【PyTorch实战演练】使用Cifar10数据集训练LeNet5网络并实现图像分类(附代码)

文章目录

      • 0. 前言
      • 1. Cifar10数据集
        • 1.1 Cifar10数据集下载
        • 1.2 Cifar10数据集解析
      • 2. LeNet5网络
        • 2.1 LeNet5的网络结构
        • 2.2 基于PyTorch的LeNet5网络编码
      • 3. LeNet5网络训练及输出验证
        • 3.1 LeNet5网络训练
        • 3.2 LeNet5网络验证
      • 4. 完整代码
        • 4.1 训练代码
        • 4.1 验证代码

0. 前言

按照国际惯例,首先声明:本文只是我自己学习的理解,虽然参考了他人的宝贵见解,但是内容可能存在不准确的地方。如果发现文中错误,希望批评指正,共同进步。

本文是基于PyTorch框架使用LeNet5网络实现图像分类的实战演练,训练的数据集采用Cifar10,旨在通过实操强化对深度学习尤其是卷积神经元网络的理解。

本文是一个完整的保姆级学习指引,只要具备最基础的深度学习知识就可以通过本文的指引:使用PyTorch库从零搭建LeNet5网络,然后对其进行训练,最后能够识别实拍图像中的实物。

1. Cifar10数据集

Cifar10数据集由计算机科学家Geoffrey Hinton的学生Alex Krizhevsky、Ilya Sutskever 在1990年代创建。Cifar10是一个包含10个类别的图像分类数据集,每个类别包含6000张32x32像素的彩色图像,总计60000张图像,其中50000个图像用于训练网络模型(训练组),10000个图像用于验证网络模型(验证组)。

其名字Cifar10代表Canadian Institute for Advanced Research(加拿大高级研究所)做的10种分类的图像集,后面的Cifar100则是100种分类的图像集。

1.1 Cifar10数据集下载

使用torchvision直接下载Cifar10:

from torchvision import datasets
from torchvision import transformsdata_path = 'CIFAR10/IMG_file'
cifar10 = datasets.CIFAR10(root=data_path, train=True, download=True,transform=transforms.ToTensor())   #首次下载时download设为true

datasets.CIFAR10中的参数:

  • root:下载文件的路径
  • train:如果为True,则是下载训练组数据,总计50000张图像;如果为False,则是下载验证组数据,总计10000张图像
  • download:新下载时需要设定为True,如果已经下载好数据可以设定为False
  • transform:对图像数据进行变形,这里指定为transforms.ToTensor()图像数据会被转换为Tensor,数据范围调整到0~1,省得我们再写一行归一化代码了
1.2 Cifar10数据集解析

下载之后可以看一下Cifar10数据集的具体内容:

print(type(cifar10))
print(cifar10[0])
------------------------输出------------------------------------
<class 'torchvision.datasets.cifar.CIFAR10'>
(tensor([[[0.2314, 0.1686, 0.1961,  ..., 0.6196, 0.5961, 0.5804],[0.0627, 0.0000, 0.0706,  ..., 0.4824, 0.4667, 0.4784],[0.0980, 0.0627, 0.1922,  ..., 0.4627, 0.4706, 0.4275],...,[0.8157, 0.7882, 0.7765,  ..., 0.6275, 0.2196, 0.2078],[0.7059, 0.6784, 0.7294,  ..., 0.7216, 0.3804, 0.3255],[0.6941, 0.6588, 0.7020,  ..., 0.8471, 0.5922, 0.4824]],[[0.2431, 0.1804, 0.1882,  ..., 0.5176, 0.4902, 0.4863],[0.0784, 0.0000, 0.0314,  ..., 0.3451, 0.3255, 0.3412],[0.0941, 0.0275, 0.1059,  ..., 0.3294, 0.3294, 0.2863],...,[0.6667, 0.6000, 0.6314,  ..., 0.5216, 0.1216, 0.1333],[0.5451, 0.4824, 0.5647,  ..., 0.5804, 0.2431, 0.2078],[0.5647, 0.5059, 0.5569,  ..., 0.7216, 0.4627, 0.3608]],[[0.2471, 0.1765, 0.1686,  ..., 0.4235, 0.4000, 0.4039],[0.0784, 0.0000, 0.0000,  ..., 0.2157, 0.1961, 0.2235],[0.0824, 0.0000, 0.0314,  ..., 0.1961, 0.1961, 0.1647],...,[0.3765, 0.1333, 0.1020,  ..., 0.2745, 0.0275, 0.0784],[0.3765, 0.1647, 0.1176,  ..., 0.3686, 0.1333, 0.1333],[0.4549, 0.3686, 0.3412,  ..., 0.5490, 0.3294, 0.2824]]]), 6)Process finished with exit code 0

可以见到Cifar10有其单独的数据类型torchvision.datasets.cifar.CIFAR10,其结构类似list。

如果输出其中某一元素,例如第一个cifar10[0],其中包含:

  • 一个维度为[3,32,32]的tensor(因为上面Transform已经指定了ToTensor),这个就是RGB三通道的图像数据
  • 一个标量数据label,这里是6,这个数据代表图像的真实分类,其对应关系如下表:
    在这里插入图片描述

这里我们也可以用matplotlib把图像的tensor数据转回图像,看看这个label为6的图像究竟是什么样的:

from torchvision import datasets
import matplotlib.pyplot as plt
from torchvision import transformsdata_path = 'CIFAR10/IMG_file'
cifar10 = datasets.CIFAR10(root=data_path, train=True, download=False,transform=transforms.ToTensor())   #首次下载时download设为true# print(type(cifar10))
# print(cifar10[0])img,label = cifar10[0]
plt.imshow(img.permute(1,2,0))
plt.show()

输出为:
在这里插入图片描述
没错,这是一个label为6的Frog,32×32像素的图像就只能做到这个程度了。

这里使用了.permute()是因为原始数据的维度是[channel3, H32, W32],而.imshow()要求的输入维度应该是[H, W, channel],需要调整下原始数据的维度顺序。

2. LeNet5网络

LeNet5是由Yann LeCun在20世纪90年代初提出,是一个经典的卷积神经网络。LeNet5由7层神经网络组成,包括2个卷积层、2个池化层和3个全连接层。其(在当时的时代背景下)创造性地使用了卷积层和池化层对输入进行特征提取,减少了参数数量,同时增强了网络对输入图像的平移和旋转不变性。

LeNet5被广泛应用于手写数字识别,也可用于其他图像分类任务。虽然现在的深度卷积神经网络比LeNet5有更好的性能,但LeNet5对于学习卷积神经网络的基本原理和方法具有重要的教育意义

2.1 LeNet5的网络结构

LeNet5的网络结构如下图:
请添加图片描述

LeNet5的输入为32x32的图像:

  • 第一层为一个卷积层,包含6个5x5的卷积核,输出的特征图为28x28
  • 第二层为一个2x2的最大池化层,将特征图大小缩小一半14×14
  • 第三层为另一个卷积层,包含16个5x5的卷积核,输出的特征图为10x10
  • 第四层同第二层,将特征图大小缩小一半5×5
  • 第五层为一个全连接层,含有120个神经元
  • 第六层为另一个全连接层,含有84个神经元
  • 最后一层为输出层,包含10个神经元,每个神经元对应一个label
2.2 基于PyTorch的LeNet5网络编码

根据上文LeNet5的网络结构,编写代码如下:

import torch.nn as nnclass LeNet(nn.Module):def __init__(self):super().__init__()self.net = nn.Sequential(nn.Conv2d(in_channels=3, out_channels=6, kernel_size=5),  # 由于图片为RGB彩图,channel_in = 3#输出张量为 Batch(1)*Channel(6)*H(28)*W(28)nn.Sigmoid(),nn.MaxPool2d(kernel_size=2, stride=2),# 输出张量为 Batch(1)*Channel(6)*H(14)*W(14)nn.Conv2d(in_channels=6,out_channels= 16,kernel_size= 5),# 输出张量为 Batch(1)*Channel(16)*H(10)*W(10)nn.Sigmoid(),nn.MaxPool2d(kernel_size=2, stride=2),# 输出张量为 Batch(1)*Channel(16)*H(5)*W(5)nn.Conv2d(in_channels=16, out_channels=120,kernel_size=5),# 输出张量为 Batch(1)*Channel(120)*H(1)*W(1)nn.Flatten(),# 将输出一维化,用于后面的全连接网络输入nn.Linear(120, 84),nn.Sigmoid(),nn.Linear(84, 10))def forward(self, x):return self.net(x)

3. LeNet5网络训练及输出验证

3.1 LeNet5网络训练

碍于我的电脑没有GPU,使用CPU版PyTorch数据训练非常慢,我只取了Cifar10的前2000个数据进行训练 (T_T)

small_cifar10 = []
for i in range(2000):small_cifar10.append(cifar10[i])

训练相关设置如下:

  • 损失函数:交叉熵损失函数nn.CrossEntropyLoss()
  • 优化方式:随机梯度下降torch.optim.SGD()
  • epoch与learning rate:这是比较头疼的地方,目前我没有探索出太好的方式能在初期就把epoch和lr设定的比较好,只能进行逐步尝试。为了不浪费每次训练,我们可以把每次训练的权重保存下来,下次训练基于上次的结果进行。保存和加载权重的方式可以参考往期博客:通过实例学习Pytorch加载权重.load_state_dict()与保存权重.save()。下图展示了我的探索过程:lr的取值大约从1e-5逐步降低到2e-7,epoch总计大概有3000左右,loss值由初始的10000左右下降到100内。

这一块的训练过程忘记完整记录每一步的详细参数(epoch和lr)了,如果你有需要可以留下邮箱,我把训练好的权重发给你。读者也可以探索更好的训练参数。

在这里插入图片描述

3.2 LeNet5网络验证

激动人心的时刻来了!现在来验证我们训练好的网络能否准确识别目标图像!

我选用的图像是小鹏汽车在2023年上市的G6车型进行验证,图像如下:
在这里插入图片描述
加载我们训练好的权重文件,把图像输入到模型中:

def img_totensor(img_file):img = Image.open(img_file)transform = transforms.Compose([transforms.ToTensor(), transforms.Resize((32, 32))])img_tensor = transform(img).unsqueeze(0)  #这里要升维,对应增加batch维度return img_tensortest_model = LeNet()
test_model.load_state_dict(torch.load('CIFAR10/small2000_8.pth'))img1 = img_totensor('1.jpg')
img2 = img_totensor('2.jpg')
img3 = img_totensor('3.jpg')
img4 = img_totensor('4.jpg')print(test_model(img1))
print(test_model(img2))
print(test_model(img3))
print(test_model(img4))

最终输出如下:

tensor([[ 8.4051, 12.0952, -7.9274,  0.3868, -3.0866, -4.7883, -1.6089, -3.6484,-1.1387,  4.7348]], grad_fn=<AddmmBackward0>)
tensor([[-1.1992, 17.4531, -2.7929, -6.0410, -1.7589, -2.6942, -3.6753, -2.6800,3.6378,  2.4267]], grad_fn=<AddmmBackward0>)
tensor([[ 1.7580, 10.6321, -5.3922, -0.4557, -2.0147, -0.5974, -0.5785, -4.7977,-1.2916,  5.4786]], grad_fn=<AddmmBackward0>)
tensor([[10.5689,  6.2413, -0.9554, -4.4162,  1.0807, -7.9541, -5.3185, -6.0609,5.1129,  4.2243]], grad_fn=<AddmmBackward0>)

我们来解读一下这个输出:

  • 第1、2、3个图像对应输出tensor最大值在第[1]个元素(从0开始计数),即对应label值为1,真实分类为Car,预测正确。
  • 第4个图像的输出预测错误,最大值在第[0]个元素,LeNet5认为这个图像是Airplane。

这个准确率虽然不算高,但是别忘了我仅仅使用了Cifar10的前2000个数据进行训练;而且LeNet5网络输入为32×32大小的图像,例如上面的青蛙,即使让人来分辨也是挺困难的任务。

4. 完整代码

4.1 训练代码
#文件命名为 CIFAR10_main.py 后面验证时需要调用
from torchvision import datasets
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
from torchvision import transforms
from tqdm import tqdmdata_path = 'CIFAR10/IMG_file'
cifar10 = datasets.CIFAR10(data_path, train=True, download=False,transform=transforms.ToTensor())   #首次下载时download设为trueclass LeNet(nn.Module):def __init__(self):super().__init__()self.net = nn.Sequential(nn.Conv2d(in_channels=3, out_channels=6, kernel_size=5),  # 由于图片为RGB彩图,channel_in = 3#输出张量为 Batch(1)*Channel(6)*H(28)*W(28)nn.Sigmoid(),nn.MaxPool2d(kernel_size=2, stride=2),# 输出张量为 Batch(1)*Channel(6)*H(14)*W(14)nn.Conv2d(in_channels=6,out_channels= 16,kernel_size= 5),# 输出张量为 Batch(1)*Channel(16)*H(10)*W(10)nn.Sigmoid(),nn.MaxPool2d(kernel_size=2, stride=2),# 输出张量为 Batch(1)*Channel(16)*H(5)*W(5)nn.Conv2d(in_channels=16, out_channels=120,kernel_size=5),# 输出张量为 Batch(1)*Channel(120)*H(1)*W(1)nn.Flatten(),# 将输出一维化,用于后面的全连接网络输入nn.Linear(120, 84),nn.Sigmoid(),nn.Linear(84, 10))def forward(self, x):return self.net(x)if __name__ == '__main__':model = LeNet()model.load_state_dict(torch.load('CIFAR10/small2000_7.pth'))loss = nn.CrossEntropyLoss()opt = torch.optim.SGD(model.parameters(),lr=2e-7)small_cifar10 = []for i in range(2000):small_cifar10.append(cifar10[i])for epoch in range(1000):opt.zero_grad()total_loss = torch.tensor([0])for img,label in tqdm(small_cifar10):output = model(img.unsqueeze(0))label = torch.tensor([label])LeNet_loss = loss(output, label)total_loss = total_loss + LeNet_lossLeNet_loss.backward()opt.step()total_loss_numpy = total_loss.detach().numpy()plt.scatter(epoch,total_loss_numpy,c='b')print(total_loss)print("epoch=",epoch)torch.save(model.state_dict(),'CIFAR10/small2000_8.pth')plt.show()
4.1 验证代码
import torch
from torchvision import transforms
from PIL import Image
from CIFAR10_main import LeNetdef img_totensor(img_file):img = Image.open(img_file)transform = transforms.Compose([transforms.ToTensor(), transforms.Resize((32, 32))])img_tensor = transform(img).unsqueeze(0)  #这里要升维,对应增加batch维度return img_tensortest_model = LeNet()
test_model.load_state_dict(torch.load('CIFAR10/small2000_8.pth'))img1 = img_totensor('1.jpg')
img2 = img_totensor('2.jpg')
img3 = img_totensor('3.jpg')
img4 = img_totensor('4.jpg')print(test_model(img1))
print(test_model(img2))
print(test_model(img3))
print(test_model(img4))

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/145288.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C语言文件操作与管理

一、为什么使用文件 在我们前面练习使用结构体时&#xff0c;写通讯录的程序&#xff0c;当通讯录运行起来的时候&#xff0c;可以给通讯录中增加、删除数据&#xff0c;此时数据是存放在内存中&#xff0c;当程序退出的时候&#xff0c;通讯录中的数据自然就不存在了&#xff…

Java 基于 SpringBoot 的在线学习平台

1 简介 基于SpringBoot的Java学习平台&#xff0c;通过这个系统能够满足学习信息的管理及学生和教师的学习管理功能。系统的主要功能包括首页&#xff0c;个人中心&#xff0c;学生管理&#xff0c;教师管理&#xff0c;课程信息管理&#xff0c;类型管理&#xff0c;作业信息…

大数据Doris(一):Doris概述篇

文章目录 Doris概述篇 一、前言 二、Doris简介

队列的各个函数的实现

1.第一个结构是存放链表的数据&#xff0c;第二个结构体是存放头节点和尾节点的以方便找到尾节点&#xff0c;存放头节点的是phead&#xff0c;尾节点的是ptail typedef struct QueueNode {struct QueueNode* next;//单链表QDataType data;//放数据 }QNode;typedef struct Queu…

并查集LRUCache

文章目录 并查集1.概念2. 实现 LRUCache1. 概念2. 实现使用标准库实现自主实现 并查集 1.概念 并查集是一个类似于森林的数据结构&#xff0c;并、查、集指的是多个不相干的集合直接的合并和查找&#xff0c;并查集使用于N个集合。适用于将多个元素分成多个集合&#xff0c;在…

脉冲法和方向盘转角法计算车辆位置不同应用工况

1. 脉冲法计算车辆位置 在定义下的世界坐标系中&#xff0c;车辆运动分为右转后退、右转前进、左转后退、左转前进、直线前进、直线后退和静止七种工况&#xff0c;因此需要推倒出一组包含脉冲、车辆运动方向和车辆结构尺寸参数的综合方程式进行车辆轨迹的实时迭代计算。由于直…

Linux:nginx---web文件服务器

我这里使用的是centos7系统 nginx源码包安装 Linux&#xff1a;nginx基础搭建&#xff08;源码包&#xff09;_鲍海超-GNUBHCkalitarro的博客-CSDN博客https://blog.csdn.net/w14768855/article/details/131445878?ops_request_misc%257B%2522request%255Fid%2522%253A%25221…

【AntDesign】封装全局异常处理-全局拦截器

[toc] 场景 本文前端用的是阿里的Ant-Design框架&#xff0c;其他框架也有全局拦截器&#xff0c;思路是相同&#xff0c;具体实现自行百度下吧 因为每次都需要调接口&#xff0c;都需要单独处理异常情况&#xff08;code !0&#xff09;&#xff0c;因此前端需要对后端返回的…

每日一博 - 闲聊 Java 中的中断

文章目录 概述常见的中断问题中断一个处于运行状态的线程中断一个正在 sleep 的线程中断一个由于获取 ReentrantLock 锁而被阻塞的线程 如何正确地使用线程的中断标识JDK 的线程池 ThreadPoolExecutor 内部是如何运用中断实现功能的小结 概述 在 Java 中&#xff0c;中断是一种…

应用在手机触摸屏中的电容式触摸芯片

触控屏&#xff08;Touch panel&#xff09;又称为触控面板&#xff0c;是个可接收触头等输入讯号的感应式液晶显示装置&#xff0c;当接触了屏幕上的图形按钮时&#xff0c;屏幕上的触觉反馈系统可根据预先编程的程式驱动各种连结装置&#xff0c;可用以取代机械式的按钮面板&…

ElementUI实现登录注册啊,axios全局配置,CORS跨域

一&#xff0c;项目搭建 认识ElementUI ElementUI是一个基于Vue.js 2.0的桌面端组件库&#xff0c;它提供了一套丰富的UI组件&#xff0c;包括表格、表单、弹框、按钮、菜单等常用组件&#xff0c;具备易用、美观、高效、灵活等优势&#xff0c;能够极大的提高Web应用的开发效…

Lua函数

--函数--无参无返回值 function F1()print("F1函数") end F1() print("*****************")--有参 function F2(a)print("F2函数"..a) end F2(2) --如果传入参数和函数数量不一致 --不会报错只是补空 F2(1,2) print("*****************&quo…

【夏虫语冰】测试服务器端口是否打开(命令行、Python)

文章目录 1、简介2、命令行2.1 telnet2.1.1 工具简介2.1.2 工具配置2.1.3 工具使用 2.2 curl2.2.1 工具简介2.2.1 工具下载2.2.1 工具使用 2.3 wget2.3.1 工具简介2.3.2 工具下载2.3.2 工具使用 2.4 nc2.4.1 工具简介2.4.2 工具安装2.4.3 工具使用 2.5 ssh2.5.1 工具简介2.5.2 …

数据链路层 MTU 对 IP 协议的影响

在介绍主要内容之前&#xff0c;我们先来了解一下数据链路层中的"以太网" 。 “以太网”不是一种具体的网络&#xff0c;而是一种技术标准&#xff1b;既包含了数据链路层的内容&#xff0c;也包含了一些物理层的内容。 下面我们再来了解一下以太网数据帧&#xff…

[Machine learning][Part3] numpy 矢量矩阵操作的基础知识

很久不接触数学了&#xff0c;machine learning需要用到一些数学知识&#xff0c;这里在重温一下相关的数学基础知识 矢量 矢量是有序的数字数组。在表示法中&#xff0c;矢量用小写粗体字母表示。矢量的元素都是相同的类型。例如&#xff0c;矢量不包含字符和数字。数组中元…

Android Jetpack组件架构:ViewModel的原理

Android Jetpack组件架构&#xff1a;ViewModel的原理 导言 本篇文章是关于介绍ViewModel的&#xff0c;由于ViewModel的使用还是挺简单的&#xff0c;这里就不再介绍其的基本应用&#xff0c;我们主要来分析ViewModel的原理。 ViewModel的生命周期 众所周知&#xff0c;一般…

字节一面:深拷贝浅拷贝的区别?如何实现一个深拷贝?

前言 最近博主在字节面试中遇到这样一个面试题&#xff0c;这个问题也是前端面试的高频问题&#xff0c;我们经常需要对后端返回的数据进行处理才能渲染到页面上&#xff0c;一般我们会讲数据进行拷贝&#xff0c;在副本对象里进行处理&#xff0c;以免玷污原始数据&#xff0c…

力扣 -- 10. 正则表达式匹配

解题步骤&#xff1a; 参考代码&#xff1a; class Solution { public:bool isMatch(string s, string p) {int ms.size();int np.size();//处理后续映射关系s s;//处理后续映射关系p p;vector<vector<bool>> dp(m1,vector<bool>(n1));//初始化dp[0][0]true…

支付宝支付模块开发

生成二维码 使用Hutool工具类生成二维码 引入对应的依赖 <dependency><groupId>cn.hutool</groupId><artifactId>hutool-all</artifactId><version>5.7.5</version> </dependency><dependency><groupId>com.go…

公司知识库搭建步骤,知识库建设与运营的四个步骤分享

在知识管理方面&#xff0c;团队中的每一员&#xff0c;都像是一名独行侠&#xff0c;自己的知识&#xff0c;满足自己的需要&#xff0c;这其中&#xff0c;就造成了很多无意义的精力消耗。 公司知识库搭建必要性 比如&#xff0c;一名员工撰写一QA文档&#xff0c;并没有将它…