个方法里实现: 首先主要的函数调用如下图: 这篇文…

LabVIEW崩溃问题解决方法

LabVIEW崩溃问题解决方法 LabVIEW在运行中出现崩溃的情况&#xff0c;确实让人很崩溃。不过按照下面的方法可以逐步排查解决。 在LabVIEW开发环境中浏览时&#xff0c;LabVIEW崩溃并显示以下错误&#xff1a; 解决方案 LabVIEW内部错误和崩溃的初步故障排除步骤&#xff1a;…

【虚拟化】虚拟机vcpu绑核物理机

文章目录 一、NUMA二、虚拟机xml配置解析 参考文章 第一篇&#xff1a;KVM虚拟化CPU技术总结 第二篇&#xff1a;虚机cpu和mem的配置&#xff08;cputune和numatune&#xff09; 第三篇&#xff1a;libvirt 中cpu, numa 的配置 第四篇&#xff1a;如何提高虚拟机性能&#xff1…

数据结构与算法之动态规划算法(DP)

文章目录 前言1.0-1背包问题1.1 基本概念1.2 具体问题1.3 c代码求解1.4 测试 2.最长公共子序列 前言 前边我们讲过分治法&#xff0c;分治法的核心是将一个问题分解为n个小问题&#xff0c;最后合并结果。而动态规划算法的核心是穷举法,以及要寻找到一个状态方程&#xff0c;需…

电脑版剪映怎么倒放?

1.打开一个素材 2.添加到时间轨道 3.右击轨道素材 弹出的选项钟选择&#xff0c;基础编辑》倒放&#xff01;

计算机网络分类

按照覆盖范围分类 &#xff08;1&#xff09;个域网&#xff1a;通常覆盖范围在1&#xff5e;10m。 &#xff08;2&#xff09;局域网&#xff1a;通常覆盖范围在10m&#xff5e;1km。 &#xff08;3&#xff09;城域网&#xff1a;覆盖范围通常在5&#xff5e;50 km 。 &…

蓝桥杯 题库 简单 每日十题 day5

01 字符计数 字符计数 题目描述 给定一个单词&#xff0c;请计算这个单词中有多少个元音字母&#xff0c;多少个辅音字母。 元音字母包括a,e&#xff0c;i,o&#xff0c;u&#xff0c;共五个&#xff0c;其他均为辅音字母。 输入描述 输入格式&#xff1a; 输入一行&#xff0…

Xcode15+iOS17适配以及遇到的问题

今天更新了 Xcode15&#xff0c;遇到了一些问题&#xff0c;做下记录希望大家少走点坑。 1.iOS17 SDK 安装失败 Xcode更新完成后&#xff0c;打开项目一直显示 no fund iOS17 sdk&#xff0c;根据项目不同提示可能有区别&#xff0c;根据提示下载后提示安装失败&#xff0c;…

针对 SAP 的增强现实技术

增强现实技术是对现实世界的一种交互式模拟。这种功能受到各种企业和制造商的欢迎&#xff0c;因为它可以减少生产停机时间、快速发现问题并维护流程&#xff0c;从而提高运营效率。许多安卓应用都在探索增强现实技术。 使用增强现实技术&#xff08;AR&#xff09;的Liquid U…

svn(乌龟svn)和SVN-VS2022插件(visualsvn) 下载

下载地址: https://www.visualsvn.com/visualsvn/download/

备受以太坊基金会青睐的 Hexlink,构建亿级用户涌入 Web3的入口

早在 2021 年 9 月&#xff0c;以太坊创始人 Vitalik Buterin 就曾提出了 EIP-4337&#xff08;账户抽象&#xff09;提案&#xff0c;并在去年 10 月对该提案进一步更新&#xff0c;引发行业的进一步关注。在今年 3 月&#xff0c;EIP-4337 提案正式通过审计&#xff0c;并成为…

centos 7.9系统安装向日葵

1.下载地址 向日葵远程控制app官方下载 - 贝锐向日葵官网 2.下载依赖 yum install -y libappindicator-gtk3 安装好依赖之后&#xff0c;然后再安装向日葵软件 3.安装软件 sudo rpm -ivh 文件名.rpm 4.安装成功之后的位置