计算机竞赛 深度学习OCR中文识别 - opencv python

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 文本区域检测网络-CTPN
  • 4 文本识别网络-CRNN
  • 5 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习OCR中文识别系统 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

在日常生产生活中有大量的文档资料以图片、PDF的方式留存,随着时间推移 往往难以检索和归类 ,文字识别(Optical Character
Recognition,OCR )是将图片、文档影像上的文字内容快速识别成为可编辑的文本的技术。

高性能文档OCR识别系统是基于深度学习技术,综合运用Tensorflow、CNN、Caffe
等多种深度学习训练框架,基于千万级大规模文字样本集训练完成的OCR引擎,与传统的模式识别的技术相比,深度学习技术支持更低质量的分辨率、抗干扰能力更强、适用的场景更复杂,文字的识别率更高。

本项目基于Tensorflow、keras/pytorch实现对自然场景的文字检测及OCR中文文字识别。

2 实现效果

公式检测
在这里插入图片描述
纯文字识别

在这里插入图片描述

3 文本区域检测网络-CTPN

对于复杂场景的文字识别,首先要定位文字的位置,即文字检测。

简介
CTPN是在ECCV
2016提出的一种文字检测算法。CTPN结合CNN与LSTM深度网络,能有效的检测出复杂场景的横向分布的文字,效果如图1,是目前比较好的文字检测算法。由于CTPN是从Faster
RCNN改进而来,本文默认读者熟悉CNN原理和Faster RCNN网络结构。
在这里插入图片描述
相关代码

def main(argv):pycaffe_dir = os.path.dirname(__file__)parser = argparse.ArgumentParser()# Required arguments: input and output.parser.add_argument("input_file",help="Input txt/csv filename. If .txt, must be list of filenames.\If .csv, must be comma-separated file with header\'filename, xmin, ymin, xmax, ymax'")parser.add_argument("output_file",help="Output h5/csv filename. Format depends on extension.")# Optional arguments.parser.add_argument("--model_def",default=os.path.join(pycaffe_dir,"../models/bvlc_reference_caffenet/deploy.prototxt.prototxt"),help="Model definition file.")parser.add_argument("--pretrained_model",default=os.path.join(pycaffe_dir,"../models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel"),help="Trained model weights file.")parser.add_argument("--crop_mode",default="selective_search",choices=CROP_MODES,help="How to generate windows for detection.")parser.add_argument("--gpu",action='store_true',help="Switch for gpu computation.")parser.add_argument("--mean_file",default=os.path.join(pycaffe_dir,'caffe/imagenet/ilsvrc_2012_mean.npy'),help="Data set image mean of H x W x K dimensions (numpy array). " +"Set to '' for no mean subtraction.")parser.add_argument("--input_scale",type=float,help="Multiply input features by this scale to finish preprocessing.")parser.add_argument("--raw_scale",type=float,default=255.0,help="Multiply raw input by this scale before preprocessing.")parser.add_argument("--channel_swap",default='2,1,0',help="Order to permute input channels. The default converts " +"RGB -> BGR since BGR is the Caffe default by way of OpenCV.")parser.add_argument("--context_pad",type=int,default='16',help="Amount of surrounding context to collect in input window.")args = parser.parse_args()mean, channel_swap = None, Noneif args.mean_file:mean = np.load(args.mean_file)if mean.shape[1:] != (1, 1):mean = mean.mean(1).mean(1)if args.channel_swap:channel_swap = [int(s) for s in args.channel_swap.split(',')]if args.gpu:caffe.set_mode_gpu()print("GPU mode")else:caffe.set_mode_cpu()print("CPU mode")# Make detector.detector = caffe.Detector(args.model_def, args.pretrained_model, mean=mean,input_scale=args.input_scale, raw_scale=args.raw_scale,channel_swap=channel_swap,context_pad=args.context_pad)# Load input.t = time.time()print("Loading input...")if args.input_file.lower().endswith('txt'):with open(args.input_file) as f:inputs = [_.strip() for _ in f.readlines()]elif args.input_file.lower().endswith('csv'):inputs = pd.read_csv(args.input_file, sep=',', dtype={'filename': str})inputs.set_index('filename', inplace=True)else:raise Exception("Unknown input file type: not in txt or csv.")# Detect.if args.crop_mode == 'list':# Unpack sequence of (image filename, windows).images_windows = [(ix, inputs.iloc[np.where(inputs.index == ix)][COORD_COLS].values)for ix in inputs.index.unique()]detections = detector.detect_windows(images_windows)else:detections = detector.detect_selective_search(inputs)print("Processed {} windows in {:.3f} s.".format(len(detections),time.time() - t))# Collect into dataframe with labeled fields.df = pd.DataFrame(detections)df.set_index('filename', inplace=True)df[COORD_COLS] = pd.DataFrame(data=np.vstack(df['window']), index=df.index, columns=COORD_COLS)del(df['window'])# Save results.t = time.time()if args.output_file.lower().endswith('csv'):# csv# Enumerate the class probabilities.class_cols = ['class{}'.format(x) for x in range(NUM_OUTPUT)]df[class_cols] = pd.DataFrame(data=np.vstack(df['feat']), index=df.index, columns=class_cols)df.to_csv(args.output_file, cols=COORD_COLS + class_cols)else:# h5df.to_hdf(args.output_file, 'df', mode='w')print("Saved to {} in {:.3f} s.".format(args.output_file,time.time() - t))

CTPN网络结构
在这里插入图片描述

4 文本识别网络-CRNN

CRNN 介绍
CRNN 全称为 Convolutional Recurrent Neural Network,主要用于端到端地对不定长的文本序列进行识别,不用

图来自文章:一文读懂CRNN+CTC文字识别

整个CRNN网络结构包含三部分,从下到上依次为:

  1. CNN(卷积层),使用深度CNN,对输入图像提取特征,得到特征图;
  2. RNN(循环层),使用双向RNN(BLSTM)对特征序列进行预测,对序列中的每个特征向量进行学习,并输出预测标签(真实值)分布;
  3. CTC loss(转录层),使用 CTC 损失,把从循环层获取的一系列标签分布转换成最终的标签序列。

CNN
卷积层的结构图:
在这里插入图片描述

这里有一个很精彩的改动,一共有四个最大池化层,但是最后两个池化层的窗口尺寸由 2x2 改为 1x2,也就是图片的高度减半了四次(除以 2^4
),而宽度则只减半了两次(除以2^2),这是因为文本图像多数都是高较小而宽较长,所以其feature
map也是这种高小宽长的矩形形状,如果使用1×2的池化窗口可以尽量保证不丢失在宽度方向的信息,更适合英文字母识别(比如区分i和l)。

CRNN 还引入了BatchNormalization模块,加速模型收敛,缩短训练过程。

输入图像为灰度图像(单通道);高度为32,这是固定的,图片通过 CNN
后,高度就变为1,这点很重要;宽度为160,宽度也可以为其他的值,但需要统一,所以输入CNN的数据尺寸为 (channel, height,
width)=(1, 32, 160)。

CNN的输出尺寸为 (512, 1, 40)。即 CNN 最后得到512个特征图,每个特征图的高度为1,宽度为40。

Map-to-Sequence
我们是不能直接把 CNN 得到的特征图送入 RNN 进行训练的,需要进行一些调整,根据特征图提取 RNN 需要的特征向量序列。

在这里插入图片描述

现在需要从 CNN 模型产生的特征图中提取特征向量序列,每一个特征向量(如上图中的一个红色框)在特征图上按列从左到右生成,每一列包含512维特征,这意味着第
i 个特征向量是所有的特征图第 i 列像素的连接,这些特征向量就构成一个序列。

由于卷积层,最大池化层和激活函数在局部区域上执行,因此它们是平移不变的。因此,特征图的每列(即一个特征向量)对应于原始图像的一个矩形区域(称为感受野),并且这些矩形区域与特征图上从左到右的相应列具有相同的顺序。特征序列中的每个向量关联一个感受野。

如下图所示:
在这里插入图片描述

这些特征向量序列就作为循环层的输入,每个特征向量作为 RNN 在一个时间步(time step)的输入。

RNN
因为 RNN 有梯度消失的问题,不能获取更多上下文信息,所以 CRNN 中使用的是 LSTM,LSTM
的特殊设计允许它捕获长距离依赖,不了解的话可以看一下这篇文章 对RNN和LSTM的理解。

LSTM
是单向的,它只使用过去的信息。然而,在基于图像的序列中,两个方向的上下文是相互有用且互补的。将两个LSTM,一个向前和一个向后组合到一个双向LSTM中。此外,可以堆叠多层双向LSTM,深层结构允许比浅层抽象更高层次的抽象。

这里采用的是两层各256单元的双向 LSTM 网络:
在这里插入图片描述

通过上面一步,我们得到了40个特征向量,每个特征向量长度为512,在 LSTM 中一个时间步就传入一个特征向量进行分

我们知道一个特征向量就相当于原图中的一个小矩形区域,RNN
的目标就是预测这个矩形区域为哪个字符,即根据输入的特征向量,进行预测,得到所有字符的softmax概率分布,这是一个长度为字符类别数的向量,作为CTC层的输入。

因为每个时间步都会有一个输入特征向量 x^T ,输出一个所有字符的概率分布 y^T ,所以输出为 40 个长度为字符类别数的向量构成的后验概率矩阵。

如下图所示:
在这里插入图片描述

然后将这个后验概率矩阵传入转录层。
CTC loss
这算是 CRNN 最难的地方,这一层为转录层,转录是将 RNN
对每个特征向量所做的预测转换成标签序列的过程。数学上,转录是根据每帧预测找到具有最高概率组合的标签序列。

端到端OCR识别的难点在于怎么处理不定长序列对齐的问题!OCR可建模为时序依赖的文本图像问题,然后使用CTC(Connectionist Temporal
Classification, CTC)的损失函数来对 CNN 和 RNN 进行端到端的联合训练。

相关代码

    def inference(self, inputdata, name, reuse=False):"""Main routine to construct the network:param inputdata::param name::param reuse::return:"""with tf.variable_scope(name_or_scope=name, reuse=reuse):# centerlized datainputdata = tf.divide(inputdata, 255.0)#1.特征提取阶段# first apply the cnn feature extraction stagecnn_out = self._feature_sequence_extraction(inputdata=inputdata, name='feature_extraction_module')#2.第二步,  batch*1*25*512  变成 batch * 25 * 512# second apply the map to sequence stagesequence = self._map_to_sequence(inputdata=cnn_out, name='map_to_sequence_module')#第三步,应用序列标签阶段# third apply the sequence label stage# net_out width, batch, n_classes# raw_pred   width, batch, 1net_out, raw_pred = self._sequence_label(inputdata=sequence, name='sequence_rnn_module')return net_out

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/143728.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

DSOMEIP丢数据问题分析和总结:

(1)问题现象 无论使用arm64硬件、x86 ubuntu电脑、ubuntu docker哪种组合进行DSOMEIP event通信,接收端都会在event payload长度增加到一定程度时udp方式出现丢数据现象。 总体上arm64硬件略优于x86 ubuntu电脑,x86 ubuntu电脑略优…

CorelDRAW Graphics Suite2023绿色中文版本下载教程

CorelDRAW Graphics Suite2023版是领先的一体化软件包,它包括多个程序,如CorelDRAW、Corel PHOTO-PAINT、Corel CAPTURE、Corel Font Manager、Duplexing Wizard等,可全部安装,也可根据实际需要选择进行安装,都是最新版…

linux权限机制,

目录 用户与组,id,passwd 查看登录用户whomi,who,w 创建用户 useradd 修改用户信息usermod 删除指定用户userdel 组 ​编辑创建修改删除组groupadd groupmod groupdel 权限 ls-l 修改文件所属用户,所属组 chown,chgrp(change group) 修改权限 chmod 默认权…

CSS 模糊效果 CSS 黑白效果 CSS调整亮度 对比度 饱和度 模糊效果 黑白效果反转颜色

CSS 模糊效果 CSS 黑白效果 CSS调整亮度 饱和度 模糊效果 黑白效果 实现 调整亮度 饱和度 模糊效果 黑白效果 使用 filter1、模糊2、亮度3、对比度4、饱和度5、黑白效果6、反转颜色7、组合使用8、 filer 完整参数 实现 调整亮度 饱和度 模糊效果 黑白效果 使用 filter 1、模糊…

2023软工作业(一)——计算器

班级班级社区作业要求软件工程实践第一次作业-CSDN社区作业目标完成一个具有可视化界面的科学计算器参考文献Fyne 目录 作业要求 项目源码地址 作业目标 0. 界面及功能展示 1. PSP表格 2. 解题思路描述 3. 核心代码 4. 设计与实现过程 5. 程序性能改进 6. 单元测试展…

Qt扫盲-QSqlRelationalTableModel 理论总结

QSqlRelationalTableModel 理论总结 一、概述二、使用概述三、常用 一、概述 QSqlRelationalTableModel的行为类似于QSqlTableModel,但允许将列设置为进入其他数据库表的外键。 二、使用概述 在上面左边的截图显示了 QTableView 中的普通 QSqlTableModel。外键(…

分类预测 | MATLAB实现WOA-CNN-GRU-Attention数据分类预测

分类预测 | MATLAB实现WOA-CNN-GRU-Attention数据分类预测 目录 分类预测 | MATLAB实现WOA-CNN-GRU-Attention数据分类预测分类效果基本描述模型描述程序设计参考资料 分类效果 基本描述 1.MATLAB实现WOA-CNN-GRU-Attention数据分类预测,运行环境Matlab2021b及以上&…

Ubuntu 安装PostgreSQL

网上有各种版本的,也可以去官网看官方的文档。我是下载的PostgreSQL-11.4版本的。找到以后直接复制网上的压缩包链接就可以。 $ mkdir /opt/postgresql && cd /opt/postgresql $ wget https://ftp.postgresql.org/pub/source/v11.4/postgresql-11.4.tar.gz…

基于规则架构-架构案例2019(三十九)

电子商务 某电子商务公司为了更好地管理用户,提升企业销售业绩,拟开发一套用户管理系统。该系统的基本功能是根据用户的消费级别、消费历史、信用情况等指标将用户划分为不同的等级,并针对不同等级的用户提供相应的折扣方案。在需求分析与架…

运行软件mfc100u.dll缺失是怎么办?mfc100u.dll丢失解决方法分享

Mfc100u.dll 丢失的问题可能困扰着许多使用计算机的用户。Mfc100u.dll 是一个重要的动态链接库文件,它包含了许多功能模块,如字符串处理、数学计算、文件操作等。当 Mfc100u.dll 文件丢失或损坏时,可能会导致许多应用程序无法正常运行&#x…

OS 模拟进程状态转换

下面的这个博主写的很好 但是他给的代码print部分和语言风格python三识别不了 这个特别感谢辰同学帮我调好了代码 我放在主页上了 估计过两天就可以通过了 《操作系统导论》实验一:模拟进程状态转换_process-run.py-CSDN博客 这个补充一下他没有的:OS…

基于yum制作kylin系统docker镜像

注意,由于线上源版本与iso源存在差异,应采用iso源制作docker镜像 [rootlocalhost yeqiang]# yum install --installroot/home/yeqiang/kylin-docker/ yum 无法找到发布版本(可用 --releasever 指定版本) 警告:加载 /e…

正交对角化,奇异值分解

与普通矩阵对角化不同的是,正交对角化是使用正交矩阵对角化,正交矩阵是每列向量都是单位向量,正交矩阵*它的转置就是单位矩阵 与普通矩阵对角化一样,正交对角化的结果也是由特征值组成的对角矩阵 本质还是特征向量对原矩阵的拉伸…

【Java】异常

1. Java的异常概念 1.1 异常体系结构 从上图中可以看到: 1. Throwable:是异常体系的顶层类,其派生出两个重要的子类, Error 和 Exception 2. Error:指的是JVM无法解决的严重问题,比如:JVM的内部错误、资源…

澳大利亚新版《2023年消费品(36个月以下儿童玩具) 安全标准》发布 旨在降低危险小零件的伤害

2023年9月4日,澳大利亚政府发布了新的儿童玩具强制性安全标准《2023年消费品(36个月以下儿童玩具)安全标准》(Consumer Goods (Toys for Children up to and including 36 Months of Age) Safety Standard 2023)。该强制性标准旨在尽可能地降…

MySQL学习笔记20

备份过程需要考虑的因素: 1、必须制定详细的备份计划(策略)(备份频率、时间点、周期)。 一天做一次增量、一周做一次全量。 2、备份数据应该放在非数据本地,并建议多份备份。 可以放在另外一台服务器上…

python使用mitmproxy和mitmdump抓包以及对手机

mitmproxy是一个中间人角色,供python抓包使用。 本机环境:win10 64位,python3.10.4。首先安装mitmproxy,参考我的文章 记录一下python2和python3在同一台电脑上共存使用并安装各自的库以及各自在pycharm中使用的方法-CSDN博客 一…

Nginx的反向代理、动静分离、负载均衡

反向代理 反向代理是一种常见的网络技术,它可以将客户端的请求转发到服务器群集中的一个或多个后端服务器上进行处理,并将响应结果返回给客户端。反向代理技术通常用于提高网站的可伸缩性和可用性,并且可以隐藏真实的后端服务器地址。 #user…

Servlet开发-通过代码案例熟悉HttpServletRequest类

关于Servlet开发的流程推荐看servlet开发-通过Tomcat部署一个简单的webapp Servlet开发与idea集成的插件安装推荐看idea集成tomcat(Smart Tomcate插件安装) postman(第三方创建HTTP请求工具)的安装推荐看创建HTTP请求的几种方式…

组网行动指南:打造对跨国企业友好的专用网络环境

在全球数字化转型的浪潮下,越来越多的企业跨国发展业务,由于跨域网络的复杂性和自建网络架构的各种限制,导致分散在不同地理位置的站点无法实现数据互通和协作。 跨国企业组网常见痛点 痛点一:自建网络方案经常掉线,影…