KNN(下):数据分析 | 数据挖掘 | 十大算法之一

⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️
🐴作者:秋无之地

🐴简介:CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作,主要擅长领域有:爬虫、后端、大数据开发、数据分析等。

🐴欢迎小伙伴们点赞👍🏻、收藏⭐️、留言💬、关注🤝,关注必回关

上一篇文章已经跟大家介绍过《KNN(上):数据分析 | 数据挖掘 | 十大算法之一》,相信大家对KNN(上)都有一个基本的认识。下面我讲一下,KNN(下):数据分析 | 数据挖掘 | 十大算法之一

KNN 实际上是计算待分类物体与其他物体之间的距离,然后通过统计最近的 K 个邻居的分类情况,来决定这个物体的分类情况。

一、如何在 sklearn 中使用 KNN

在 Python 的 sklearn 工具包中有 KNN 算法。KNN 既可以做分类器,也可以做回归。如果是做分类,你需要引用:

from sklearn.neighbors import KNeighborsClassifier

如果是做回归,你需要引用:

from sklearn.neighbors import KNeighborsRegressor

从名字上你也能看出来 Classifier 对应的是分类,Regressor 对应的是回归。一般来说如果一个算法有 Classifier 类,都能找到相应的 Regressor 类。比如在决策树分类中,你可以使用 DecisionTreeClassifier,也可以使用决策树来做回归 DecisionTreeRegressor。

好了,我们看下如何在 sklearn 中创建 KNN 分类器。

这里,我们使用构造函数 KNeighborsClassifier(n_neighbors=5, weights=‘uniform’, algorithm=‘auto’, leaf_size=30),这里有几个比较主要的参数,我分别来讲解下:

1.n_neighbors:即 KNN 中的 K 值,代表的是邻居的数量。K 值如果比较小,会造成过拟合。如果 K 值比较大,无法将未知物体分类出来。一般我们使用默认值 5。

2.weights:是用来确定邻居的权重,有三种方式:

  • weights=uniform,代表所有邻居的权重相同;
  • weights=distance,代表权重是距离的倒数,即与距离成反比;
  • 自定义函数,你可以自定义不同距离所对应的权重。大部分情况下不需要自己定义函数。

3.algorithm:用来规定计算邻居的方法,它有四种方式:

  • algorithm=auto,根据数据的情况自动选择适合的算法,默认情况选择 auto;
  • algorithm=kd_tree,也叫作 KD 树,是多维空间的数据结构,方便对关键数据进行检索,不过 KD 树适用于维度少的情况,一般维数不超过 20,如果维数大于 20 之后,效率反而会下降;
  • algorithm=ball_tree,也叫作球树,它和 KD 树一样都是多维空间的数据结果,不同于 KD 树,球树更适用于维度大的情况;
  • algorithm=brute,也叫作暴力搜索,它和 KD 树不同的地方是在于采用的是线性扫描,而不是通过构造树结构进行快速检索。当训练集大的时候,效率很低。

​4.leaf_size:代表构造 KD 树或球树时的叶子数,默认是 30,调整 leaf_size 会影响到树的构造和搜索速度。

创建完 KNN 分类器之后,我们就可以输入训练集对它进行训练,这里我们使用 fit() 函数,传入训练集中的样本特征矩阵和分类标识,会自动得到训练好的 KNN 分类器。然后可以使用 predict() 函数来对结果进行预测,这里传入测试集的特征矩阵,可以得到测试集的预测分类结果。

二、如何用 KNN 对手写数字进行识别分类

手写数字数据集是个非常有名的用于图像识别的数据集。数字识别的过程就是将这些图片与分类结果 0-9 一一对应起来。完整的手写数字数据集 MNIST 里面包括了 60000 个训练样本,以及 10000 个测试样本。如果你学习深度学习的话,MNIST 基本上是你接触的第一个数据集。

今天我们用 sklearn 自带的手写数字数据集做 KNN 分类,你可以把这个数据集理解成一个简版的 MNIST 数据集,它只包括了 1797 幅数字图像,每幅图像大小是 8*8 像素。

好了,我们先来规划下整个 KNN 分类的流程:

整个训练过程基本上都会包括三个阶段:

  1. 数据加载:我们可以直接从 sklearn 中加载自带的手写数字数据集;
  2. 准备阶段:在这个阶段中,我们需要对数据集有个初步的了解,比如样本的个数、图像长什么样、识别结果是怎样的。你可以通过可视化的方式来查看图像的呈现。通过数据规范化可以让数据都在同一个数量级的维度。另外,因为训练集是图像,每幅图像是个 8*8 的矩阵,我们不需要对它进行特征选择,将全部的图像数据作为特征值矩阵即可;
  3. 分类阶段:通过训练可以得到分类器,然后用测试集进行准确率的计算。

好了,按照上面的步骤,我们一起来实现下这个项目。

首先是加载数据和对数据的探索:

# 加载数据
digits = load_digits()
data = digits.data
# 数据探索
print(data.shape)
# 查看第一幅图像
print(digits.images[0])
# 第一幅图像代表的数字含义
print(digits.target[0])
# 将第一幅图像显示出来
plt.gray()
plt.imshow(digits.images[0])
plt.show()

运行结果:

(1797, 64)
[[ 0.  0.  5. 13.  9.  1.  0.  0.][ 0.  0. 13. 15. 10. 15.  5.  0.][ 0.  3. 15.  2.  0. 11.  8.  0.][ 0.  4. 12.  0.  0.  8.  8.  0.][ 0.  5.  8.  0.  0.  9.  8.  0.][ 0.  4. 11.  0.  1. 12.  7.  0.][ 0.  2. 14.  5. 10. 12.  0.  0.][ 0.  0.  6. 13. 10.  0.  0.  0.]]
0

我们对原始数据集中的第一幅进行数据可视化,可以看到图像是个 8*8 的像素矩阵,上面这幅图像是一个“0”,从训练集的分类标注中我们也可以看到分类标注为“0”。

sklearn 自带的手写数字数据集一共包括了 1797 个样本,每幅图像都是 8*8 像素的矩阵。因为并没有专门的测试集,所以我们需要对数据集做划分,划分成训练集和测试集。因为 KNN 算法和距离定义相关,我们需要对数据进行规范化处理,采用 Z-Score 规范化,代码如下:

# 分割数据,将25%的数据作为测试集,其余作为训练集(你也可以指定其他比例的数据作为训练集)
train_x, test_x, train_y, test_y = train_test_split(data, digits.target, test_size=0.25, random_state=33)
# 采用Z-Score规范化
ss = preprocessing.StandardScaler()
train_ss_x = ss.fit_transform(train_x)
test_ss_x = ss.transform(test_x)

然后我们构造一个 KNN 分类器 knn,把训练集的数据传入构造好的 knn,并通过测试集进行结果预测,与测试集的结果进行对比,得到 KNN 分类器准确率,代码如下:

# 创建KNN分类器
knn = KNeighborsClassifier() 
knn.fit(train_ss_x, train_y) 
predict_y = knn.predict(test_ss_x) 
print("KNN准确率: %.4lf" % accuracy_score(test_y, predict_y))

运行结果:

KNN准确率: 0.9756

好了,这样我们就构造好了一个 KNN 分类器。之前我们还讲过 SVM、朴素贝叶斯和决策树分类。我们用手写数字数据集一起来训练下这些分类器,然后对比下哪个分类器的效果更好。代码如下:

# 创建SVM分类器
svm = SVC()
svm.fit(train_ss_x, train_y)
predict_y=svm.predict(test_ss_x)
print('SVM准确率: %0.4lf' % accuracy_score(test_y, predict_y))
# 采用Min-Max规范化
mm = preprocessing.MinMaxScaler()
train_mm_x = mm.fit_transform(train_x)
test_mm_x = mm.transform(test_x)
# 创建Naive Bayes分类器
mnb = MultinomialNB()
mnb.fit(train_mm_x, train_y) 
predict_y = mnb.predict(test_mm_x) 
print("多项式朴素贝叶斯准确率: %.4lf" % accuracy_score(test_y, predict_y))
# 创建CART决策树分类器
dtc = DecisionTreeClassifier()
dtc.fit(train_mm_x, train_y) 
predict_y = dtc.predict(test_mm_x) 
print("CART决策树准确率: %.4lf" % accuracy_score(test_y, predict_y))

运行结果如下:

SVM准确率: 0.9867
多项式朴素贝叶斯准确率: 0.8844
CART决策树准确率: 0.8556

这里需要注意的是,我们在做多项式朴素贝叶斯分类的时候,传入的数据不能有负数。因为 Z-Score 会将数值规范化为一个标准的正态分布,即均值为 0,方差为 1,数值会包含负数。因此我们需要采用 Min-Max 规范化,将数据规范化到[0,1]范围内。​

​好了,我们整理下这 4 个分类器的结果。

你能看出来 KNN 的准确率还是不错的,和 SVM 不相上下。

你可以自己跑一遍整个代码,在运行前还需要 import 相关的工具包(下面的这些工具包你都会用到,所以都需要引用):

from sklearn.model_selection import train_test_split
from sklearn import preprocessing
from sklearn.metrics import accuracy_score
from sklearn.datasets import load_digits
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.naive_bayes import MultinomialNB
from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt

​代码中,我使用了 train_test_split 做数据集的拆分,使用 matplotlib.pyplot 工具包显示图像,使用 accuracy_score 进行分类器准确率的计算,使用 preprocessing 中的 StandardScaler 和 MinMaxScaler 做数据的规范化。

 三、总结

今天我带你一起做了手写数字分类识别的实战,分别用 KNN、SVM、朴素贝叶斯和决策树做分类器,并统计了四个分类器的准确率。在这个过程中你应该对数据探索、数据可视化、数据规范化、模型训练和结果评估的使用过程有了一定的体会。在数据量不大的情况下,使用 sklearn 还是方便的。

如果数据量很大,比如 MNIST 数据集中的 6 万个训练数据和 1 万个测试数据,那么采用深度学习 +GPU 运算的方式会更适合。因为深度学习的特点就是需要大量并行的重复计算,GPU 最擅长的就是做大量的并行计算。

版权声明

本文章版权归作者所有,未经作者允许禁止任何转载、采集,作者保留一切追究的权利。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/146082.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

初识Java 12-1 流

目录 Java 8对流的支持 流的创建 随机数流 int类型的区间范围 generate() iterate() 流生成器 Arrays 正则表达式 本笔记参考自: 《On Java 中文版》 ||| 流的概念:流是一个与任何特定的存储机制都没有关系的元素序列。 流与对象的成批处理有关…

链表经典面试题(二)

返回中间结点 1.中间结点的题目2.中间结点的图文分析3.中间结点的基本代码4.中间结点的优化代码 1.中间结点的题目 2.中间结点的图文分析 方法1:先求整体长度,再除以2,所得到的就是中间结点 方法2:双指针法,快指针走两…

读者写者问题—内含408真题

读者写者问题—含408 一、问题描述 一个数据问价或记录可以被多个进程共享,我们把只读该文件的进程称为“读者进程”,其他进程为“写者进程”。允许多个进程同时读一个共享对象,但不允许一个写者进程和其他写者进程或读者进程同时访问共享对…

使用ElementUI结合Vue完善主页的导航菜单和书籍管理以及后台数据分页查询

目录 动态树 数据表 案列 书籍管理 动态树 动态树(Dynamic tree)是一种数据结构,它可以在树中动态地插入、删除和修改节点。与静态树不同,静态树的节点是固定的,一旦构建完成就无法再进行修改。而动态树可以在运行时…

Leetcode 1239. 串联字符串的最大长度

文章目录 题目代码&#xff08;9.29 首刷部分看解析&#xff09; 题目 Leetcode 1239. 串联字符串的最大长度 代码&#xff08;9.29 首刷部分看解析&#xff09; class Solution { public:unordered_set<int> skip;unordered_set<char> used;int maxLength(vecto…

cesium 雷达扫描 (线行扩散效果)

cesium 雷达扫描 (线行扩散效果) 1、实现方法 使用ellipse方法加载圆型,修改ellipse中material方法来实现效果 2、示例代码 2.1、 <!DOCTYPE html> <html lang="en"><head><<

Edge扩展插件推荐专业视频下载器

专业视频下载器&#xff0c;这款扩展插件非常好用&#xff0c;强烈推荐。只要能打开的视频&#xff0c;都能下载。 安装完成是这样的&#xff1a; 有用记得点赞。

在linux下预览markdown的方法,转换成html和pdf

背景 markdown是一种便于编写和版本控制的格式&#xff0c;但却不便于预览——特别是包含表格等复杂内容时&#xff0c;单纯的语法高亮是远远不够的——这样就不能边预览边调整内容&#xff0c;需要找到一种预览方法。 思路 linux下有个工具&#xff0c;叫pandoc&#xff0c…

日期范围搜索

1.日期范围选择界面 <?xml version"1.0" encoding"utf-8"?> <ScrollViewandroid:layout_width"fill_parent"android:layout_height"fill_parent"xmlns:android"http://schemas.android.com/apk/res/android">…

mysql面试题6:MySQL索引的底层原理,是如何实现的?B+树和B树的区别?

该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点 面试官:MySQL索引的底层原理,是如何实现的? MySQL索引的底层实现是通过B+树来实现的。B+树是一种多叉平衡查找树,它的特点是能够高效地支持数据的插入…

简历项目优化关键方法论-START

START方法论是非常著名的面试法则&#xff0c;经常被面试官使用的工具 Situation:情况、事情、项目需求是在什么情况下发生Task:任务&#xff0c;你负责的做的是什么Action:动作&#xff0c;针对这样的情况分析&#xff0c;你采用了什么行动方式Result:结果&#xff0c;在这样…

设计模式8、装饰者模式 Decorator

解释说明&#xff1a;动态地给一个对象增加一些额外的职责。就扩展功能而言&#xff0c;装饰模式提供了一种比使用子类更加灵活的替代方案 抽象构件&#xff08;Component&#xff09;&#xff1a;定义一个抽象接口以规范准备收附加责任的对象 具体构件&#xff08;ConcreteCom…

八、3d场景的区域光墙

在遇到区域展示的时候我们就能看到炫酷的区域选中效果&#xff0c;那么代码是怎么编辑的呢&#xff0c;今天咱们就好好说说&#xff0c;下面看实现效果。 思路&#xff1a; 首先&#xff0c;光墙肯定有多个&#xff0c;那么必须要创建一个新的js文件来作为他的原型对象。这个光…

unity打包工具

接手了一个项目&#xff0c;打包存在重大问题&#xff0c;故此在unity addressables 基础上弄了一个简单的打包工具&#xff0c;代码也都做好了注释&#xff0c;操作非常简单以下为操作方法&#xff1a; 首先设置导入Addressables插件&#xff0c;并设置好详细参见&#xff1a…

bypass disable_function 学习

LD_PRELOAD 我是在做了 buu的 REC ME 来做这个系列 所以 LD_PRELOAD 已经有了解了 我们来做这个题目 CTFHub Bypass disable_function —— LD_PRELOAD本环境来源于AntSword-Labs <!DOCTYPE html> <html> <head><title>CTFHub Bypass disable_func…

K-Means(上):数据分析 | 数据挖掘 | 十大算法之一

⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️ &#x1f434;作者&#xff1a;秋无之地 &#x1f434;简介&#xff1a;CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作&#xff0c;主要擅长领域有&#xff1a;爬虫、后端、大数据…

liunx的攻击

1.场景和分析 2.病毒分析 3.解决步骤

CTF-python爬虫学习笔记

学习链接 【Python爬虫】爆肝两个月&#xff01;拜托三连了&#xff01;这绝对是全B站最用心&#xff08;没有之一&#xff09;的Python爬虫公开课程&#xff0c;从入门到&#xff08;不&#xff09;入狱 &#xff01; 。知识 1.1 出现错误 复制红框中的内容去查找 1.2 打印…

面试题:线程池灵魂8连问,你挡的住吗?

文章目录 1. 面试官&#xff1a;日常工作中有用到线程池吗&#xff1f;什么是线程池&#xff1f;为什么要使用线程池&#xff1f;2. 面试官&#xff1a;ThreadPoolExecutor 都有哪些核心参数&#xff1f;3. 面试官&#xff1a;什么是阻塞队列&#xff1f;说说常用的阻塞队列有哪…

Wi-Fi直连分享:Android设备间的高速连接

Wi-Fi直连分享&#xff1a;Android设备间的高速连接 引言 随着无线局域网&#xff08;Wi-Fi&#xff09;的普及和发展&#xff0c;使用Wi-Fi直连技术&#xff08;P2P&#xff09;在没有中间接入点的情况下实现设备间直接互联成为可能。通过Wi-Fi直连&#xff0c;具备相应硬件…