数据结构与算法-时间复杂度与空间复杂度

数据结构与算法

  • 🎈1.概论
    • 🔭1.1什么是数据结构?
    • 🔭1.2什么是算法?
  • 🎈2.算法效率
    • 🔭2.1如何衡量一个算法的好坏?
    • 🔭2.2算法的复杂度
    • 🔭2.3时间复杂度
      • 📖2.3.1时间复杂度的概念
      • 📖2.3.2大O的渐进表达式
      • 📖2.3.3常见时间复杂度计算举例
    • 🔭2.4空间复杂度
    • 🔭2.5常见复杂度对比

🎈1.概论

🔭1.1什么是数据结构?

数据结构是计算机存储、组织数据的方式,指相互之间存在一种或多种特定关系的数据元素的集合。

🔭1.2什么是算法?

算法就是定义良好的计算过程,他取一个或一组的值为输入,并产生一个或一组值作为输出。简单来说算法就是一系列的计算步骤,用来将输入数据转化成输出结果。

🎈2.算法效率

🔭2.1如何衡量一个算法的好坏?

算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。

🔭2.2算法的复杂度

时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。 在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

🔭2.3时间复杂度

📖2.3.1时间复杂度的概念

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。
即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。

✅这里给出示例:

// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{int count = 0;for (int i = 0; i < N; ++i){for (int j = 0; j < N; ++j){++count;}}for (int k = 0; k < 2 * N; ++k){++count;}int M = 10;while (M--){++count;}printf("%d\n", count);
}

在这里插入图片描述

  • N = 10 F(N) = 130
  • N = 100 F(N) = 10210
  • N = 1000 F(N) = 1002010

实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法

📖2.3.2大O的渐进表达式

大O符号(Big O notation):是用于描述函数渐进行为的数学符号。
推导大O阶方法:

  • 用常数1取代运行时间中的所有加法常数。
  • 在修改后的运行次数函数中,只保留最高阶项。
  • 如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

使用大O的渐进表示法以后,Func1的时间复杂度为:O(N2)

  • N = 10 F(N) = 100
  • N = 100 F(N) = 10000
  • N = 1000 F(N) = 1000000

通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。

📖2.3.3常见时间复杂度计算举例

✅示例二:

// 计算Func2的时间复杂度?
void Func2(int N)
{int count = 0;for (int k = 0; k < 2 * N; ++k){++count;}int M = 10;while (M--){++count;}printf("%d\n", count);
}

使用大O的渐进表示法以后,Func2的时间复杂度为:O(N)

✅示例三:

// 计算Func3的时间复杂度?
void Func3(int N, int M)
{
int count = 0;
for (int k = 0; k < M; ++ k)
{
++count;
}
for (int k = 0; k < N ; ++ k)
{
++count;
}
printf("%d\n", count);
}

使用大O的渐进表示法以后,Func3的时间复杂度为:O(M+N)

✅示例四:

// 计算Func4的时间复杂度?
void Func4(int N)
{int count = 0;for (int k = 0; k < 100; ++k){++count;}printf("%d\n", count);
}

使用大O的渐进表示法以后,Func4的时间复杂度为:O(1)

✅示例五:

// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character );

本函数是用来在一个字符串中找出某个字符的,那么假设我们这里的字符串是hello world
如果我们需要查找的是h,那么我们只需要查找1次,这也称为最好情况,即任意输入规模的最小运行次数。
如果我们需要查找的是w,那么我们只需要查找N/2次,这也称为平均情况,即任意输入规模的期望运行次数。
如果我们需要查找的是d,那么我们只需要查找N次,这也称为最坏情况,即任意输入规模的最大运行次数。
🔎当一个算法随着输入不同,时间复杂度不同,时间复杂度做悲观预期,看最坏情况。

✅示例六:

// 计算BubbleSort的时间复杂度?
//冒泡排序的时间复杂度
void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i - 1] > a[i]){Swap(&a[i - 1], &a[i]);exchange = 1;}}if (exchange == 0)break;}
}

使用大O的渐进表示法以后,Func6的时间复杂度为:O(N2)

✅示例七:

// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{assert(a);int begin = 0;int end = n - 1;// [begin, end]:begin和end是左闭右闭区间,因此有=号while (begin <= end){int mid = begin + ((end - begin) >> 1);if (a[mid] < x)begin = mid + 1;else if (a[mid] > x)end = mid - 1;elsereturn mid;}return -1;
}

使用大O的渐进表示法以后,Func7的时间复杂度为:O(logN)

✅示例八:

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{if (N < 3)return 1;return Fib(N - 1) + Fib(N - 2);
}

使用大O的渐进表示法以后,Func8的时间复杂度为:O(2N)

✅示例九:

// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{
if(0 == N)
return 1;
return Fac(N-1)*N;
}

使用大O的渐进表示法以后,Func9的时间复杂度为:O(N)

🔭2.4空间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度 。
空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。
空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法。
注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。

✅示例1:

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i - 1] > a[i]){Swap(&a[i - 1], &a[i]);exchange = 1;}}if (exchange == 0)break;}
}

使用大O的渐进表示法以后,示例1的空间复杂度为:O(1)

✅示例2:

// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{if (n == 0)return NULL;long long* fibArray = (long long*)malloc((n + 1) * sizeof(long long));fibArray[0] = 0;fibArray[1] = 1;for (int i = 2; i <= n; ++i){fibArray[i] = fibArray[i - 1] + fibArray[i - 2];}return fibArray;
}

使用大O的渐进表示法以后,示例2的空间复杂度为:O(N)

✅示例3:

// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{if (N == 0)return 1;return Fac(N - 1) * N;
}

使用大O的渐进表示法以后,示例3的空间复杂度为:O(N)
在这里插入图片描述
✅示例4:

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{if (N < 3)return 1;return Fib(N - 1) + Fib(N - 2);
}

使用大O的渐进表示法以后,示例4的空间复杂度为:O(N)

空间是可以重复利用的,不累计的;时间是一去不复返的,累计的。

🔭2.5常见复杂度对比

执行次数函数非正式术语
3O(1)常数阶
2n+1O(n)线性阶
3n2+2n+1O(n2)平方阶
3log2n(2为底数)+2O(logn)对数阶
n+4nlog2n(2为底数)+7O(nlogn)nlogn阶
5n3+3n2+2n+1O(n3)立方阶
2nO(2n)指数阶

常用时间复杂度所消耗时间从小到大依次是:O(1)<O(logn)<O(n)<O(nlogn)<O(n2)<O(n3)<O(2n)<O(n!)<O(nn)

在这里插入图片描述

好啦,关于复杂度的知识点到这里就结束啦,后期会继续更新数据结构与算法的相关知识,欢迎大家持续关注、点赞和评论!❤️❤️❤️

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/140046.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C#】Redis在net core下使用教程

系列文章 文章目录 系列文章前言一、Redis 简介1.1 Redis 优势1.2 Redis与其他key-value存储有什么不同&#xff1f; 二、Redis安装步骤2.1 下载链接2.2 安装测试 三、Redis修改帐户密码四、Redis写成Windows服务五、.net core - 使用CSRedisCore操作redis 前言 官方教程&…

若依微服务如何处理Long类型精度丢失问题?

当字段实体类为Long类型且值超过前端js显示的长度范围时会导致前端回显错误。 目录 1、ruoyi-common-security模块添加JacksonConfig配置全局序列化 2、增加指定配置类信息

Java核心知识点整理大全5-笔记

书接上回Java核心知识点整理大全4-笔记_希斯奎的博客-CSDN博客 目录 3.4.1. HashMap&#xff08;数组链表红黑树&#xff09; 3.4.1.1. JAVA7 实现 3.4.1.2. JAVA8 实现 3.4.2. ConcurrentHashMap 3.4.2.1. Segment 段 3.4.2.2. 线程安全&#xff08;Segment 继承 ReentrantLo…

20230924清远博物馆和图书馆

为了漂流来清远&#xff0c;但是一个城市&#xff0c;想快速了解她的年龄&#xff0c;不就得去博物馆图书馆吗&#xff0c;云想衣裳花想容&#xff0c;春风拂槛露华浓。若非群玉山头见&#xff0c;会向瑶台月下逢。 学校她也曾因历史而不断迁移。 清远她呀&#xff0c;原来已…

C# Onnx Yolov8 Detect 水果识别

效果 项目 代码 using Microsoft.ML.OnnxRuntime; using Microsoft.ML.OnnxRuntime.Tensors; using OpenCvSharp; using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System…

Observability:使用 OpenTelemetry 自动检测 Java 应用程序

作者&#xff1a;David Hope 在快节奏的软件开发领域&#xff0c;特别是在云原生领域&#xff0c;DevOps 和 SRE 团队日益成为应用程序稳定性和增长的重要合作伙伴。 DevOps 工程师不断优化软件交付&#xff0c;而 SRE 团队则充当应用程序可靠性、可扩展性和顶级性能的管理者。…

【 Tkinter界面-练习05】 event和bind

一、说明 事件和动作有关&#xff1b;所有的界面都与运动有关&#xff0c;本篇将对事件、事件触发、绑定回调函数等&#xff0c;其实是一系列部件配合的复杂的过程&#xff0c;这些过程牵扯到系统如何设计&#xff0c;线程、消息队列循环等。本篇将详细介绍各种因素的关系。 二…

flask_apscheduler实现定时推送飞书消息

需求场景&#xff1a; 实现一个flask服务&#xff0c;通过接口控制一个定时任务任务&#xff08;对酒店订房情况进行检查&#xff09;的开启和停止。要求定时任务完成后&#xff0c;可以通过飞书机器人推送任务完成的消息。 展现效果&#xff1a; 启动定时任务 关闭定时任务…

vue项目打包优化

首先第一步通过浏览器看首次加载的问题大小&#xff0c;时间跨度等方面入手 1. Coverage观察 Coverage是chrome开发者工具的一个新功能&#xff0c;从字面意思上可以知道它是可以用来检测代码在网站运行时有哪些js和css是已经在运行&#xff0c;而哪些js和css是还没有用到的&a…

【刷题】2023年第十四届蓝桥杯大赛软件类省赛C/C++大学A组真题

蓝桥杯2023年第十四届省赛真题-平方差 - C语言网 (dotcpp.com) 初步想法&#xff0c;x y2 − z2&#xff08;yz)(y-z) 即xa*b&#xff0c;ayz&#xff0c;by-z 2yab 即ab是2的倍数就好了。 即x存在两个因数之和为偶数就能满足条件。 但时间是&#xff08;r-l&#xff09;*x&am…

【算法挨揍日记】day06——1004. 最大连续1的个数 III、1658. 将 x 减到 0 的最小操作数

1004. 最大连续1的个数 III 1004. 最大连续1的个数 III 题目描述&#xff1a; 给定一个二进制数组 nums 和一个整数 k&#xff0c;如果可以翻转最多 k 个 0 &#xff0c;则返回 数组中连续 1 的最大个数 。 解题思路&#xff1a; 首先题目要我们求出的最多翻转k个0后&#x…

2023华为杯数模C题——大规模创新类竞赛评审方案研究

B题——大规模创新类竞赛评审方案研究 思路&#xff1a;采用数据分析等手段改进评分算法性能 完成情况(1-2问已经完成) 代码下载 问题一 在每个评审阶段&#xff0c;作品通常都是随机分发的&#xff0c;每份作品需要多位评委独立评审。为了增加不同评审专家所给成绩之间的可比…

Android ANR日志分析

会造成ANR的场景&#xff1a; Service Timeout&#xff1a;前台服务在20s内未执行完成&#xff0c;后台为200s&#xff1b; BroadcastQueue Timeout&#xff1a;前台广播在10s内未执行完成&#xff0c;后台为60s&#xff1b; ContentProvider Timeout&#xff1a;内容提供者在…

SAP Oracle表空间扩展技术手册

1、DBACOCKPIT下查看表空间 当表空间不足(达到99%)时,需要按以下步骤扩充表空间(每次扩充20000M,20G): (也可以通过DB13,DB02查看表空间) 新浪博客 Tablespace PSAPSR3 is 100% used | SAP Community Oracle是通过增加数据文件的方式来为表空间扩容。为指定表空间增…

BST搜索二叉树

目录 二叉搜索树概念 ​编辑 1 二叉搜索树的构建 2. 二叉搜索树的删除 3二叉搜索树中放入元素 4. 二叉搜索树中元素的删除 5. 二叉搜索树中元素的遍历 6 二叉搜索树中元素的查找 7二叉搜索树的拷贝构造 二叉搜索树概念 二叉搜索树又称二叉排序树&#xff0c;它或者是一…

WeCanStudio工具套件介绍

直接上视频,在超燃的《天马座幻想》的背景音乐下&#xff0c;再次了解一下该工具套件吧。 WeCanStudio开发套件介绍

LeetCode(力扣)96. 不同的二叉搜索树Python

LeetCode96. 不同的二叉搜索树 题目链接代码 题目链接 https://leetcode.cn/problems/unique-binary-search-trees/description/ 代码 class Solution:def numTrees(self, n: int) -> int:dp [0] * (n 1)dp[0] 1for i in range(1, n 1):for j in range(1, i 1):dp[…

基于华为云云耀云服务器L实例开展性能评测|MySQL性能测评

基于华为云云耀云服务器L实例开展性能评测&#xff5c;MySQL性能测评 1. 测试环境介绍2. 测试环境搭建3. 测试工具3.1. mysqlslap3.2. sysbench 1. 测试环境介绍 随着云计算时代的进一步深入&#xff0c;越来越多的中小企业企业与开发者需要一款简单易用、高能高效的云计算基础…

C++核心编程——P45-52继承

继承 继承是面向对象三大特性之一 有些类与类之间存在特殊的关系&#xff0c;例如下图中: 我们发现&#xff0c;定义这些类的时候&#xff0c;下级别的成员除了拥有上一级的共性&#xff0c;还有自己的特性。 这时候我们就可以考虑利用继承的技术&#xff0c;减少重复代码量…

【一、虚拟机vmware安装】

安装虚拟机 下载 官方下载地址&#xff1a;https://www.vmware.com/cn.html 大概流程就是&#xff0c;最重要的事最后一步