【图像分割】图像检测(分割、特征提取)、各种特征(面积等)的测量和过滤(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

【图像分割】图像检测(分割、特征提取)、各种特征(面积等)的测量和过滤

本文提供了一个适合初学者的教程,旨在演示图像检测(分割、特征提取)以及各种特征(如面积)的测量和过滤(只提取某些对象)。

首先,该教程介绍了如何找到图像中的所有对象(硬币),然后根据指定的直径过滤结果,筛选出特定直径的对象。通过一个简单的示例,展示了阈值处理、标记和区域属性的基本概念。

对于那些刚开始接触 MATLAB 图像处理功能的同学来说,这个教程是一个很好的起点。在他们深入学习更复杂的算法之前,可以通过这个教程加深对基本概念和技术的理解。

为了完成这个教程,需要安装图像处理工具箱,因为它演示了该工具箱提供的某些功能。同时,教程使用了工具箱自带的一个名为“硬币”的示例图像作为演示对象。

该教程的优点在于,它提供了一种直观和实用的方法,帮助初学者理解如何使用 MATLAB 对图像进行处理和分析。通过学习如何进行图像分割、特征提取和过滤,读者将受益于这些基本概念,并能够应用它们解决更为复杂的图像处理问题。这个教程对于那些有兴趣进一步探索图像处理领域的学生、研究人员和工程师来说,都是一个很好的起点。

📚2 运行结果

部分代码:

% Read in a standard MATLAB demo image of coins (US nickles and dimes, which are 5 cent and 10 cent coins).  This image ships with MATLAB.
baseFileName = 'coins.png';
folder = fileparts(which(baseFileName)); % Determine where demo folder is (works with all versions).
fullFileName = fullfile(folder, baseFileName);
fprintf('Full File Name = "%s".\n', fullFileName);
if ~exist(fullFileName, 'file')% It doesn't exist in the current folder.% Look on the search path.if ~exist(baseFileName, 'file')% It doesn't exist on the search path either.% Alert user that we can't find the image.warningMessage = sprintf('Error: the input image file\n%s\nwas not found.\nClick OK to exit the demo.', fullFileName);uiwait(warndlg(warningMessage));fprintf(1, 'Finished running BlobsDemo.m.\n');return;end% Found it on the search path.  Construct the file name.fullFileName = baseFileName; % Note: don't prepend the folder.
end
% If we get here, we should have found the image file.
originalImage = imread(fullFileName);
% Check to make sure that it is grayscale, just in case the user substituted their own image.
[rows, columns, numberOfColorChannels] = size(originalImage);
if numberOfColorChannels > 1promptMessage = sprintf('Your image file has %d color channels.\nThis demo was designed for grayscale images.\nDo you want me to convert it to grayscale for you so you can continue?', numberOfColorChannels);button = questdlg(promptMessage, 'Continue', 'Convert and Continue', 'Cancel', 'Convert and Continue');if strcmp(button, 'Cancel')fprintf(1, 'Finished running BlobsDemo.m.\n');return;end% Do the conversion using standard book formulaoriginalImage = rgb2gray(originalImage);
end% Display the grayscale image.
subplot(3, 3, 1);
imshow(originalImage);
% Maximize the figure window.
hFig1 = gcf;
hFig1.Units = 'normalized';
hFig1.WindowState = 'maximized'; % Go to full screen.
hFig1.NumberTitle = 'off'; % Get rid of "Figure 1"
hFig1.Name = 'Demo by Image Analyst'; % Put this into title bar.
% Force it to display RIGHT NOW (otherwise it might not display until it's all done, unless you've stopped at a breakpoint.)
drawnow;
caption = sprintf('Original "coins" image showing\n6 nickels (the larger coins) and 4 dimes (the smaller coins).');
title(caption, 'FontSize', captionFontSize);
axis('on', 'image'); % Make sure image is not artificially stretched because of screen's aspect ratio.% Just for fun, let's get its histogram and display it.
[pixelCount, grayLevels] = imhist(originalImage);
subplot(3, 3, 2);
bar(pixelCount);
title('Histogram of original image', 'FontSize', captionFontSize);
xlim([0 grayLevels(end)]); % Scale x axis manually.
grid on;%------------------------------------------------------------------------------------------------------------------------------------------------------
% Threshold the image to get a binary image (only 0's and 1's) of class "logical."
% Method #1: using im2bw()
%   normalizedThresholdValue = 0.4; % In range 0 to 1.
%   thresholdValue = normalizedThresholdValue * max(max(originalImage)); % Gray Levels.
%   binaryImage = im2bw(originalImage, normalizedThresholdValue);       % One way to threshold to binary
% Method #2: using a logical operation.
thresholdValue = 100;
binaryImage = originalImage > thresholdValue; % Bright objects will be chosen if you use >.
% ========== IMPORTANT OPTION ============================================================
% Use < if you want to find dark objects instead of bright objects.
%   binaryImage = originalImage < thresholdValue; % Dark objects will be chosen if you use <.% Do a "hole fill" to get rid of any background pixels or "holes" inside the blobs.
binaryImage = imfill(binaryImage, 'holes');% Show the threshold as a vertical red bar on the histogram.
hold on;
maxYValue = ylim;
line([thresholdValue, thresholdValue], maxYValue, 'Color', 'r');
% Place a text label on the bar chart showing the threshold.
annotationText = sprintf('Thresholded at %d gray levels', thresholdValue);
% For text(), the x and y need to be of the data class "double" so let's cast both to double.
text(double(thresholdValue + 5), double(0.5 * maxYValue(2)), annotationText, 'FontSize', 10, 'Color', [0 .5 0]);
text(double(thresholdValue - 70), double(0.94 * maxYValue(2)), 'Background', 'FontSize', 10, 'Color', [0 0 .5]);
text(double(thresholdValue + 50), double(0.94 * maxYValue(2)), 'Foreground', 'FontSize', 10, 'Color', [0 0 .5]);% Display the binary image.
subplot(3, 3, 3);
imshow(binaryImage);
title('Binary Image, obtained by thresholding', 'FontSize', captionFontSize);%------------------------------------------------------------------------------------------------------------------------------------------------------
% Identify individual blobs by seeing which pixels are connected to each other.  This is called "Connected Components Labeling".
% Each group of connected pixels will be given a label, a number, to identify it and distinguish it from the other blobs.
% Do connected components labeling with either bwlabel() or bwconncomp().
[labeledImage, numberOfBlobs] = bwlabel(binaryImage, 8);     % Label each blob so we can make measurements of it
% labeledImage is an integer-valued image where all pixels in the blobs have values of 1, or 2, or 3, or ... etc.
subplot(3, 3, 4);
imshow(labeledImage, []);  % Show the gray scale image.
title('Labeled Image, from bwlabel()', 'FontSize', captionFontSize);
drawnow;% Let's assign each blob a different color to visually show the user the distinct blobs.
coloredLabels = label2rgb (labeledImage, 'hsv', 'k', 'shuffle'); % pseudo random color labels
% coloredLabels is an RGB image.  We could have applied a colormap instead (but only with R2014b and later)
subplot(3, 3, 5);
imshow(coloredLabels);
axis image; % Make sure image is not artificially stretched because of screen's aspect ratio.
caption = sprintf('Pseudo colored labels, from label2rgb().\nBlobs are numbered from top to bottom, then from left to right.');
title(caption, 'FontSize', captionFontSize);%======================================================================================================================================================
% MAIN PART IS RIGHT HERE!!!
% Get all the blob properties.
props = regionprops(labeledImage, originalImage, 'all');
% Or, if you want, you can ask for only a few specific measurements.  This will be faster since we don't have to compute everything.
% props = regionprops(labeledImage, originalImage, 'MeanIntensity', 'Area', 'Perimeter', 'Centroid', 'EquivDiameter');
numberOfBlobs = numel(props); % Will be the same as we got earlier from bwlabel().
%======================================================================================================================================================%------------------------------------------------------------------------------------------------------------------------------------------------------
% PLOT BOUNDARIES.
% Plot the borders of all the coins on the original grayscale image using the coordinates returned by bwboundaries().
% bwboundaries() returns a cell array, where each cell contains the row/column coordinates for an object in the image.
subplot(3, 3, 6);
imshow(originalImage);
title('Outlines, from bwboundaries()', 'FontSize', captionFontSize);
axis('on', 'image'); % Make sure image is not artificially stretched because of screen's aspect ratio.
% Here is where we actually get the boundaries for each blob.
boundaries = bwboundaries(binaryImage); % Note: this is a cell array with several boundaries -- one boundary per cell.
% boundaries is a cell array - one cell for each blob.
% In each cell is an N-by-2 list of coordinates in a (row, column) format.  Note: NOT (x,y).
% Column 1 is rows, or y.    Column 2 is columns, or x.
numberOfBoundaries = size(boundaries, 1); % Count the boundaries so we can use it in our for loop
% Here is where we actually plot the boundaries of each blob in the overlay.
hold on; % Don't let boundaries blow away the displayed image.
for k = 1 : numberOfBoundariesthisBoundary = boundaries{k}; % Get boundary for this specific blob.x = thisBoundary(:,2); % Column 2 is the columns, which is x.y = thisBoundary(:,1); % Column 1 is the rows, which is x.plot(x, y, 'r-', 'LineWidth', 2); % Plot boundary in red.
end
hold off;%------------------------------------------------------------------------------------------------------------------------------------------------------
% Print out the measurements to the command window, and display blob numbers on the image.
textFontSize = 14;	% Used to control size of "blob number" labels put atop the image.
% Print header line in the command window.
fprintf(1,'Blob #      Mean Intensity  Area   Perimeter    Centroid       Diameter\n');
% Extract all the mean diameters into an array.
% The "diameter" is the "Equivalent Circular Diameter", which is the diameter of a circle with the same number of pixels as the blob.
% Enclosing in brackets is a nice trick to concatenate all the values from all the structure fields (every structure in the props structure array).
blobECD = [props.EquivDiameter];
% Loop over all blobs printing their measurements to the command window.
for k = 1 : numberOfBlobs           % Loop through all blobs.% Find the individual measurements of each blob.  They are field of each structure in the props strucutre array.% You could use the bracket trick (like with blobECD above) OR you can get the value from the field of this particular structure.% I'm showing you both ways and you can use the way you like best.meanGL = props(k).MeanIntensity;		% Get average intensity.blobArea = props(k).Area;				% Get area.blobPerimeter = props(k).Perimeter;		% Get perimeter.blobCentroid = props(k).Centroid;		% Get centroid one at a time% Now do the printing of this blob's measurements to the command window.fprintf(1,'#%2d %17.1f %11.1f %8.1f %8.1f %8.1f % 8.1f\n', k, meanGL, blobArea, blobPerimeter, blobCentroid, blobECD(k));% Put the "blob number" labels on the grayscale image that is showing the red boundaries on it.text(blobCentroid(1), blobCentroid(2), num2str(k), 'FontSize', textFontSize, 'FontWeight', 'Bold', 'HorizontalAlignment', 'center', 'VerticalAlignment', 'middle');
end%------------------------------------------------------------------------------------------------------------------------------------------------------
% Now, I'll show you a way to get centroids into an N -by-2 array directly from props,
% rather than accessing them as a field of the props strcuture array.
% We can get the centroids of ALL the blobs into 2 arrays,
% one for the centroid x values and one for the centroid y values.
allBlobCentroids = vertcat(props.Centroid);		% A 10 row by 2 column array of (x,y) centroid coordinates.
centroidsX = allBlobCentroids(:, 1);			% Extract out the centroid x values into their own vector.
centroidsY = allBlobCentroids(:, 2);			% Extract out the centroid y values into their own vector.
% Put the labels on the rgb labeled image also.
subplot(3, 3, 5);
for k = 1 : numberOfBlobs           % Loop through all blobs.% Place the blob label number at the centroid of the blob.text(centroidsX(k), centroidsY(k), num2str(k), 'FontSize', textFontSize, 'FontWeight', 'Bold', 'HorizontalAlignment', 'center', 'VerticalAlignment', 'middle');
end%------------------------------------------------------------------------------------------------------------------------------------------------------
% Now I'll demonstrate how to select certain blobs based using the ismember() function and extract them into new subimages.
% Let's say that we wanted to find only those blobs
% with an intensity between 150 and 220 and an area less than 2000 pixels.
% This would give us the three brightest dimes (the smaller coin type).
allBlobIntensities = [props.MeanIntensity];
allBlobAreas = [props.Area];
subplot(3, 3, 7);
histogram(allBlobAreas);
% Get a list of the blobs that meet our criteria and we need to keep.
% These will be logical indices - lists of true or false depending on whether the feature meets the criteria or not.
% for example [1, 0, 0, 1, 1, 0, 1, .....].  Elements 1, 4, 5, 7, ... are true, others are false.
allowableIntensityIndexes = (allBlobIntensities > 150) & (allBlobIntensities < 220);
allowableAreaIndexes = allBlobAreas < 2000; % Take the small objects.
% Now let's get actual indexes, rather than logical indexes, of the  features that meet the criteria.
% for example [1, 4, 5, 7, .....] to continue using the example from above.
keeperIndexes = find(allowableIntensityIndexes & allowableAreaIndexes);
% Extract only those blobs that meet our criteria, and
% eliminate those blobs that don't meet our criteria.
% Note how we use ismember() to do this.  Result will be an image - the same as labeledImage but with only the blobs listed in keeperIndexes in it.
keeperBlobsImage = ismember(labeledImage, keeperIndexes);
% Re-label with only the keeper blobs kept.
labeledDimeImage = bwlabel(keeperBlobsImage, 8);     % Label each blob so we can make measurements of it
% Now we're done.  We have a labeled image of blobs that meet our specified criteria.
subplot(3, 3, 7);
imshow(labeledDimeImage, []);
axis image;
title('"Keeper" blobs (3 brightest dimes in a re-labeled image)', 'FontSize', captionFontSize);
elapsedTime = toc;
fprintf('Blob detection and measurement took %.3f seconds.\n', elapsedTime)%------------------------------------------------------------------------------------------------------------------------------------------------------
% Plot the centroids in the overlay above the original image in the upper left axes.
% Dimes will have a red cross, nickels will have a blue X.
message = sprintf('Now I will plot the centroids over the original image in the upper left.\nPlease look at the upper left image.');
reply = questdlg(message, 'Plot Centroids?', 'OK', 'Cancel', 'Cancel');
% Note: reply will = '' for Upper right X, 'OK' for OK, and 'Cancel' for Cancel.
if strcmpi(reply, 'Cancel')return;
end
subplot(3, 3, 1);
hold on; % Don't blow away image.
for k = 1 : numberOfBlobs           % Loop through all keeper blobs.% Identify if blob #k is a dime or nickel.itsADime = allBlobAreas(k) < 2200; % Dimes are small.if itsADime% Plot dimes with a red +.plot(centroidsX(k), centroidsY(k), 'r+', 'MarkerSize', 15, 'LineWidth', 2);else% Plot nickels with a blue x.plot(centroidsX(k), centroidsY(k), 'bx', 'MarkerSize', 15, 'LineWidth', 2);end
end%------------------------------------------------------------------------------------------------------------------------------------------------------
% Now use the keeper blobs as a mask on the original image so we will get a masked gray level image.
% This will keep the regions in the mask as original but erase (blacken) everything else (outside of the mask regions).
% This will let us display the original image in the regions of the keeper blobs.
maskedImageDime = originalImage; % Simply a copy at first.
maskedImageDime(~keeperBlobsImage) = 0;	% Set all non-keeper pixels to zero.
subplot(3, 3, 8);
imshow(maskedImageDime);
axis image;
title('Only the 3 brightest dimes from the original image', 'FontSize', captionFontSize);%------------------------------------------------------------------------------------------------------------------------------------------------------
% Now let's get the nickels (the larger coin type).
keeperIndexes = find(allBlobAreas > 2000);  % Take the larger objects.
% Note how we use ismember to select the blobs that meet our criteria.  Get a binary image with only nickel regions present.
nickelBinaryImage = ismember(labeledImage, keeperIndexes);
% Let's get the nickels from the original grayscale image, with the other non-nickel pixels blackened.
% In other words, we will create a "masked" image.
maskedImageNickel = originalImage; % Simply a copy at first.
maskedImageNickel(~nickelBinaryImage) = 0;  % Set all non-nickel pixels to zero.
subplot(3, 3, 9);
imshow(maskedImageNickel, []);
axis image;
title('Only the nickels from the original image', 'FontSize', captionFontSize);%------------------------------------------------------------------------------------------------------------------------------------------------------
% WE'RE BASICALLY DONE WITH THE DEMO NOW.
elapsedTime = toc;
% Alert user that the demo is done and give them the option to save an image.
message = sprintf('Done making measurements of the features.\n\nElapsed time = %.2f seconds.', elapsedTime);
message = sprintf('%s\n\nCheck out the figure window for the images.\nCheck out the command window for the numerical results.', message);
message = sprintf('%s\n\nDo you want to save the pseudo-colored image?', message);
reply = questdlg(message, 'Save image?', 'Yes', 'No', 'No');
% Note: reply will = '' for Upper right X, 'Yes' for Yes, and 'No' for No.
if strcmpi(reply, 'Yes')% Ask user for a filename.FilterSpec = {'*.PNG', 'PNG Images (*.png)'; '*.tif', 'TIFF images (*.tif)'; '*.*', 'All Files (*.*)'};DialogTitle = 'Save image file name';% Get the default filename.  Make sure it's in the folder where this m-file lives.% (If they run this file but the cd is another folder then pwd will show that folder, not this one.thisFile = mfilename('fullpath');[thisFolder, baseFileName, ext] = fileparts(thisFile);DefaultName = sprintf('%s/%s.tif', thisFolder, baseFileName);[fileName, specifiedFolder] = uiputfile(FilterSpec, DialogTitle, DefaultName);if fileName ~= 0% Parse what they actually specified.[folder, baseFileName, ext] = fileparts(fileName);% Create the full filename, making sure it has a tif filename.fullImageFileName = fullfile(specifiedFolder, [baseFileName '.tif']);% Save the labeled image as a tif image.imwrite(uint8(coloredLabels), fullImageFileName);% Just for fun, read image back into the imtool utility to demonstrate that tool.tifimage = imread(fullImageFileName);imtool(tifimage, []);end
end%------------------------------------------------------------------------------------------------------------------------------------------------------
% OPTIONAL : CROP EACH COIN OUT TO A SEPARATE SUB-IMAGE ON A NEW FIGURE.
message = sprintf('Would you like to crop out each coin to individual images?');
reply = questdlg(message, 'Extract Individual Images?', 'Yes', 'No', 'Yes');
% Note: reply will = '' for Upper right X, 'Yes' for Yes, and 'No' for No.
if strcmpi(reply, 'Yes')% Maximize the figure window.hFig2 = figure;	% Create a new figure window.hFig2.Units = 'normalized';hFig2.WindowState = 'maximized'; % Go to full screen.hFig2.NumberTitle = 'off'; % Get rid of "Figure 1"hFig2.Name = 'Demo by Image Analyst'; % Put this into title bar.for k = 1 : numberOfBlobs		% Loop through all blobs.% Find the bounding box of each blob.thisBlobsBoundingBox = props(k).BoundingBox;  % Get list of pixels in current blob.% Extract out this coin into it's own image.subImage = imcrop(originalImage, thisBlobsBoundingBox);% Determine if it's a dime (small) or a nickel (large coin).if props(k).Area > 2200coinType = 'nickel';elsecoinType = 'dime';end% Display the image with informative caption.subplot(3, 4, k);imshow(subImage);caption = sprintf('Coin #%d is a %s.\nDiameter = %.1f pixels\nArea = %d pixels', ...k, coinType, blobECD(k), props(k).Area);title(caption, 'FontSize', textFontSize);end%------------------------------------------------------------------------------------------------------------------------------------------------------% Display the MATLAB "peaks" logo.logoSubplot = subplot(3, 4, 11:12);caption = sprintf('A MATLAB Tutorial by ImageAnalyst');text(0.5,1.15, caption, 'Color','r', 'FontSize', 18, 'FontWeight','b', 'HorizontalAlignment', 'center', 'VerticalAlignment', 'middle') ;positionOfLowerRightPlot = get(logoSubplot, 'position');L = 40*membrane(1,25);logoax = axes('CameraPosition', [-193.4013, -265.1546, 220.4819],...'Box', 'off', ...'CameraTarget',[26, 26, 10], ...'CameraUpVector',[0, 0, 1], ...'CameraViewAngle',9.5, ...'DataAspectRatio', [1, 1, .9],...'Position', positionOfLowerRightPlot, ...'Visible','off', ...'XLim',[1, 51], ...'YLim',[1, 51], ...'ZLim',[-13, 40], ...'parent', gcf);axis(logoSubplot, 'off');s = surface(L, ...'EdgeColor','none', ...'FaceColor',[0.9, 0.2, 0.2], ...'FaceLighting','phong', ...'AmbientStrength',0.3, ...'DiffuseStrength',0.6, ...'Clipping','off',...'BackFaceLighting','lit', ...'SpecularStrength',1, ...'SpecularColorReflectance',1, ...'SpecularExponent',7, ...'Tag','TheMathWorksLogo', ...'parent',logoax);l1 = light('Position',[40, 100, 20], ...

% OPTIONAL : CROP EACH COIN OUT TO A SEPARATE SUB-IMAGE ON A NEW FIGURE.
message = sprintf('Would you like to crop out each coin to individual images?');
reply = questdlg(message, 'Extract Individual Images?', 'Yes', 'No', 'Yes');
% Note: reply will = '' for Upper right X, 'Yes' for Yes, and 'No' for No.
if strcmpi(reply, 'Yes')
    % Maximize the figure window.
    hFig2 = figure;    % Create a new figure window.
    hFig2.Units = 'normalized';
    hFig2.WindowState = 'maximized'; % Go to full screen.
    hFig2.NumberTitle = 'off'; % Get rid of "Figure 1"
    hFig2.Name = 'Demo by Image Analyst'; % Put this into title bar.

    for k = 1 : numberOfBlobs        % Loop through all blobs.
        % Find the bounding box of each blob.
        thisBlobsBoundingBox = props(k).BoundingBox;  % Get list of pixels in current blob.
        % Extract out this coin into it's own image.
        subImage = imcrop(originalImage, thisBlobsBoundingBox);
        % Determine if it's a dime (small) or a nickel (large coin).
        if props(k).Area > 2200
            coinType = 'nickel';
        else
            coinType = 'dime';
        end
        % Display the image with informative caption.
        subplot(3, 4, k);
        imshow(subImage);
        caption = sprintf('Coin #%d is a %s.\nDiameter = %.1f pixels\nArea = %d pixels', ...
            k, coinType, blobECD(k), props(k).Area);
        title(caption, 'FontSize', textFontSize);
    end

    %------------------------------------------------------------------------------------------------------------------------------------------------------
    % Display the MATLAB "peaks" logo.
    logoSubplot = subplot(3, 4, 11:12);
    caption = sprintf('A MATLAB Tutorial by ImageAnalyst');
    text(0.5,1.15, caption, 'Color','r', 'FontSize', 18, 'FontWeight','b', 'HorizontalAlignment', 'center', 'VerticalAlignment', 'middle') ;
    positionOfLowerRightPlot = get(logoSubplot, 'position');
    L = 40*membrane(1,25);
    logoax = axes('CameraPosition', [-193.4013, -265.1546, 220.4819],...
        'Box', 'off', ...
        'CameraTarget',[26, 26, 10], ...
        'CameraUpVector',[0, 0, 1], ...
        'CameraViewAngle',9.5, ...
        'DataAspectRatio', [1, 1, .9],...
        'Position', positionOfLowerRightPlot, ...
 

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]马寅.基于CCD的图像特征提取与识别[D].东北大学,2012.DOI:10.7666/d.J0120301.

[2]王妞,康辉英.基于图像检测的船舶特征分割与提取优化算法[J].舰船科学技术, 2018(4X):3.DOI:CNKI:SUN:JCKX.0.2018-08-049.

[3]尹聪.彩色图像人脸检测与特征提取认证[J].信息技术与信息化, 2009.DOI:JournalArticle/5af35bd8c095d718d80b8d86.

[4]罗文辉,王三武.基于面积和结构特征的水表图像二步分割方法[J].武汉理工大学学报:信息与管理工程版, 2006, 28(5):4.DOI:10.3963/j.issn.1007-144X.2006.05.014.

🌈4 Matlab代码实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/145319.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python 笔记06(Mysql数据库)

一 基础 1.1 安装 MySQL下载参考&#xff1a;MySQL8.0安装配置教程【超级详细图解】-CSDN博客 测试是否安装并正确配置环境变量&#xff1a; 1.2 查看服务器是否正常运行 1.3 显示数据库 show databases; 1.4 退出 exit 1.5 python 连接 1.6 查主机IP ipconfig

一篇文章教你自动化测试如何解析excel文件?

前言 自动化测试中我们存放数据无非是使用文件或者数据库&#xff0c;那么文件可以是csv&#xff0c;xlsx&#xff0c;xml&#xff0c;甚至是txt文件&#xff0c;通常excel文件往往是我们的首选&#xff0c;无论是编写测试用例还是存放测试数据&#xff0c;excel都是很方便的。…

SpringBoot使用Docker并上传至DockerHub

我的新书《Android App开发入门与实战》已于2020年8月由人民邮电出版社出版&#xff0c;欢迎购买。点击进入详情 文章目录 1.系列文章2.构建docker镜像的方式3.docker操作3.1 安装docker3.2 查看docker镜像3.3 本地运行docker3.4 修改tag3.5 推送docker镜像3.6 远端server拉取d…

Linux 集锦 之 最常用的几个命令

Linux最常用的几个命令 ​ Linux系统中的命令那是相当地丰富&#xff0c;不同的版本可能还有不同的命令&#xff0c;不过Linux核心自带的命令大概有几百个&#xff0c;这个不管是什么发行版一般都是共用的。 ​ 如果希望探索Linux的所有命令&#xff0c;可能不太实际&#xf…

树莓派基本配置(2)

安装motion $sudo apt-get update $sudo apt-get install motion配置motion sudo nano /etc/default/motionsudo nano /etc/motion/motion.conf主要改这些参数 //让Motion作为守护进程运行 daemon on ... //用这个端口号来读取数据 stream_port 8081 ... //网络上其它主机…

力扣刷题-哈希表-求两个数组的交集

349 求两个数组的交集 题意&#xff1a;给定两个数组&#xff0c;编写一个函数来计算它们的交集。注意&#xff1a;输出结果中的每个元素一定是 唯一 的。我们可以 不考虑输出结果的顺序 。 提示&#xff1a; 1 < nums1.length, nums2.length < 1000 0 < nums1[i], …

nodejs在pdf中绘制表格

需求 之前我已经了解过如何在pdf模板中填写字段了 nodejs根据pdf模板填入中文数据并生成新的pdf文件https://blog.csdn.net/ArmadaDK/article/details/132456324 但是当我具体使用的时候&#xff0c;我发现我的模板里面有表格&#xff0c;表格的长度是不固定的&#xff0c;所…

WPF 03

staticResource和dynamicResource的区别 首先看一个案例 MainWindow.xaml <Window x:Class"WpfDay03.MainWindow"xmlns"http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x"http://schemas.microsoft.com/winfx/2006/xaml&quo…

Springboot中slf4j日志的简单应用

1、注入依赖&#xff08;pom.xml&#xff09; <!-- https://mvnrepository.com/artifact/org.slf4j/slf4j-api --> <dependency><groupId>org.slf4j</groupId><artifactId>slf4j-api</artifactId><version>2.0.9</version> &…

从MVC到DDD,该如何下手重构?

作者&#xff1a;付政委 博客&#xff1a;bugstack.cn 沉淀、分享、成长&#xff0c;让自己和他人都能有所收获&#xff01;&#x1f604; 大家好&#xff0c;我是技术UP主小傅哥。多年的 DDD 应用&#xff0c;使我开了技术的眼界&#xff01; MVC 旧工程腐化严重&#xff0c;…

排序算法之【希尔排序】

&#x1f4d9;作者简介&#xff1a; 清水加冰&#xff0c;目前大二在读&#xff0c;正在学习C/C、Python、操作系统、数据库等。 &#x1f4d8;相关专栏&#xff1a;C语言初阶、C语言进阶、C语言刷题训练营、数据结构刷题训练营、有感兴趣的可以看一看。 欢迎点赞 &#x1f44d…

C++ -- 学习系列 std::deque 的原理与使用

一 deque 是什么? std::deque 是 c 一种序列式容器&#xff0c;其与 vector 类似&#xff0c;其底层内存都是连续的&#xff0c;不同的地方在于&#xff0c; vector 是一端开口&#xff0c;在一端放入数据与扩充空间&#xff0c;而 deque 是双端均开口&#xff0c;都可以放…

3D孪生场景搭建:模型区域摆放

前面介绍完了NSDT场景编辑器的线性绘制和阵列绘制&#xff0c;本章将讲述下编辑器的另一种绘制方式&#xff1a;区域绘制。 1、区域绘制功能简介 在场景中绘制资产时&#xff0c;除使用上述两个的方式外&#xff0c;NSDT 编辑器还支持使用区域绘制的方式进行绘制。先选取需要…

GEO生信数据挖掘(一)数据集下载和初步观察

检索到目标数据集后&#xff0c;开始数据挖掘&#xff0c;本文以阿尔兹海默症数据集GSE1297为例 目录 GEOquery 简介 安装并加载GEOquery包 getGEO函数获取数据&#xff08;联网下载&#xff09; 更换下载数据源 对数据集进行初步观察处理 GEOquery 简介 GEOquery是一个…

聊聊并发编程——并发容器和阻塞队列

目录 一.ConcurrentHashMap 1.为什么要使用ConcurrentHashMap&#xff1f; 2.ConcurrentHashMap的类图 3.ConcurrentHashMap的结构图 二.阻塞队列 Java中的7个阻塞队列 ArrayBlockingQueue&#xff1a;一个由数组结构组成的有界阻塞队列。 LinkedBlockingQueue&#xf…

用go实现http服务端和请求端

一、概述 本文旨在学习记录下如何用go实现建立一个http服务器&#xff0c;同时构造一个专用格式的http客户端。 二、代码实现 2.1 构造http服务端 1、http服务处理流程 基于HTTP构建的服务标准模型包括两个端&#xff0c;客户端(Client)和服务端(Server)。HTTP 请求从客户端…

PHP8的静态变量和方法-PHP8知识详解

我们在上一课程讲到了public、private、protected这3个关键字&#xff0c;今天我们来讲解static关键字&#xff0c;明天再讲解final关键字。 如果不想通过创建对象来调用变量或方法&#xff0c;则可以将该变量或方法创建为静态变量或方法&#xff0c;也就是在变量或方法的前面…

【PyTorch实战演练】使用Cifar10数据集训练LeNet5网络并实现图像分类(附代码)

文章目录 0. 前言1. Cifar10数据集1.1 Cifar10数据集下载1.2 Cifar10数据集解析 2. LeNet5网络2.1 LeNet5的网络结构2.2 基于PyTorch的LeNet5网络编码 3. LeNet5网络训练及输出验证3.1 LeNet5网络训练3.2 LeNet5网络验证 4. 完整代码4.1 训练代码4.1 验证代码 0. 前言 按照国际…

C语言文件操作与管理

一、为什么使用文件 在我们前面练习使用结构体时&#xff0c;写通讯录的程序&#xff0c;当通讯录运行起来的时候&#xff0c;可以给通讯录中增加、删除数据&#xff0c;此时数据是存放在内存中&#xff0c;当程序退出的时候&#xff0c;通讯录中的数据自然就不存在了&#xff…

Java 基于 SpringBoot 的在线学习平台

1 简介 基于SpringBoot的Java学习平台&#xff0c;通过这个系统能够满足学习信息的管理及学生和教师的学习管理功能。系统的主要功能包括首页&#xff0c;个人中心&#xff0c;学生管理&#xff0c;教师管理&#xff0c;课程信息管理&#xff0c;类型管理&#xff0c;作业信息…