玩转Mysql系列 - 第22篇:mysql索引原理详解

这是Mysql系列第22篇。

背景

使用mysql最多的就是查询,我们迫切的希望mysql能查询的更快一些,我们经常用到的查询有:

  1. 按照id查询唯一一条记录

  2. 按照某些个字段查询对应的记录

  3. 查找某个范围的所有记录(between and)

  4. 对查询出来的结果排序

mysql的索引的目的是使上面的各种查询能够更快。

预备知识

什么是索引?

上一篇中有详细的介绍,可以过去看一下:什么是索引?

索引的本质:通过不断地缩小想要获取数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的事件,也就是说,有了这种索引机制,我们可以总是用同一种查找方式来锁定数据。

磁盘中数据的存取

以机械硬盘来说,先了解几个概念。

扇区:磁盘存储的最小单位,扇区一般大小为512Byte。

磁盘块:文件系统与磁盘交互的的最小单位(计算机系统读写磁盘的最小单位),一个磁盘块由连续几个(2^n)扇区组成,块一般大小一般为4KB。

磁盘读取数据:磁盘读取数据靠的是机械运动,每次读取数据花费的时间可以分为寻道时间、旋转延迟、传输时间三个部分,寻道时间指的是磁臂移动到指定磁道所需要的时间,主流磁盘一般在5ms以下;旋转延迟就是我们经常听说的磁盘转速,比如一个磁盘7200转,表示每分钟能转7200次,也就是说1秒钟能转120次,旋转延迟就是1/120/2 = 4.17ms;传输时间指的是从磁盘读出或将数据写入磁盘的时间,一般在零点几毫秒,相对于前两个时间可以忽略不计。那么访问一次磁盘的时间,即一次磁盘IO的时间约等于5+4.17 = 9ms左右,听起来还挺不错的,但要知道一台500 -MIPS的机器每秒可以执行5亿条指令,因为指令依靠的是电的性质,换句话说执行一次IO的时间可以执行40万条指令,数据库动辄十万百万乃至千万级数据,每次9毫秒的时间,显然是个灾难。

mysql中的页

mysql中和磁盘交互的最小单位称为页,页是mysql内部定义的一种数据结构,默认为16kb,相当于4个磁盘块,也就是说mysql每次从磁盘中读取一次数据是16KB,要么不读取,要读取就是16KB,此值可以修改的。

数据检索过程

我们对数据存储方式不做任何优化,直接将数据库中表的记录存储在磁盘中,假如某个表只有一个字段,为int类型,int占用4个byte,每个磁盘块可以存储1000条记录,100万的记录需要1000个磁盘块,如果我们需要从这100万记录中检索所需要的记录,需要读取1000个磁盘块的数据(需要1000次io),每次io需要9ms,那么1000次需要9000ms=9s,100条数据随便一个查询就是9秒,这种情况我们是无法接受的,显然是不行的。

我们迫切的需求是什么?

我们迫切需要这样的数据结构和算法:

  1. 需要一种数据存储结构:当从磁盘中检索数据的时候能,够减少磁盘的io次数,最好能够降低到一个稳定的常量值

  2. 需要一种检索算法:当从磁盘中读取磁盘块的数据之后,这些块中可能包含多条记录,这些记录被加载到内存中,那么需要一种算法能够快速从内存多条记录中快速检索出目标数据

我们来找找,看是否能够找到这样的算法和数据结构。

我们看一下常见的检索算法和数据结构。

循环遍历查找

从一组无序的数据中查找目标数据,常见的方法是遍历查询,n条数据,时间复杂度为O(n),最快需要1次,最坏的情况需要n次,查询效率不稳定。

二分法查找

二分法查找也称为折半查找,用于在一个有序数组中快速定义某一个需要查找的数据。

原理是:

先将一组无序的数据排序(升序或者降序)之后放在数组中,此处用升序来举例说明:用数组中间位置的数据A和需要查找的数据F对比,如果A=F,则结束查找;如果A<F,则将查找的范围缩小至数组中A数据右边的部分;如果A>F,则将查找范围缩小至数组中A数据左边的部分,继续按照上面的方法直到找到F为止。

示例:

从下列有序数字中查找数字9,过程如下

[1,2,3,4,5,6,7,8,9]

第1次查找:[1,2,3,4,5,6,7,8,9]中间位置值为5,9>5,将查找范围缩小至5右边的部分:[6、7、8、9]

第2次查找:[6、7、8、9]中间值为8,9>8 ,将范围缩小至8右边部分:[9]

第3次查找:在[9]中查找9,找到了。

可以看到查找速度是相当快的,每次查找都会使范围减半,如果我们采用顺序查找,上面数据最快需要1次,最多需要9次,而二分法查找最多只需要3次,耗时时间也比较稳定。

二分法查找时间复杂度是:O(logN)(N为数据量),100万数据查找最多只需要20次(2^20=1048576‬)

二分法查找数据的优点:定位数据非常快,前提是:目标数组是有序的。

有序数组

如果我们将mysql中表的数据以有序数组的方式存储在磁盘中,那么我们定位数据步骤是:

  1. 取出目标表的所有数据,存放在一个有序数组中

  2. 如果目标表的数据量非常大,从磁盘中加载到内存中需要的内存也非常大

步骤取出所有数据耗费的io次数太多,步骤2耗费的内存空间太大,还有新增数据的时候,为了保证数组有序,插入数据会涉及到数组内部数据的移动,也是比较耗时的,显然用这种方式存储数据是不可取的。

链表

链表相当于在每个节点上增加一些指针,可以和前面或者后面的节点连接起来,就像一列火车一样,每节车厢相当于一个节点,车厢内部可以存储数据,每个车厢和下一节车厢相连。

链表分为单链表和双向链表。

单链表

每个节点中有持有指向下一个节点的指针,只能按照一个方向遍历链表,结构如下:

//单项链表
class Node1{private Object data;//存储数据private Node1 nextNode;//指向下一个节点
}
双向链表

每个节点中两个指针,分别指向当前节点的上一个节点和下一个节点,结构如下:

//双向链表
class Node2{private Object data;//存储数据private Node1 prevNode;//指向上一个节点private Node1 nextNode;//指向下一个节点
}
链表的优点:
  1. 可以快速定位到上一个或者下一个节点

  2. 可以快速删除数据,只需改变指针的指向即可,这点比数组好

链表的缺点:
  1. 无法向数组那样,通过下标随机访问数据

  2. 查找数据需从第一个节点开始遍历,不利于数据的查找,查找时间和无需数据类似,需要全遍历,最差时间是O(N)

二叉查找树

二叉树是每个结点最多有两个子树的树结构,通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)。二叉树常被用于实现二叉查找树和二叉堆。二叉树有如下特性:

1、每个结点都包含一个元素以及n个子树,这里0≤n≤2。
2、左子树和右子树是有顺序的,次序不能任意颠倒,左子树的值要小于父结点,右子树的值要大于父结点。

数组[20,10,5,15,30,25,35]使用二叉查找树存储如下:

图片

每个节点上面有两个指针(left,rigth),可以通过这2个指针快速访问左右子节点,检索任何一个数据最多只需要访问3个节点,相当于访问了3次数据,时间为O(logN),和二分法查找效率一样,查询数据还是比较快的。

但是如果我们插入数据是有序的,如[5,10,15,20,30,25,35],那么结构就变成下面这样:

图片

二叉树退化为了一个链表结构,查询数据最差就变为了O(N)。

二叉树的优缺点:

  1. 查询数据的效率不稳定,若树左右比较平衡的时,最差情况为O(logN),如果插入数据是有序的,退化为了链表,查询时间变成了O(N)

  2. 数据量大的情况下,会导致树的高度变高,如果每个节点对应磁盘的一个块来存储一条数据,需io次数大幅增加,显然用此结构来存储数据是不可取的

平衡二叉树(AVL树)

平衡二叉树是一种特殊的二叉树,所以他也满足前面说到的二叉查找树的两个特性,同时还有一个特性:

它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。

平衡二叉树相对于二叉树来说,树的左右比较平衡,不会出现二叉树那样退化成链表的情况,不管怎么插入数据,最终通过一些调整,都能够保证树左右高度相差不大于1。

这样可以让查询速度比较稳定,查询中遍历节点控制在O(logN)范围内

如果数据都存储在内存中,采用AVL树来存储,还是可以的,查询效率非常高。不过我们的数据是存在磁盘中,用过采用这种结构,每个节点对应一个磁盘块,数据量大的时候,也会和二叉树一样,会导致树的高度变高,增加了io次数,显然用这种结构存储数据也是不可取的。

B-树

B杠树,千万不要读作B减树了,B-树在是平衡二叉树上进化来的,前面介绍的几种树,每个节点上面只有一个元素,而B-树节点中可以放多个元素,主要是为了降低树的高度。

一棵m阶的B-Tree有如下特性【特征描述的有点绕,看不懂的可以跳过,看后面的图】:

  1. 每个节点最多有m个孩子,m称为b树的阶

  2. 除了根节点和叶子节点外,其它每个节点至少有Ceil(m/2)个孩子

  3. 若根节点不是叶子节点,则至少有2个孩子

  4. 所有叶子节点都在同一层,且不包含其它关键字信息

  5. 每个非终端节点包含n个关键字(健值)信息

  6. 关键字的个数n满足:ceil(m/2)-1 <= n <= m-1

  7. ki(i=1,…n)为关键字,且关键字升序排序

  8. Pi(i=1,…n)为指向子树根节点的指针。P(i-1)指向的子树的所有节点关键字均小于ki,但都大于k(i-1)

B-Tree结构的数据可以让系统高效的找到数据所在的磁盘块。为了描述B-Tree,首先定义一条记录为一个二元组[key, data] ,key为记录的键值,对应表中的主键值,data为一行记录中除主键外的数据。对于不同的记录,key值互不相同。

B-Tree中的每个节点根据实际情况可以包含大量的关键字信息和分支,如下图所示为一个3阶的B-Tree:

图片

每个节点占用一个盘块的磁盘空间,一个节点上有两个升序排序的关键字和三个指向子树根节点的指针,指针存储的是子节点所在磁盘块的地址。两个键将数据划分成的三个范围域,对应三个指针指向的子树的数据的范围域。以根节点为例,关键字为17和35,P1指针指向的子树的数据范围为小于17,P2指针指向的子树的数据范围为17~35,P3指针指向的子树的数据范围为大于35。

模拟查找关键字29的过程:

  1. 根据根节点找到磁盘块1,读入内存。【磁盘I/O操作第1次】

  2. 比较关键字29在区间(17,35),找到磁盘块1的指针P2

  3. 根据P2指针找到磁盘块3,读入内存。【磁盘I/O操作第2次】

  4. 比较关键字29在区间(26,30),找到磁盘块3的指针P2

  5. 根据P2指针找到磁盘块8,读入内存。【磁盘I/O操作第3次】

  6. 在磁盘块8中的关键字列表中找到关键字29

分析上面过程,发现需要3次磁盘I/O操作,和3次内存查找操作,由于内存中的关键字是一个有序表结构,可以利用二分法快速定位到目标数据,而3次磁盘I/O操作是影响整个B-Tree查找效率的决定因素。

B-树相对于avl树,通过在节点中增加节点内部数据的个数来减少磁盘的io操作。

上面我们说过mysql是采用页方式来读写数据,每页是16KB,我们用B-树来存储mysql的记录,每个节点对应mysql中的一页(16KB),假如每行记录加上树节点中的1个指针占160Byte,那么每个节点可以存储1000(16KB/160byte)条数据,树的高度为3的节点大概可以存储(第一层1000+第二层1000^2+第三层1000^3)10亿条记录,是不是非常惊讶,一个高度为3个B-树大概可以存储10亿条记录,我们从10亿记录中查找数据只需要3次io操作可以定位到目标数据所在的页,而页内部的数据又是有序的,然后将其加载到内存中用二分法查找,是非常快的。

可以看出使用B-树定位某个值还是很快的(10亿数据中3次io操作+内存中二分法),但是也是有缺点的:B-不利于范围查找,比如上图中我们需要查找[15,36]区间的数据,需要访问7个磁盘块(1/2/7/3/8/4/9),io次数又上去了,范围查找也是我们经常用到的,所以b-树也不太适合在磁盘中存储需要检索的数据。

b+树

先看个b+树结构图:

图片

b+树的特征
  1. 每个结点至多有m个子女

  2. 除根结点外,每个结点至少有[m/2]个子女,根结点至少有两个子女

  3. 有k个子女的结点必有k个关键字

  4. 父节点中持有访问子节点的指针

  5. 父节点的关键字在子节点中都存在(如上面的1/20/35在每层都存在),要么是最小值,要么是最大值,如果节点中关键字是升序的方式,父节点的关键字是子节点的最小值

  6. 最底层的节点是叶子节点

  7. 除叶子节点之外,其他节点不保存数据,只保存关键字和指针

  8. 叶子节点包含了所有数据的关键字以及data,叶子节点之间用链表连接起来,可以非常方便的支持范围查找

b+树与b-树的几点不同
  1. b+树中一个节点如果有k个关键字,最多可以包含k个子节点(k个关键字对应k个指针);而b-树对应k+1个子节点(多了一个指向子节点的指针)

  2. b+树除叶子节点之外其他节点值存储关键字和指向子节点的指针,而b-树还存储了数据,这样同样大小情况下,b+树可以存储更多的关键字

  3. b+树叶子节点中存储了所有关键字及data,并且多个节点用链表连接,从上图中看子节点中数据从左向右是有序的,这样快速可以支撑范围查找(先定位范围的最大值和最小值,然后子节点中依靠链表遍历范围数据)

B-Tree和B+Tree该如何选择?
  1. B-Tree因为非叶子结点也保存具体数据,所以在查找某个关键字的时候找到即可返回。而B+Tree所有的数据都在叶子结点,每次查找都得到叶子结点。所以在同样高度的B-Tree和B+Tree中,B-Tree查找某个关键字的效率更高。

  2. 由于B+Tree所有的数据都在叶子结点,并且结点之间有指针连接,在找大于某个关键字或者小于某个关键字的数据的时候,B+Tree只需要找到该关键字然后沿着链表遍历就可以了,而B-Tree还需要遍历该关键字结点的根结点去搜索。

  3. 由于B-Tree的每个结点(这里的结点可以理解为一个数据页)都存储主键+实际数据,而B+Tree非叶子结点只存储关键字信息,而每个页的大小有限是有限的,所以同一页能存储的B-Tree的数据会比B+Tree存储的更少。这样同样总量的数据,B-Tree的深度会更大,增大查询时的磁盘I/O次数,进而影响查询效率。

Mysql的存储引擎和索引

mysql内部索引是由不同的引擎实现的,主要说一下InnoDB和MyISAM这两种引擎中的索引,这两种引擎中的索引都是使用b+树的结构来存储的。

InnoDB中的索引

Innodb中有2种索引:主键索引(聚集索引)、辅助索引(非聚集索引)

主键索引:每个表只有一个主键索引,叶子节点同时保存了主键的值也数据记录。

辅助索引:叶子节点保存了索引字段的值以及主键的值。

MyISAM引擎中的索引

不管是主键索引还是辅助索引结构都是一样的,叶子节点保存了索引字段的值以及数据记录的地址。

如下图:

有一张表,Id作为主索引,Name作为辅助索引。

图片

InnoDB数据检索过程

如果需要查询id=14的数据,只需要在左边的主键索引中检索就可以了。

如果需要搜索name='Ellison'的数据,需要2步:

  1. 先在辅助索引中检索到name='Ellison'的数据,获取id为14

  2. 再到主键索引中检索id为14的记录

辅助索引这个查询过程在mysql中叫做回表

MyISAM数据检索过程
  1. 在索引中找到对应的关键字,获取关键字对应的记录的地址

  2. 通过记录的地址查找到对应的数据记录

我们用的最多的是innodb存储引擎,所以此处主要说一下innodb索引的情况,innodb中最好是采用主键查询,这样只需要一次索引,如果使用辅助索引检索,涉及到回表操作,比主键查询要耗时一些。

innodb中辅助索引为什么不像myisam那样存储记录的地址?

表中的数据发生变更的时候,会影响其他记录地址的变化,如果辅助索引中记录数据的地址,此时会受影响,而主键的值一般是很少更新的,当页中的记录发生地址变更的时候,对辅助索引是没有影响的。

我们来看一下mysql中页的结构,页是真正存储记录的地方,对应B+树中的一个节点,也是mysql中读写数据的最小单位,页的结构设计也是相当有水平的,能够加快数据的查询。

页结构

mysql中页是innodb中存储数据的基本单位,也是mysql中管理数据的最小单位,和磁盘交互的时候都是以页来进行的,默认是16kb,mysql中采用b+树存储数据,页相当于b+树中的一个节点。

页的结构如下图:

图片

每个Page都有通用的头和尾,但是中部的内容根据Page的类型不同而发生变化。Page的头部里有我们关心的一些数据,下图把Page的头部详细信息显示出来:

图片

我们重点关注和数据组织结构相关的字段:Page的头部保存了两个指针,分别指向前一个Page和后一个Page,根据这两个指针我们很容易想象出Page链接起来就是一个双向链表的结构,如下图:

图片

再看看Page的主体内容,我们主要关注行数据和索引的存储,他们都位于Page的User Records部分,User Records占据Page的大部分空间,User Records由一条一条的Record组成。在一个Page内部,单链表的头尾由固定内容的两条记录来表示,字符串形式的"Infimum"代表开头,"Supremum"代表结尾,这两个用来代表开头结尾的Record存储在System Records的,Infinum、Supremum和User Records组成了一个单向链表结构。最初数据是按照插入的先后顺序排列的,但是随着新数据的插入和旧数据的删除,数据物理顺序会变得混乱,但他们依然通过链表的方式保持着逻辑上的先后顺序,如下图:

图片

把User Record的组织形式和若干Page组合起来,就看到了稍微完整的形式。

图片

innodb为了快速查找记录,在页中定义了一个称之为page directory的目录槽(slots),每个槽位占用两个字节(用于保存指向记录的地址),page directory中的多个slot组成了一个有序数组(可用于二分法快速定位记录,向下看),行记录被Page Directory逻辑的分成了多个块,块与块之间是有序的,能够加速记录的查找,如下图:

图片

看上图,每个行记录的都有一个n_owned的区域(图中粉色区域),n_owned标识所属的slot这个这个块有多少条数据,伪记录Infimum的n_owned值总是1,记录Supremum的n_owned的取值范围为[1,8],其他用户记录n_owned的取值范围[4,8],并且只有每个块中最大的那条记录的n_owned才会有值,其他的用户记录的n_owned为0。

数据检索过程

在page中查询数据的时候,先通过b+树中查询方法定位到数据所在的页,然后将页内整体加载到内存中,通过二分法在page directory中检索数据,缩小范围,比如需要检索7,通过二分法查找到7位于slot2和slot3所指向的记录中间,然后从slot3指向的记录5开始向后向后一个个找,可以找到记录7,如果里面没有7,走到slot2向的记录8结束。

n_owned范围控制在[4,8]内,能保证每个slot管辖的范围内数据量控制在[4,8]个,能够加速目标数据的查找,当有数据插入的时候,page directory为了控制每个slot对应块中记录的个数([4,8]),此时page directory中会对slot的数量进行调整。

对page的结构总结一下
  1. b+树中叶子页之间用双向链表连接的,能够实现范围查找

  2. 页内部的记录之间是采用单向链表连接的,方便访问下一条记录

  3. 为了加快页内部记录的查询,对页内记录上加了个有序的稀疏索引,叫页目录(page directory)

整体上来说mysql中的索引用到了b+树,链表,二分法查找,做到了快速定位目标数据,快速范围查找。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/142707.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

忽视日志吃大亏,手把手教你玩转 SpringBoot 日志

一、日志重要吗 程序中的日志重要吗&#xff1f; 在回答这个问题前&#xff0c;笔者先说个事例&#xff1a; ❝ 笔者印象尤深的就是去年某个同事&#xff0c;收到了客户反馈的紧急bug。尽管申请到了日志文件&#xff0c;但因为很多关键步骤没有打印日志&#xff0c;导致排查进…

win10 使用cmake + mingw编译LAPACK

参考官网的内容: 适用于视窗的 LAPACK (utk.edu) 第一步下载好源码包: 配置好mingw的路径添加到环境变量中 gcc --version 出现这些就行了. 还有就是吧mingw中的mingw-make.exe重命名为make.exe 下载安装cmake 然后打开 1是源码路径,路径中一定要有CMakeLists.txt如果没…

Java多线程篇(6)——AQS之ReentrantLock

文章目录 1、管程2、AQS3、ReentrantLock3.1、lock/unlock3.1.1、lock3.1.2、unlock 3.2、一些思考 1、管程 什么是管程&#xff1f; 管理协调多个线程对共享资源的访问&#xff0c;是一种高级的同步机制。 有哪些管程模型&#xff1f; hansen&#xff1a;唤醒其他线程的代码…

渗透测试中的前端调试(一)

前言 前端调试是安全测试的重要组成部分。它能够帮助我们掌握网页的运行原理&#xff0c;包括js脚本的逻辑、加解密的方法、网络请求的参数等。利用这些信息&#xff0c;我们就可以更准确地发现网站的漏洞&#xff0c;制定出有效的攻击策略。前端知识对于安全来说&#xff0c;…

Pytorch单机多卡分布式训练

Pytorch单机多卡分布式训练 数据并行&#xff1a; DP和DDP 这两个都是pytorch下实现多GPU训练的库&#xff0c;DP是pytorch以前实现的库&#xff0c;现在官方更推荐使用DDP&#xff0c;即使是单机训练也比DP快。 DataParallel&#xff08;DP&#xff09; 只支持单进程多线程…

3、嵌入式系统的启动过程(BoodLoader)

1、系统启动过程 通电 - > 执行BootLoader - > 加载内核 - > 挂在根文件系统 - > 执行应用程序 Windows的启动过程&#xff1a; 通电 - > 执行BIOS - > 加载WinNT内核 - > 挂在文件系统 - > 执行应用程序 二、嵌入式系统的结构 BootLoader 1、BootL…

ElasticSearch - 基于 DSL 、JavaRestClient 实现数据聚合

目录 一、数据聚合 1.1、基本概念 1.1.1、聚合分类 1.1.2、特点 1.2、DSL 实现 Bucket 聚合 1.2.1、Bucket 聚合基础语法 1.2.2、Bucket 聚合结果排序 1.2.3、Bucket 聚合限定范围 1.3、DSL 实现 Metrics 聚合 1.4、基于 JavaRestClient 实现聚合 1.4.1、组装请求 1…

Tomcat多实例、负载均衡、动静分离

Tomcat多实例部署 安装jdk [rootlocalhost ~]#systemctl stop firewalld.service [rootlocalhost ~]#setenforce 0 [rootlocalhost ~]#cd /opt [rootlocalhost opt]#ls apache-tomcat-8.5.16.tar.gz jdk-8u91-linux-x64.tar.gz rh [rootlocalhost opt]#tar xf jdk-8u91-linu…

春招秋招,大学生求职容易遇到哪些问题?

每到毕业季就有大批大学生从校园出来&#xff0c;他们怀抱梦想&#xff0c;希望能做出一番成绩。但现实总归是残酷的&#xff0c;有些人找不到工作&#xff0c;有一些人频繁跳槽&#xff0c;也有一些人最终找到的工作与自己的专业没有一点关系&#xff0c;迷茫好几年才找到方向…

钡铼BL302与PLC:提升酿酒业效率与品质的利器

啤酒是人类非常古老的酒精饮料&#xff0c;是水和茶之后世界上消耗量排名第三的饮料。 啤酒在生产过程中主要有制造麦芽、粉碎原料、糖化、发酵、贮酒後熟、过滤、灌装包装等工序流程。需要用到风选机、筛分机、糖化锅、发酵设备、过滤机、灌装机、包装机等食品机械设备。这些食…

安全远程访问工具

什么是安全远程访问 安全远程访问是指一种 IT 安全策略&#xff0c;允许对企业网络、任务关键型系统或任何机密数据进行授权、受控访问。它使 IT 团队能够根据员工和第三方的角色和工作职责为其提供不同级别的访问权限&#xff0c;安全的远程访问方法可保护系统和应用程序&…

前缀和实例5(连续数组)

题目&#xff1a; 给定一个二进制数组 nums , 找到含有相同数量的 0 和 1 的最长连续子数组&#xff0c;并返回该子数组的长度。 示例 1: 输入: nums [0,1] 输出: 2 说明: [0, 1] 是具有相同数量 0 和 1 的最长连续子数组。 示例 2: 输入: nums [0,1,0] 输出: 2 说明: [0…

el-upload实现复制粘贴图片

前言&#xff1a; 在之前的项目中&#xff0c;利用el-upload实现了上传图片视频的预览。项目上线后&#xff0c;经使用人员反馈&#xff0c;上传图片、视频每次要先保存到本地然后再上传&#xff0c;很是浪费时间&#xff0c;公司客服人员时间又很紧迫&#xff08;因为要响应下…

DAMO-YOLO训练KITTI数据集

1.KITTI数据集准备 DAMO-YOLO支持COCO格式的数据集&#xff0c;在训练KITTI之前&#xff0c;需要将KITTI的标注转换为KITTI格式。KITTI是采取逐个文件标注的方式确定的&#xff0c;即一张图片对应一个label文件。下面是KITTI 3D目标检测训练集的第一个标注文件&#xff1a;000…

JavaScript位运算的妙用

位运算的妙用: 奇偶数, 色值换算,换值, 编码等 位运算的基础知识: 操作数是32位整数自动转化为整数在二进制下进行运算 一.按位与& 判断奇偶数: 奇数: num & 1 1偶数: num & 1 0 基本知识: 用法&#xff1a;操作数1 & 操作数2规则&#xff1a;有 0 则为…

机柜PDU产品采购与安装指南——TOWE精选

机柜PDU指的是Power Distribution Unit&#xff0c;即电源分配单元。它是一种电子设备&#xff0c;通常用于为数据中心、服务器机房等设施中的计算机和其他设备提供电力&#xff0c;是各行业数据中心“标配”构成部分&#xff0c;以确保服务器等用电设备的安全和稳定运行。 数据…

查看Linux系统信息的常用命令

文章目录 1. 机器配置查看2. 常用分析工具3. 常用指令解读3.1 lscpu 4. 定位僵尸进程5. 参考 1. 机器配置查看 # 总核数物理CPU个数x每颗物理CPU的核数 # 总逻辑CPU数物理CPU个数x每颗物理CPU的核数x超线程数 cat /proc/cpuinfo| grep "physical id"| sort| uniq| w…

[Linux]多线程编程

[Linux]多线程编程 文章目录 [Linux]多线程编程pthread_create函数pthread_join函数pthread_exit函数pthread_cancel函数pthread_self函数pthread_detach函数理解线程库和线程id Linux操作系统下&#xff0c;并没有真正意义上的线程&#xff0c;而是由进程中的轻量级进程&#…

在多台服务器上运行相同命令(二)、clush

介绍安装配置互信认证参数含义基本使用节点组拷贝文件 介绍 Clush&#xff08;Cluster Shell&#xff09;是一个用于管理和执行集群操作的工具&#xff0c;它允许你在多台远程主机上同时执行命令&#xff0c;以便批量管理服务器。Clush 提供了一种简单而强大的方式来管理大规模…

“押宝高手”乐视视频再出手,看中商业传奇剧《大盛魁》

作为最早开始版权采购的长视频平台&#xff0c;乐视视频一向擅长“押宝”优质内容。从《甄嬛传》到《白鹿原》等&#xff0c;乐视拿下了众多经典古装剧、年代剧的版权。 9月&#xff0c;乐视视频再次出手拿下的历史传奇剧《大盛魁》开始热播。该剧由王新民导演执导&#xff0c…