机器学习(监督学习)笔记

笔记内容

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

代码部分

#  实验2-1
# 批梯度下降
import pandas as pd
import numpy as np
import random as rd 
import matplotlib.pyplot as plt
# load dataset
df = pd.read_csv('temperature_dataset.csv')
data = np.array(df)
y0 = np.array([i[0] for i in data]) # 第一列作为样本标注
y14 = np.array([i[1:] for i in data])#2-5 作为四维输出特征
xuexi = 0.0001 # 学习率
ep = 20
epoch = [ep] # 遍历次数
m =  np.size(data,0) # 获取样本长度 m
alls = [i for i in range(m)]
trainsyo = [] # 训练集标注
testyo = [] # 测试集标注
trainsy14 = [] # 训练集输入特征
testy14 = [] # 测试集输入特征
tra = int(m * 0.8) # 训练集长度
tes = m - tra # 测试集长度
for i in range(tra): # 获取训练集a = rd.choice(alls) # 从alls中随机选取一个trainsyo.append(y0[a]) # 增加训练集标注trainsy14.append(y14[a])#  增加训练集输入特征alls.remove(a)
trainsy14 = np.array(trainsy14) # 训练集list转变array
trainsyo = np.array(trainsyo) # 训练集list转变array
for a in alls: # 获取测试集
#     global y0
#     global y14testyo.append(y0[a])# 增加测试集标注testy14.append(y14[a]) # 增加测试集输入特征
w = np.array([rd.random() for i in range(4)]) # 初次随机获取权重w
# print(w)
b = [rd.random()] # 初次随机获取偏差b
RMSE = [] # 均方根误差
RMSE2  = [] # 训练集
while(epoch[0]): # 开始遍历epoch[0]  -=  1 # 设置的超参数epoch -1e =np.dot(testy14,w.transpose()) + b[0] - testyoRMSE.append((np.dot(e,e.transpose())/tes)**0.5)e = np.dot(trainsy14,w.transpose()) + b[0] - trainsyo # n*1RMSE2.append((np.dot(e,e.transpose())/tra)**0.5)b[0] -= 2*xuexi*np.dot(np.ones(tra),e)/traw -= 2*xuexi*np.dot(e.transpose(),trainsy14)/tra
# 绘图部分
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
x = [i+1 for i in range(ep)] # 设置x坐标 
print(min(RMSE),min(RMSE2))
ymax = max(RMSE) + 1
plt.xlabel('epoch') # 设置x坐标名称
plt.ylabel('RMSE') # 设置y坐标名称
plt.title('训练情况') # 设置标题
plt.plot(x,RMSE,color='r',marker='o',linestyle='dashed')
# plt.plot(x,RMSE,color='r') # 设置绘图的基本参数
plt.axis([0,ep+ 1,0,ymax]) # 设置xy的取值范围
plt.show() # 展示图片
# 2-2
import pandas as pd
import numpy as np
import random as rd 
import matplotlib.pyplot as plt
# load dataset
df = pd.read_csv('temperature_dataset.csv')
data = np.array(df)
y0 = np.array([i[0] for i in data]) # 第一列作为样本标注
y14 = np.array([i[3] for i in data])# 选第三维作为输入特征
xuexi = 0.0001 # 学习率
ep = 20
epoch = [ep] # 遍历次数
m =  np.size(data,0) # 获取样本长度 m
alls = [i for i in range(m)]
trainsyo = [] # 训练集标注
testyo = [] # 测试集标注
trainsy14 = [] # 训练集输入特征
testy14 = [] # 测试集输入特征
tra = int(m * 0.8) # 训练集长度
tes = m - tra # 测试集长度
allw = [] # 训练过程中的全部的w
allb = [] # 训练过程中的全部的b
for i in range(tra): # 获取训练集a = rd.choice(alls) # 从alls中随机选取一个trainsyo.append(y0[a]) # 增加训练集标注trainsy14.append(y14[a])#  增加训练集输入特征alls.remove(a)
trainsy14 = np.array(trainsy14) # 训练集list转变array
trainsyo = np.array(trainsyo) # 训练集list转变array
for a in alls: # 获取测试集
#     global y0
#     global y14testyo.append(y0[a])# 增加测试集标注testy14.append(y14[a]) # 增加测试集输入特征
w = np.array([rd.random() for i in range(1)]) # 初次随机获取权重w
# print(w)
b = [rd.random()] # 初次随机获取偏差b
RMSE = [] # 均方根误差
while(epoch[0]): # 开始遍历epoch[0]  -=  1 # 设置的超参数epoch -1newb = 0 # 求解的b的值newW = int() # 求解的w的值for i in range(tra): # 遍历全部的训练集a = np.dot(w,trainsy14[i].transpose()) + b[0] - trainsyo[i] # 计算(W*xT + b - y )newb += float(a) # 累加if type(newW) == int: newW = trainsy14[i].transpose()*float(a) # 初次赋值else:newW += trainsy14[i].transpose()*float(a) # 累加ww -= xuexi*newW * (2/tra) # 更新wb[0] -= xuexi*newb *2 / tra # 更新ballw.append(w[0])allb.append(b[0])
yall = []
xs= [-5,-3,--1,0,1,3,5] # x 轴模板
xall = [xs for i in range(ep)]
ymax = 0
ymin = 30
for i in range(ep):yall.append([allw[i]*t + allb[i] for t in xs])ymax = max(ymax,max(yall[i]))ymin  = min(ymin,min(yall[i]))
#绘图部分
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
x = [i+1 for i in range(ep)] # 设置x坐标 
plt.xlabel('x') # 设置x坐标名称
plt.ylabel('y') # 设置y坐标名称
plt.title('拟合直线变化') # 设置标题
plots = []
for i in range(ep):c='r'if i == 0:c = 'b'elif i == ep -1:c = 'k'p, = plt.plot(xall[i],yall[i],color=c,marker='o',linestyle='dashed')plots.append(p)
# plt.plot(x,RMSE,color='r') # 设置绘图的基本参数
plt.legend((plots[0],plots[-1]),['start','end'])
plt.axis([-6,6,ymin-1,ymax+1]) # 设置xy的取值范围
plt.show() # 展示图片
# 2-3
# 随机梯度下降
import pandas as pd
import numpy as np
import random as rd 
import matplotlib.pyplot as plt
# load dataset
np.random.seed(100)
rng = np.random.default_rng()
df = pd.read_csv('temperature_dataset.csv')
data = np.array(df)
y0 = np.array([i[0] for i in data]) # 第一列作为样本标注
y14 = np.array([i[1:] for i in data])#2-5 作为四维输出特征
xuexi = 0.0001 # 学习率
ep = 200
epoch = [ep] # 遍历次数
m =  np.size(data,0) # 获取样本长度 m
alls = [i for i in range(m)]
trainsyo = [] # 训练集标注
testyo = [] # 测试集标注
trainsy14 = [] # 训练集输入特征
testy14 = [] # 测试集输入特征
tra = int(m * 0.8) # 训练集长度
tes = m - tra # 测试集长度
for i in range(tra): # 获取训练集a = rd.choice(alls) # 从alls中随机选取一个trainsyo.append(y0[a]) # 增加训练集标注trainsy14.append(y14[a])#  增加训练集输入特征alls.remove(a)
trainsy14 = np.array(trainsy14) # 训练集list转变array
trainsyo = np.array(trainsyo) # 训练集list转变array
for a in alls: # 获取测试集
#     global y0
#     global y14testyo.append(y0[a])# 增加测试集标注testy14.append(y14[a]) # 增加测试集输入特征
w = np.array([rd.random() for i in range(4)]) # 初次随机获取权重w
# print(w)
b = [rd.random()] # 初次随机获取偏差b
RMSE = [] # 均方根误差
while(epoch[0]): # 开始遍历epoch[0]  -=  1 # 设置的超参数epoch -1newtra = [i for i in range(tra)]rd.shuffle(newtra)i = rd.choice(newtra)a = np.dot(w,trainsy14[i].transpose()) + b[0] - trainsyo[i] # 计算(W*xT + b - y )b[0] -=  2*xuexi*aw  -= 2*xuexi*trainsy14[i].transpose()*a # 初次赋值y = 0 # 中间变量用于存储RMSE每一轮的for i in range(tes): # y += (np.dot(w,testy14[i].transpose()) + b[0] - testyo[i])**2 # 计算均方根误差,并累加 RMSE.append((y/tes)**0.5)
# 绘图部分
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
x = [i+1 for i in range(ep)] # 设置x坐标 
print(min(RMSE))
ymax = max(RMSE) + 1
plt.xlabel('epoch') # 设置x坐标名称
plt.ylabel('RMSE') # 设置y坐标名称
plt.title('训练情况') # 设置标题
plt.plot(x,RMSE,color='r',marker='o',linestyle='dashed')
# plt.plot(x,RMSE,color='r') # 设置绘图的基本参数
plt.axis([0,ep+ 1,0,ymax]) # 设置xy的取值范围
plt.show() # 展示图片
# 2-4
# 小批梯度下降
import pandas as pd
import numpy as np
import random as rd 
import matplotlib.pyplot as plt
# load dataset
df = pd.read_csv('temperature_dataset.csv')
data = np.array(df)
y0 = np.array([i[0] for i in data]) # 第一列作为样本标注
y14 = np.array([i[1:] for i in data])#2-5 作为四维输出特征
xuexi = 0.0001 # 学习率
batch = 30 # 设置批长度
ep = 20 # 设置遍历次数
epoch = [ep] # 遍历次数
m =  np.size(data,0) # 获取样本长度 m
alls = [i for i in range(m)]
trainsyo = [] # 训练集标注
testyo = [] # 测试集标注
trainsy14 = [] # 训练集输入特征
testy14 = [] # 测试集输入特征
tra = int(m * 0.8) # 训练集长度
tes = m - tra # 测试集长度
for i in range(tra): # 获取训练集a = rd.choice(alls) # 从alls中随机选取一个trainsyo.append(y0[a]) # 增加训练集标注trainsy14.append(y14[a])#  增加训练集输入特征alls.remove(a)
trainsy14 = np.array(trainsy14) # 训练集list转变array
trainsyo = np.array(trainsyo) # 训练集list转变array
for a in alls: # 获取测试集
#     global y0
#     global y14testyo.append(y0[a])# 增加测试集标注testy14.append(y14[a]) # 增加测试集输入特征
w = np.array([rd.random() for i in range(4)]) # 初次随机获取权重w
# print(w)
b = [rd.random()] # 初次随机获取偏差b
RMSE2 = []
RMSE = [] # 均方根误差
while(epoch[0]): # 开始遍历epoch[0]  -=  1 # 设置的超参数epoch -1if not batch:breaktimes = tra // batchif tra % batch:times += 1for _ in range(times):starts = _*batchends = (_+1)*batchif (_+1)*batch >= tra:ends = trabatch = tra%batchif(not batch):breake =np.dot(testy14,w.transpose()) + b[0] - testyoRMSE.append((np.dot(e,e.transpose())/tes)**0.5)e = np.dot(trainsy14[starts:ends],w.transpose()) + b[0] - trainsyo[starts:ends] # n*1RMSE2.append((np.dot(e,e.transpose())/batch)**0.5)b[0] -= 2*xuexi*np.dot(np.ones(batch),e)/batchw -= 2*xuexi*np.dot(e.transpose(),trainsy14[starts:ends])/batch
# 绘图部分
print(min(RMSE))
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
x = [i+1 for i in range(20)] # 设置x坐标 
RMSE = RMSE[:20]
ymax = max(RMSE[:20]) + 1
plt.xlabel('epoch') # 设置x坐标名称
plt.ylabel('RMSE') # 设置y坐标名称
plt.title('训练情况') # 设置标题
plt.plot(x,RMSE,color='r',marker='o',linestyle='dashed')
# plt.plot(x,RMSE,color='r') # 设置绘图的基本参数
plt.axis([-2,len(RMSE)+ 6,0,ymax+3]) # 设置xy的取值范围
plt.show() # 展示图片
#2-5 
# 各种标准化
import pandas as pd
import numpy as np
import random as rd 
import matplotlib.pyplot as plt
# load dataset
df = pd.read_csv('temperature_dataset.csv')
data = np.array(df)
y0 = np.array([i[0] for i in data]) # 第一列作为样本标注
y14 = np.array([i[1:] for i in data])#2-5 作为四维输出特征
# 标准化
# mean = np.mean(y14,0) # 平均值
# stds = np.std(y14,0,ddof=1)
# y14 = (y14-mean)/stds
# 最小最大归一化
# maxs = np.amax(y14,0)
# mins = np.amin(y14,0)
# y14 = (y14 - mins)/(maxs-mins)
# 均值归一化
mean = np.mean(y14,0) # 平均值
maxs = np.amax(y14,0)
mins = np.amin(y14,0)
y14 = (y14-mean)/(maxs - mins)
xuexi = 0.1 # 学习率
ep = 2000
epoch = [ep] # 遍历次数
m =  np.size(data,0) # 获取样本长度 m
alls = [i for i in range(m)]
trainsyo = [] # 训练集标注
testyo = [] # 测试集标注
trainsy14 = [] # 训练集输入特征
testy14 = [] # 测试集输入特征
tra = int(m * 0.8) # 训练集长度
tes = m - tra # 测试集长度
for i in range(tra): # 获取训练集a = rd.choice(alls) # 从alls中随机选取一个trainsyo.append(y0[a]) # 增加训练集标注trainsy14.append(y14[a])#  增加训练集输入特征alls.remove(a)
trainsy14 = np.array(trainsy14) # 训练集list转变array
trainsyo = np.array(trainsyo) # 训练集list转变array
for a in alls: # 获取测试集testyo.append(y0[a])# 增加测试集标注testy14.append(y14[a]) # 增加测试集输入特征
# w = np.array([rd.random() for i in range(4)]) # 初次随机获取权重w
w =np.array([0.,0.,0.,0.])
# print(w)
# b = [rd.random()] # 初次随机获取偏差b
b = [0.]
RMSE = [] # 均方根误差
RMSE2 = [] # 训练集均方根误差
while(epoch[0]): # 开始遍历epoch[0]  -=  1 # 设置的超参数epoch -1e =np.dot(testy14,w.transpose()) + b[0] - testyoRMSE.append((np.dot(e,e.transpose())/tes)**0.5)e = np.dot(trainsy14,w.transpose()) + b[0] - trainsyo # n*1RMSE2.append((np.dot(e,e.transpose())/tra)**0.5)b[0] -= 2*xuexi*np.dot(np.ones(tra),e)/traw -= 2*xuexi*np.dot(e.transpose(),trainsy14)/tra
# 绘图部分
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
x = [i+1 for i in range(ep)] # 设置x坐标 
print(min(RMSE),min(RMSE2))
ymax = max(RMSE) + 1
plt.xlabel('epoch') # 设置x坐标名称
plt.ylabel('RMSE') # 设置y坐标名称
plt.title('训练情况') # 设置标题
plt.plot(x,RMSE,color='r',linestyle='dashed')
plt.plot(x,RMSE2,color='k',linestyle='dashed')
# plt.plot(x,RMSE,color='r') # 设置绘图的基本参数
plt.axis([0,ep+ 1,0,ymax]) # 设置xy的取值范围
plt.show() # 展示图片
# 2-8
# 线性回归对百分制成绩进行二分类
import numpy as np
import matplotlib.pyplot as plt
import random as rd
# parameters
dataset = 2 # index of training dataset
epoch = 2000
sdy = 0.0001
# datasets for training
if dataset == 1: # balanced datasetx_train = np.array([50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70]).reshape((1, -1))y_train = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]).reshape((1, -1))
elif dataset == 2: # unbalanced dataset 1x_train = np.array([0, 5, 10, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70]).reshape((1, -1))y_train = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]).reshape((1, -1))
elif dataset == 3: # unbalanced dataset 2x_train = np.array([0, 5, 10, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73]).reshape((1, -1))y_train = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]).reshape((1, -1))
m_train = x_train.size # number of training examples
w = np.array([0.]).reshape((1, -1))# 权重
b = np.array([0.])# 偏差
# 批梯度下降
for _  in range(epoch):e = np.dot(w,x_train) + b - y_train
#     print(e)b -= 2*sdy*np.dot(e,np.ones(m_train))/m_trainw -= 2*sdy*np.dot(x_train,e.transpose())/m_train
# 画图部分
yc = []
yy = []
lines = w[0][0]*60 + b[0] 
for i in x_train[0]:datas = w[0][0]*i + b[0]yy.append(datas)yc.append( 1 if datas >=  lines  else 0)
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
plt.xlabel('分数')
plt.ylabel('结果')
plt.plot(x_train[0],yy)
plt.scatter(x_train[0],yc)
plt.show()
# 2-9
# 均方误差代价函数->逻辑回归模型
import matplotlib.pyplot as plt
import pandas
import numpy as np
import random as rd
# load dataset
df = pandas.read_csv('alcohol_dataset.csv')
data = np.array(df)
y4 = np.array([i[5:] for i in data]) # 标注
y03 = np.array([i[:5] for i in data]) # 4维输入特征
# 标准化
mean = np.mean(y03,0) # 平均值
stds = np.std(y03,0,ddof=1) # 标准差
y03 = (y03-mean)/stds# 标准化完成
# 学习率
xuexi = 0.1
# 训练次数
epoch = 30000
# 区分训练集和测试集
m = len(data) # 样本总长度
__ = [i for i in range(m)]
tram = int(m*0.7) # 训练集长度
tesm = m - tram # 测试集长度
trainx = [] # 训练集输入特征
trainy = [] # 训练集标注
testx = [] # 测试集输入特征
testy = [] # 测试集标注
# 开始随机筛选训练集
for i in range(tram):_ = rd.choice(__)trainx.append(y03[_])trainy.append(y4[_])__.remove(_)
# 剩下的样本就是 测试集合
for i in __:testx.append(y03[i])testy.append(y4[i])
trainx,trainy,testx,testy= np.array(trainx),np.array(trainy),np.array(testx),np.array(testy) # list => np.array
# 设置权重w,和偏差b
w = np.array([0.,0.,0.,0.,0.]).reshape(1,-1)
b = np.array([0.]).reshape(1,-1)
REMS = []
for _ in range(epoch):y = -(np.dot(w,trainx.transpose()) + b) # -wTx + b,1*ny = 1/(1 + np.exp(y)) # 计算1/(1+e(-(wTx+b)))1*n e = y - trainy.transpose() # 计算 e  1*nw -= 2*xuexi*np.dot((y*(1-y)*e),trainx)/tram # 1*4 # 更新wb -= 2*xuexi*np.dot((y*(1-y)),e.transpose()) / tram # 更新b# 测试集REMS 计算y = -(np.dot(w,testx.transpose()) + b) # -wTx + b,1*n y = 1/(1 + np.exp(y)) # 1*n e = y - testy.transpose() # 1*na = np.dot(e,e.transpose())[0][0]/tesmREMS.append(a**0.5)# 绘图部分
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
x = [i for i in range(epoch)]
print(min(REMS))
plt.plot(x,REMS,color='b',linestyle='dashed')
plt.xlabel('epoch')
plt.ylabel('REMS')
plt.title('训练情况')
plt.show()
# 3D图像展示2-9
import matplotlib.pyplot as plt
import pandas
import numpy as np
import random as rd
# load dataset
df = pandas.read_csv('alcohol_dataset.csv')
data = np.array(df)
y4 = np.array([i[5:] for i in data]) # 标注
y03 = np.array([i[:1] for i in data]) # 1维输入特征
# 标准化
mean = np.mean(y03,0) # 平均值
stds = np.std(y03,0,ddof=1) # 标准差
y03 = (y03-mean)/stds# 标准化完成
# 学习率
xuexi = 0.1
# 训练次数
epoch = 1000
# 区分训练集和测试集
m = len(data) # 样本总长度
__ = [i for i in range(m)]
tram = int(m*0.7) # 训练集长度
tesm = m - tram # 测试集长度
trainx = [] # 训练集输入特征
trainy = [] # 训练集标注
testx = [] # 测试集输入特征
testy = [] # 测试集标注
# 开始随机筛选训练集
for i in range(tram):_ = rd.choice(__)trainx.append(y03[_])trainy.append(y4[_])__.remove(_)
# 剩下的样本就是 测试集合
for i in __:testx.append(y03[i])testy.append(y4[i])
trainx,trainy,testx,testy= np.array(trainx),np.array(trainy),np.array(testx),np.array(testy) # list => np.array
# 设置权重w,和偏差b
w = np.array([10.]).reshape(1,-1)
b = np.array([0.]).reshape(1,-1)
REMS = []
Wchange=[] # w的变化过程
Bchange=[] # B的变化过程
for _ in range(epoch):y = -(np.dot(w,trainx.transpose()) + b) # -wTx + b,1*ny = 1/(1 + np.exp(y)) # 计算1/(1+e(-(wTx+b)))1*n e = y - trainy.transpose() # 计算 e  1*nw -= 2*xuexi*np.dot((y*(1-y)*e),trainx)/tram # 1*4 # 更新wb -= 2*xuexi*np.dot((y*(1-y)),e.transpose()) / tram # 更新b# 测试集REMS 计算y = -(np.dot(w,testx.transpose()) + b) # -wTx + b,1*n y = 1/(1 + np.exp(y)) # 1*n e = y - testy.transpose() # 1*na = np.dot(e,e.transpose())[0][0]/tesmREMS.append(a**0.5)Wchange.append(w[0][0])Bchange.append(b[0][0])# 绘图部分
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
Wchange, Bchange=np.meshgrid(Wchange,Bchange)
_ = REMS[:]
REMS = np.array([_ for i in range(epoch)])
# 绘制3D曲面图
ax.plot_surface(Bchange, Wchange, REMS, cmap='viridis')# 设置图形属性
ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')
ax.set_title('3D Surface Plot')# 显示图形
plt.show()
# 实验2-10
# 交叉熵代价函数
import matplotlib.pyplot as plt
import pandas
import numpy as np
import random as rd
# 基本参数确定
epoch = 10000
xuexi = 0.1
# 加载数据
df = pandas.read_csv('alcohol_dataset.csv')
data = np.array(df)
rng = np.random.default_rng(1)
rng.shuffle(data)
# 训练集和测试集长度确定
split_rate = 0.7
train_m = int(len(data)*split_rate)
test_m = len(data) - train_m
d = len(data[0])-1 # 输入特征维度(从0开始计数)
# 标准化
mean = np.mean(data[:train_m,0:d],0) # 平均值
stds = np.std(data[:train_m,0:d],0,ddof=1)# 标准差
data[:,0:d]  = (data[:,0:d]-mean)/stds
# 制作训练集和测试集
print(type(data))
train_X,train_Y, test_X,test_Y= data[:train_m,0:d],data[:train_m,d:],data[train_m:,0:d], data[train_m:,d:]
print(data[:train_m,0:d].shape)
# 初始化权重w和偏差b
w ,b= np.random.rand(1,d),np.random.rand(1,1)
Data = []
def Confusion_matrix(a,b): # 计算召回率,精度,F!分数的函数b = b > 0.5allp = np.sum(b)c = a*bTP = np.sum(c)FP = np.sum(a*(1-c))
#     FN = np.sum(b*(1-c))
#     TN = train_m - FP-allpR = TP/allpP = TP/(FP+TP)return R,P,2/(1/R + 1/P)
for _A_ in range(epoch):# 利用代价函数更新 w和 be = -(np.dot(w,train_X.transpose())+ b)e = 1/(1 + np.exp(e)) e -=  train_Y.transpose() # 1*train_mw -= xuexi*np.dot(e,train_X)/train_mb -= xuexi*np.dot(e,np.ones(train_m).transpose())/train_m# 计算交叉熵和召回率,精度以及F1分数# 训练集e = -(np.dot(w,train_X.transpose())+ b)N_Y = 1/(1 + np.exp(e))J = np.dot(np.log(N_Y),train_Y) +np.dot(np.log(1-N_Y),(1-train_Y)) R,P,F1 = Confusion_matrix(N_Y>=0.5,train_Y[:].transpose())_ = {"R":R,"P":P,"F1":F1,'J1':-J[0][0]/train_m}# 测试集e =  -(np.dot(w,test_X.transpose())+ b)N_Y = 1/(1 + np.exp(e))J = np.dot(np.log(N_Y),test_Y) +np.dot(np.log(1-N_Y),(1-test_Y))_['J2'] = -J[0][0]/test_m_['R1'],_['P1'],_['F11'] = Confusion_matrix(N_Y>=0.5,test_Y[:].transpose())Data.append(_)
# 绘图部分
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
fig, axes = plt.subplots(2, 2)
x = [i for i in range(epoch)]
axes[0][0].plot(x,[i['J1'] for i in Data],color='r',linestyle='dashed',label='train')
axes[0][0].plot(x,[i['J2'] for i in Data],color='b',linestyle='dashed',label='test')
axes[0][0].legend()
axes[0][0].set_title('交叉熵')
axes[0][1].plot(x,[i['P'] for i in Data],color='r',linestyle='dashed',label='train')
axes[0][1].plot(x,[i['P1'] for i in Data],color='b',linestyle='dashed',label='test')
axes[0][1].legend()
axes[0][1].set_title('精度')
axes[1][0].plot(x,[i['F1'] for i in Data],color='r',linestyle='dashed',label='train')
axes[1][0].plot(x,[i['F11'] for i in Data],color='b',linestyle='dashed',label='test')
axes[1][0].set_title('F1分数')
axes[1][0].legend()
axes[1][1].plot(x,[i['R'] for i in Data],color='r',linestyle='dashed',label='train')
axes[1][1].plot(x,[i['R1'] for i in Data],color='b',linestyle='dashed',label='test')
axes[1][1].set_title('召回率')
axes[1][1].legend()
plt.tight_layout()
plt.show()
# 2-11
# scikit-learn支持向量机
import matplotlib.pyplot as plt
import pandas
import numpy as np
import random as rd
from sklearn import svm
# 基本参数确定
epoch = 10000
xuexi = 0.1
# 加载数据
df = pandas.read_csv('alcohol_dataset.csv')
data = np.array(df)
rng = np.random.default_rng(1)
rng.shuffle(data)
# 训练集和测试集长度确定
split_rate = 0.7
train_m = int(len(data)*split_rate)
test_m = len(data) - train_m
d = len(data[0])-1 # 输入特征维度(从0开始计数)
# 标准化
mean = np.mean(data[:train_m,0:d],0) # 平均值
stds = np.std(data[:train_m,0:d],0,ddof=1)# 标准差
data[:,0:d]  = (data[:,0:d]-mean)/stds
data[:,d:] = data[:,d:]+(data[:,d:]-1) # 将标注0改为1
# 制作训练集和测试集
train_X,train_Y, test_X,test_Y= data[:train_m,0:d],data[:train_m,d:],data[train_m:,0:d], data[train_m:,d:]
Call = [0.1,1,10,100,1000]
kernels = ['linear','poly','rbf']
data=[["线性核"],["多项式核"],["高斯核"]]
for i in Call:for j in kernels:clf = svm.SVC(C=i, kernel=j) #linear 线性核函数 poly 多项式核函数,rbf高斯径向基核函数(默认)clf.fit(train_X, train_Y.ravel())te = clf.predict(test_X)-test_Y.ravel()ta = clf.predict(train_X)-train_Y.ravel()te*=teta*=tate = int(np.sum(te))//4ta = int(np.sum(ta))//4data[kernels.index(j)].append("%d(%d+%d)"%(te+ta,ta,te))
#         print("C=%f  核函数:%s %d(%d+%d)"%(i,j,te+ta,ta,te))
# 表格绘制
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
# print(data)
fig, ax = plt.subplots()
ax.axis('off')  # 隐藏坐标轴# 创建表格,设置文本居中
table = ax.table(cellText=data, colLabels=['核函数', 'C=0.1', 'C=1', 'C=10', 'C=100', 'C=1000'], cellLoc='center', loc='center')# 设置表格样式
table.auto_set_font_size(False)
table.set_fontsize(14)
table.scale(1.2, 1.2)  # 放大表格plt.show()
# 2-12
# 错误随c的变化
import matplotlib.pyplot as plt
import pandas
import numpy as np
import random as rd
from sklearn import svm
# 基本参数确定
epoch = 10000
xuexi = 0.1
# 加载数据
df = pandas.read_csv('alcohol_dataset.csv')
data = np.array(df)
rng = np.random.default_rng(1)
rng.shuffle(data)
# 训练集和测试集长度确定
split_rate = 0.7
train_m = int(len(data)*split_rate)
test_m = len(data) - train_m
d = len(data[0])-1 # 输入特征维度(从0开始计数)
# 标准化
mean = np.mean(data[:train_m,0:d],0) # 平均值
stds = np.std(data[:train_m,0:d],0,ddof=1)# 标准差
data[:,0:d]  = (data[:,0:d]-mean)/stds
data[:,d:] = data[:,d:]+(data[:,d:]-1) # 将标注0改为1
# 制作训练集和测试集
train_X,train_Y, test_X,test_Y= data[:train_m,0:d],data[:train_m,d:],data[train_m:,0:d], data[train_m:,d:]
Call =list(np.random.uniform(0.1, 16, 150))
Call.sort()
kernels = ['linear','poly','rbf']
tadata=[[],[],[]]
tedata=[[],[],[]]
for i in Call:for j in kernels:clf = svm.SVC(C=i, kernel=j) #linear 线性核函数 poly 多项式核函数,rbf高斯径向基核函数(默认)clf.fit(train_X, train_Y.ravel())te = clf.predict(test_X)-test_Y.ravel()ta = clf.predict(train_X)-train_Y.ravel()te*=teta*=tate = int(np.sum(te))//4ta = int(np.sum(ta))//4tadata[kernels.index(j)].append(ta)tedata[kernels.index(j)].append(te)
# 绘图部分
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
fig, axes = plt.subplots(2, 2)
x =Call
axes[0][0].plot(x,tadata[0],color='r',label='train',marker='x')
axes[0][0].plot(x,tedata[0],color='b',label='test',marker='o')
axes[0][0].legend()
axes[0][0].set_title('线性核')
axes[0][1].plot(x,tadata[1],color='r',label='train',marker='x')
axes[0][1].plot(x,tedata[1],color='b',label='test',marker='o')
axes[0][1].legend()
axes[0][1].set_title('多项式核')
axes[1][0].plot(x,tadata[2],color='r',label='train',marker='x')
axes[1][0].plot(x,tedata[2],color='b',label='test',marker='o')
axes[1][0].legend()
axes[1][0].set_title('高斯核心')
axes[1, 1].axis('off')# 隐蔽第四个
plt.tight_layout()
plt.show()
# 2-13
# k交叉验证 错误随c的变化
import matplotlib.pyplot as plt
import pandas
import numpy as np
import random as rd
from sklearn import svm
# 基本参数确定
epoch = 10000
xuexi = 0.1
k = 4 # 重交叉验证k的值
# 加载数据
df = pandas.read_csv('alcohol_dataset.csv')
data = np.array(df)
rng = np.random.default_rng(100)
rng.shuffle(data)
# 训练集和测试集长度确定
split_rate = 0.7
alllines  = len(data)
train_m = int(alllines*((k-1)/k))
test_m = alllines - train_m
d = len(data[0])-1 # 输入特征维度(从0开始计数)
# 标准化
mean = np.mean(data[:train_m,0:d],0) # 平均值
stds = np.std(data[:train_m,0:d],0,ddof=1)# 标准差
data[:,0:d]  = (data[:,0:d]-mean)/stds
data[:,d:] = data[:,d:]+(data[:,d:]-1) # 将标注0改为1
# 制作训练集和测试集
# train_X,train_Y, test_X,test_Y= data[:train_m,0:d],data[:train_m,d:],data[train_m:,0:d], data[train_m:,d:]
Call =list(np.random.uniform(0.1, 10, 25))
Call.sort()
kernels = ['linear','poly','rbf']
tadata=[[],[],[]]
tedata=[[],[],[]]
for i in Call:for j in kernels:tadata1=[]tedata1=[]id = kernels.index(j)for t in range(k):start = t*test_mends = (t+1)*test_m if ((t+1)*test_m ) <= alllines else alllinesif t == 0:train_X,train_Y= data[ends:alllines,0:d],data[ends:alllines,d:]elif t == 3:train_X,train_Y= data[0:start,0:d],data[0:start,d:]else:train_X,train_Y= np.concatenate((data[0:start,0:d],data[ends:alllines,0:d]),0),np.concatenate((data[0:start,d:],data[ends:alllines,d:]),0)test_X,test_Y=data[start:ends,0:d], data[start:ends:,d:]clf = svm.SVC(C=i, kernel=j) #linear 线性核函数 poly 多项式核函数,rbf高斯径向基核函数(默认)clf.fit(train_X, train_Y.ravel())te = clf.predict(test_X)-test_Y.ravel()ta = clf.predict(train_X)-train_Y.ravel()te*=teta*=tate = int(np.sum(te))//4ta = int(np.sum(ta))//4tadata1.append(ta)tedata1.append(te)tadata[id].append(sum(tadata1)/k)tedata[id].append(sum(tedata1)/k)
# 绘图部分
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
fig, axes = plt.subplots(2, 2)
x =Call
axes[0][0].plot(x,tadata[0],color='r',label='train',marker='x')
axes[0][0].plot(x,tedata[0],color='b',label='test',marker='o')
axes[0][0].legend()
axes[0][0].set_title('线性核')
axes[0][1].plot(x,tadata[1],color='r',label='train',marker='x')
axes[0][1].plot(x,tedata[1],color='b',label='test',marker='o')
axes[0][1].legend()
axes[0][1].set_title('多项式核')
axes[1][0].plot(x,tadata[2],color='r',label='train',marker='x')
axes[1][0].plot(x,tedata[2],color='b',label='test',marker='o')
axes[1][0].legend()
axes[1][0].set_title('高斯核心')
axes[1, 1].axis('off')# 隐蔽第四个
plt.tight_layout()
plt.show()
# 2-14
# 经典求解 k近邻
import matplotlib.pyplot as plt
import pandas
import numpy as np
from scipy import stats
# load dataset
df = pandas.read_csv('wheelchair_dataset.csv')
data = np.array(df)
data=data.astype(np.float64)
# 随机排序
rng = np.random.default_rng(400)
rng.shuffle(data)
# 输入特征维度
d = data.shape[1] - 1
# 数据最大最小归一化处理
maxs = np.amax(data[:,0:d],0)
mins = np.amin(data[:,0:d],0)
data[:,0:d] = (data[:,0:d] - mins) / (maxs - mins)
# 样本长度
lens = data.shape[0]
# 设置k交叉验证中 k的值
k = 4
# 测试集长度
test_m = lens // k
# k近邻分类 中的k值
kk = [i for i in range(1,21)]
Error = [[],[]]
for i in kk:ta = 0te = 0for j in range(k):# 区分训练集和测试集start = j*test_mends = (j+1)*test_m if (j != k-1) else lensif j == 0:train_x,train_y = data[ends:,0:d],data[ends:,d:]elif j == k -1:train_x,train_y = data[0:start,0:d],data[0:start,d:]else:train_x,train_y=np.concatenate((data[0:start,0:d],data[ends:,0:d]),0),np.concatenate((data[0:start,d:],data[ends:,d:]),0)test_x,test_y = data[start:ends,0:d],data[start:ends,d:]# 计算距离ans = 0 # 测试集错误率 for t in range(len(test_x)):_ = np.sum((train_x-test_x[t])*(train_x-test_x[t]),1)# 得到全部的距离__ = np.argsort(_) # 排序for h in range(i, len(_)):if _[__[h]] != _[__[h-1]]:break_ = [train_y[hh] for hh in __[:h]]if test_y[t]  != stats.mode(_,keepdims=False)[0][0]:ans += 1te += ans
#         print(ans)# 计算距离ans = 0 # 测试集错误率 for t in range(len(train_x)):_ = np.sum((train_x-train_x[t])*(train_x-train_x[t]),1)# 得到全部的距离__ = np.argsort(_)for h in range(i, len(_)):if _[__[h]] != _[__[h-1]]:break_ = [train_y[hh] for hh in __[:h]]if train_y[t]  != stats.mode(_,keepdims=False)[0][0]:ans += 1ta += ansError[0].append(ta/k)Error[1].append(te/k)
# 绘图部分
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
plt.plot(kk,Error[0],color='r',marker='o',label='train')
plt.plot(kk,Error[1],color='b',marker='x',label='test')
plt.legend()
plt.show()
# 2-15
# 马修斯相关系数计算 k近邻
# 1姿势正确,2坐姿偏右,3坐姿偏左,4坐姿前倾
import matplotlib.pyplot as plt
import pandas
import numpy as np
from scipy import stats
# load dataset
df = pandas.read_csv('wheelchair_dataset.csv')
data = np.array(df)
# 随机排序
rng = np.random.default_rng(100)
rng.shuffle(data)
data=data.astype(np.float64)
# 输入特征维度
d = data.shape[1] - 1
# 数据最大最小归一化处理
maxs = np.amax(data[:,0:d],0)
mins = np.amin(data[:,0:d],0)
data[:,0:d] = (data[:,0:d] - mins) / (maxs - mins)
# 样本长度
lens = data.shape[0]
# 设置k交叉验证中 k的值
k = 4
# 测试集长度
test_m = lens // k
# k近邻分类 中的k值
kk = [i for i in range(1,21)]
Error = [[],[],[],[]]
# 求宏平均F1分数
for i in kk:ta,te,tta,tte = 0.,0.,0.,0.for j in range(k):tag_= []teg_= []# 区分训练集和测试集start = j*test_mends = (j+1)*test_m if (j != k-1) else lensif j == 0:train_x,train_y = data[ends:,0:d],data[ends:,d:]elif j == k -1:train_x,train_y = data[0:start,0:d],data[0:start,d:]else:train_x,train_y=np.concatenate((data[0:start,0:d],data[ends:,0:d]),0),np.concatenate((data[0:start,d:],data[ends:,d:]),0)test_x,test_y = data[start:ends,0:d],data[start:ends,d:]# 计算距离for t in range(len(test_x)):_ = np.sum((train_x-test_x[t])*(train_x-test_x[t]),1)# 得到全部的距离__ = np.argsort(_) # 排序for h in range(i, len(_)):if _[__[h]] != _[__[h-1]]:break_ = [train_y[hh] for hh in __[:h]]teg_.append(int(stats.mode(_,keepdims=False)[0][0]))# 计算距离teg_ = np.array(teg_).reshape(1,-1)for t in range(len(train_x)):_ = np.sum((train_x-train_x[t])*(train_x-train_x[t]),1)# 得到全部的距离__ = np.argsort(_)for h in range(i, len(_)):if _[__[h]] != _[__[h-1]]:break_ = [train_y[hh] for hh in __[:h]]tag_.append(int(stats.mode(_,keepdims=False)[0][0]))# 计算F1分数# 计算方法就是 测试集和训练集分别一个宏均F1分数,# 其次采用了k交叉验证,最终的F1分数是这k次计算结果的宏均F1的平均值tag_ = np.array(tag_).reshape(1,-1)def G(a,b):allp = np.sum(b)c = a*bTP = np.sum(c)FP = np.sum(a*(1-c))if FP + TP == 0:return 0R = TP/allpP = TP/(FP+TP)if not P:return 0return 2/(1/R + 1/P)def getF1(li1,li2):a,b,c,d = li1==4,li1==3,li1==2,li1==1a1,b1,c1,d1 =  li2==4.,li2==3.,li2==2.,li2==1.return (G(a,a1)+G(b,b1)+G(c,c1)+G(d,d1))/4te += getF1(teg_,test_y.transpose())ta += getF1(tag_,train_y.transpose())# 计算马修斯相关系数def getMCC(li1,li2):a,b,c,d = li1==4,li1==3,li1==2,li1==1a1,b1,c1,d1 =  li2==4.,li2==3.,li2==2.,li2==1.A = len(li1[0])S = np.sum(a*a1)+np.sum(b*b1)+np.sum(c*c1)+np.sum(d*d1)h = np.array([np.sum(a) , np.sum(b) , np.sum(c) , np.sum(d)])l = np.array([np.sum(a1) , np.sum(b1),np.sum(c1) , np.sum(d1)])_ = A*S - np.sum(h*l)__ = ((A*A - np.sum(h*h))*(A*A-np.sum(l*l)))**0.5return  _/__tte += getMCC(teg_,test_y.transpose())tta += getMCC(tag_,train_y.transpose())Error[0].append(ta/k)Error[1].append(te/k)Error[2].append(tta/k)Error[3].append(tte/k)
# 绘图部分
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
fig, axes = plt.subplots(nrows=1, ncols=2)
axes[0].plot(kk,Error[0],color='r',linestyle='dashed',label='train',marker='x')
axes[0].plot(kk,Error[1],color='b',linestyle='dashed',label='test',marker='o')
axes[0].legend()
axes[0].set_title('宏平均F1')
axes[1].plot(kk,Error[2],color='r',linestyle='dashed',label='train',marker='x')
axes[1].plot(kk,Error[3],color='b',linestyle='dashed',label='test',marker='o')
axes[1].legend()
axes[1].set_title('MCC')
plt.tight_layout()
plt.show()
# 高斯朴素贝叶斯分类器 2-16
# 1姿势正确,2坐姿偏右,3坐姿偏左,4坐姿前倾
import matplotlib.pyplot as plt
import pandas
import numpy as np
from scipy import stats
# load dataset
df = pandas.read_csv('wheelchair_dataset.csv')
data = np.array(df)
# 随机排序
rng = np.random.default_rng(1)
rng.shuffle(data)
data=data.astype(np.float64)
# 输入特征维度
d = data.shape[1] - 1
# 样本长度
lens = data.shape[0]
# 设置k交叉验证中 k的值
k = 4
# 测试集长度
test_m = lens // k
# k近邻分类 中的k值
kk = [i for i in range(1,21)]
Error = [[],[],[],[]]
# 求宏平均F1分数
for i in kk:ta,te,tta,tte = 0.,0.,0.,0.for j in range(k):tag_= []teg_= []# 区分训练集和测试集start = j*test_mends = (j+1)*test_m if (j != k-1) else lensif j == 0:train_x,train_y = data[ends:,0:d],data[ends:,d:]elif j == k -1:train_x,train_y = data[0:start,0:d],data[0:start,d:]else:train_x,train_y=np.concatenate((data[0:start,0:d],data[ends:,0:d]),0),np.concatenate((data[0:start,d:],data[ends:,d:]),0)test_x,test_y = data[start:ends,0:d],data[start:ends,d:]# 高斯朴素贝叶斯# 计算ujk 和 pckdef getUjkAndPck(lia,lib):ujk = np.array([[0. for _ in range(4)] for __ in range(d)]) # d *4 的矩阵,输入特征维度*类别总数times = [0 for _  in range (4)]for tt in range(len(lib)):kk = int(lib[tt])-1 # 得到的是 类别ujk[:,kk] += lia[tt]  #  注意横纵坐标的含义times[kk] += 1for _ in range(d):ujk[_] /= times return ujk,np.array(times)/len(lia)# 方差的无偏估计量def getOjk2(lia,lib,ujk):Ojk2 = np.array([[0. for _ in range(4)] for __ in range(d)])times  = [0 for i in range(4)]for _ in range(len(lib)):kk = int(lib[_])-1Ojk2[:,kk] += (lia[_] - ujk[:,kk])**2 # 注意横纵坐标的含义times[kk] += 1times = np.array(times)-1for _ in range(d):Ojk2[_] /= timesreturn Ojk2**0.5ujk,pck = getUjkAndPck(train_x,train_y.transpose()[0])Ojk2 = getOjk2(train_x,train_y.transpose()[0],ujk)# 测试集for _ in test_x:__ = (ujk.transpose() - _)/Ojk2.transpose()__ = __**2__ = np.log(pck)-0.5*np.sum(__,1) -np.sum(np.log(Ojk2).transpose(),1)teg_.append(np.argmax(__)+1)teg_ = np.array(teg_).reshape(1,-1)# 训练集for _ in train_x:__ = (ujk.transpose() - _)/Ojk2.transpose()__ = __**2__ = np.log(pck)-0.5*np.sum(__,1) -np.sum(np.log(Ojk2).transpose(),1)tag_.append(np.argmax(__)+1)tag_ = np.array(tag_).reshape(1,-1)# 计算F1分数# 计算方法就是 测试集和训练集分别一个宏均F1分数,# 其次采用了k交叉验证,最终的F1分数是这k次计算结果的宏均F1的平均值def G(a,b):allp = np.sum(b)c = a*bTP = np.sum(c)FP = np.sum(a*(1-c))if FP + TP == 0:return 0R = TP/allpP = TP/(FP+TP)if not P:return 0return 2/(1/R + 1/P)def getF1(li1,li2):a,b,c,d = li1==4,li1==3,li1==2,li1==1a1,b1,c1,d1 =  li2==4.,li2==3.,li2==2.,li2==1.return (G(a,a1)+G(b,b1)+G(c,c1)+G(d,d1))/4te += getF1(teg_,test_y.transpose())ta += getF1(tag_,train_y.transpose())# 计算马修斯相关系数def getMCC(li1,li2):a,b,c,d = li1==4,li1==3,li1==2,li1==1a1,b1,c1,d1 =  li2==4.,li2==3.,li2==2.,li2==1.A = len(li1[0])S = np.sum(a*a1)+np.sum(b*b1)+np.sum(c*c1)+np.sum(d*d1)h = np.array([np.sum(a) , np.sum(b) , np.sum(c) , np.sum(d)])l = np.array([np.sum(a1) , np.sum(b1),np.sum(c1) , np.sum(d1)])_ = A*S - np.sum(h*l)__ = ((A*A - np.sum(h*h))*(A*A-np.sum(l*l)))**0.5return  _/__tte += getMCC(teg_,test_y.transpose())tta += getMCC(tag_,train_y.transpose())Error[0].append(ta/k)Error[1].append(te/k)Error[2].append(tta/k)Error[3].append(tte/k)
# 绘图部分
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
fig, axes = plt.subplots(nrows=1, ncols=2)
axes[0].plot(kk,Error[0],color='r',linestyle='dashed',label='train',marker='x')
axes[0].plot(kk,Error[1],color='b',linestyle='dashed',label='test',marker='o')
axes[0].legend()
axes[0].set_title('宏平均F1')
axes[1].plot(kk,Error[2],color='r',linestyle='dashed',label='train',marker='x')
axes[1].plot(kk,Error[3],color='b',linestyle='dashed',label='test',marker='o')
axes[1].legend()
axes[1].set_title('MCC')
plt.tight_layout()
plt.show()
# 多分类逻辑回归 2-17
# 1姿势正确,2坐姿偏右,3坐姿偏左,4坐姿前倾
import matplotlib.pyplot as plt
import pandas
import numpy as np
from scipy import stats
import random as rd
# load dataset
df = pandas.read_csv('wheelchair_dataset.csv')
data = np.array(df)
# 随机排序
rng = np.random.default_rng(1)
rng.shuffle(data)
data=data.astype(np.float64)
# 输入特征维度
d = data.shape[1] - 1
# 样本长度
lens = data.shape[0]
# 设置训练次数
epochs = 5000
# 设置学习率
xuexi = 0.1
# 标准化处理
mean  = np.mean(data[:,:d],0)
stds = np.std(data[:,:d],0,ddof=1)
data[:,:d] = (data[:,:d]-mean)/stds
# 多分类逻辑回归
# 初始化 w,b
w = np.array([[rd.uniform(0,1) for __ in range(d)] for _ in range(4)]) # c * d
b = np.array([[rd.uniform(0,1) ] for _ in range(4)]) # c*1
# y-> one-hot
datay = np.array([[i==1.,i==2.,i==3.,i==4.] for i in data[:,d]])
# 划分数据集和测试集
train_m = int(lens*0.8)
test_m = lens - train_m
train_x,train_y,test_x,test_y = data[:train_m,:d],datay[:train_m],data[train_m:,:d],datay[train_m:]#  x:m*d,y:m*c
Errors = [[],[],[],[]]
for _ in range(epochs):# 更新w,b# 第一步计算 ZZ = np.dot(w,train_x.transpose()) + np.dot(b,np.ones(train_m).reshape(1,-1))# 计算 Y^_ = np.random.rand(4,4)>0 # c*c矩阵Y_ = np.exp(Z)/np.dot(_,np.exp(Z)) # c*m# 计算 EE = Y_ - train_y.transpose() # c*m# 计算多类别逻辑回归交叉熵TaJwb = np.trace(np.dot(train_y,np.log(Y_)))/-train_mErrors[2].append(TaJwb)# 统计训练集出错_ = np.argmax(Y_,0) + 1_ = _.astype(np.float64)_ -= data[:train_m,d]taer = np.sum(_ > 0)taer += np.sum(_ < 0)Errors[0].append(taer)# 统计测试集出错# 第一步计算 ZZ = np.dot(w,test_x.transpose()) + np.dot(b,np.ones(test_m).reshape(1,-1))# 计算 Y^_ = np.random.rand(4,4)>0 # c*c矩阵Y_ = np.exp(Z)/np.dot(_,np.exp(Z)) # c*m_ = np.argmax(Y_,0) + 1_ = _.astype(np.float64)_ -= data[train_m:,d]teer = np.sum(_ > 0)teer += np.sum(_ < 0)Errors[1].append(teer)# 更新w,bb -= np.dot(E,np.ones(train_m).reshape(-1,1))/train_mw -= np.dot(E,train_x)/train_m
# 绘图部分
print(Errors[0][-1],Errors[1][-1],Errors[2][-1])
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
fig, axes = plt.subplots(nrows=1, ncols=2)
kk = [i for i in range(epochs)]
axes[0].plot(kk,Errors[0],color='r',linestyle='dashed',label='train',marker='x')
axes[0].plot(kk,Errors[1],color='b',linestyle='dashed',label='test',marker='x')
axes[0].legend()
axes[0].set_title('trainErrors')
axes[1].plot(kk,Errors[2],color='r',linestyle='dashed',label='train',marker='x')
axes[1].legend()
axes[1].set_title('交叉熵')
plt.tight_layout()
plt.show()
# 二分类逻辑回归对其进行预测
import numpy as np
import random as rd
x_train = np.array([0, 5, 10, 25, 30, 35, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73]).reshape((1, -1))
y_train = np.array([0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]).reshape((1, -1))
m_train = x_train.size # number of training examples
# 第一步随机排序  (这里感觉不用)
epoch = 30000 # 训练次数
xuexi = 0.0001 # 学习率
# 设置权重和偏差
w = 0.
b = 0.
for _ in range(epoch):# 第一步计算eY_ = 1/(1+np.exp(-(w*x_train + b)))e = Y_ - y_train# 更新 w,bb -= xuexi*np.dot(e,np.ones(m_train).transpose())/m_trainw -= xuexi*np.dot(x_train,e.transpose())/m_train
# 绘图部分
Y =  1/(1+np.exp(-(w*x_train + b)))
print(Y)
# lines = 60*w + b
Y_= Y >= 0.5
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号kk = [i for i in range(epochs)]
plt.plot(x_train[0],Y[0],color='k',linestyle='dashed',label='train')
plt.plot(x_train[0],Y_[0],color='r',linestyle='dashed',label='predict')
plt.scatter(x_train,y_train[0],color='b',label='原本',marker='x')
plt.legend()
plt.title('变化')
plt.tight_layout()
plt.show()
# 二分类逻辑回归对其进行预测
# 强化
import matplotlib.pyplot as plt
import pandas
import numpy as np
from scipy import stats
import random as rd
x_train = np.array([0, 5, 10, 25, 30, 35, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73]).reshape((1, -1))
y_train = np.array([0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]).reshape((1, -1))
m_train = x_train.size # number of training examples
# 第一步随机排序  (这里感觉不用)
epoch = 30000 # 训练次数
xuexi = 0.001 # 学习率
# 设置权重和偏差
# 标准化
x_train=x_train.astype(np.float64)
mean = np.mean(x_train,1)
stds = np.std(x_train,1,ddof=1)
x_train = (x_train - mean)/stds
w0,w1,w2,w3 = 0.,0.,0.,0.
b0,b1,b2,b3 = 0.,0.,0.,0.
for _ in range(epoch):# 第一步计算e0Y_ = 1/(1+np.exp(-(w0*x_train + b0)))e = Y_ - y_train# 更新 w0,b0b0 -= xuexi*np.dot(e,np.ones(m_train).transpose())/m_trainw0 -= xuexi*np.dot(x_train,e.transpose())/m_train# 第一步计算e1Y_ = 1/(1+np.exp(-(w1*x_train + b1)+17.5))e = Y_ - y_train# 更新 w,bb1 -= xuexi*np.dot(e,np.ones(m_train).transpose())/m_trainw1 -= xuexi*np.dot(x_train,e.transpose())/m_train# 第一步计算e2Y_ = 1/(1+np.exp(-(w2*x_train + b2)  - 42.5))e = Y_ - y_train# 更新 w,bb2 -= xuexi*np.dot(e,np.ones(m_train).transpose())/m_trainw2 -= xuexi*np.dot(x_train,e.transpose())/m_train# 第一步计算e3Y_ = 1/(1+np.exp(-(w3*x_train + b3) + 60))e = Y_ - y_train# 更新 w,bb3 -= xuexi*np.dot(e,np.ones(m_train).transpose())/m_trainw3 -= xuexi*np.dot(x_train,e.transpose())/m_train
# 绘图部分
Y0 = 1/(1+np.exp(-(w0*x_train + b0)))
Y1 = 1/(1+np.exp(-(w1*x_train + b1)+17.5))
Y2 = 1/(1+np.exp(-(w2*x_train + b2)-42.5))
Y3 = 1/(1+np.exp(-(w3*x_train + b3)+60))
Y_ = [-1 for i in range(m_train)]
Yx = Y1+Y2+Y3 -1 
# lines = 60*w + b
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
plt.plot(x_train[0],Y0[0],color='k',linestyle='dashed',label='原本的',linewidth=3)
plt.plot(x_train[0],Y1[0],color='#ec2d7a',linestyle='dashdot',label='17.5',linewidth=3)
plt.plot(x_train[0],Y2[0],color='g',linestyle='solid',label='-42.5',linewidth=3)
plt.plot(x_train[0],Y3[0],color='darkviolet',linestyle=(2,(1,2,3,4,2,2)),label='+60',linewidth=3)
plt.plot(x_train[0],Y_,color='r',linestyle='solid',label='-1',linewidth=3)
plt.plot(x_train[0],Yx[0],color='springgreen',linestyle='dotted',label='混合',linewidth=3)
plt.scatter(x_train,y_train[0],color='b',label='原本',marker='x')
plt.legend()
plt.title('变化')
plt.tight_layout()
plt.show()
# 2-18
# 实现二分类神经网络
# 导入酒驾数据
# d = 5
import matplotlib.pyplot as plt
import pandas
import numpy as np
from scipy import stats
import random as rd
# load dataset
df = pandas.read_csv('alcohol_dataset.csv')
data = np.array(df)
# 随机排序
rng = np.random.default_rng(1)
rng.shuffle(data)
# 输入特征维度
d = data.shape[1] -1
# 训练次数
epoch = 300000
# 学习率
XX = 0.00001
# 最大最小归一化
maxs = np.max(data[:,:d],0)
mins = np.min(data[:,:d],0)data[:,:d] = (data[:,:d]-mins)/(maxs-mins)
# mean  = np.mean(data[:,:d],0)
# stds = np.std(data[:,:d],0,ddof=1)
# data[:,:d] = (data[:,:d]-mean)/stds
# 训练集测试集划分
train_m = int(data.shape[0]*0.8)
test_m = data.shape[0] - train_m
train_x,train_y,test_x,test_y = data[:train_m,:d],data[:train_m,d:],data[train_m:,:d],data[train_m:,d:]
# train_x m*d, train_y  m*1, test_x m*d
# 设置隐含层节点数
n = 2
# 初始化初始权重w1  d*n和偏差 b1 n*1
w1 = np.array([[rd.uniform(0,1) for _ in range(n)] for __ in range(d)])
b1 = np.array([rd.uniform(0,1) for i in range(n)]).reshape(-1,1)
# 初始化初始权重 w2 n*1 和偏差 b2 是常数
w2 = np.array([rd.uniform(0,1) for _ in range(n)]).reshape(-1,1)
b2 = rd.uniform(0,1)
# 存储错误
Errors = [[],[]]
# 激活函数
def ReLU(x):global nreturn np.maximum(0, x).reshape(n,-1)
# 训练
for _ in range(epoch):# 求训练集预测值部分# 第一步计算 Z1 n*mZ1 = np.dot(w1.transpose(),train_x.transpose())  + np.dot(b1,np.ones(train_m).reshape(1,-1))# 激活函数是ReLU 计算A1 n*mA1 = ReLU(Z1)# 计算Z2 1*mZ2 = np.dot(w2.transpose(),A1) + b2# 输出层使用的是sigmoid 激活函数 ,预测值为 predict_ypredict_y = 1/(1+np.exp(-Z2))# 更新权重部分# e 计算 m*1e = predict_y.transpose() - train_ypredict_y ,train_y= predict_y.transpose()>=0.5,train_y >= 0.5Errors[0].append(np.sum(predict_y^train_y))# 更新 b1b1 -= XX*w2*np.dot(A1,e)/train_m# 更新 w1w1 -= XX*np.dot(train_x.transpose(),((np.dot(w2,e.transpose()))*A1).transpose())# 更新b2b2 -= XX*np.dot(np.ones(train_m).reshape(1,-1),e)/train_m# 更新 w2w2 -= XX*np.dot(A1,e)/train_m# 求测试集预测值部分# 第一步计算 Z1 n*mZ1 = np.dot(w1.transpose(),test_x.transpose())  + np.dot(b1,np.ones(test_m).reshape(1,-1))# 激活函数是ReLU 计算A1 n*mA1 = ReLU(Z1)# 计算Z2 1*mZ2 = np.dot(w2.transpose(),A1) + b2# 输出层使用的是sigmoid 激活函数 ,预测值为 predict_ypredict_y = 1/(1+np.exp(-Z2))# 更新权重部分 predict_y ,test_y= predict_y.transpose()>=0.5,test_y >= 0.5Errors[1].append(np.sum(predict_y^test_y))# 绘图部分
print(min(Errors[0]),min(Errors[1]))
X = [i+1 for i in range(epoch)]
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
plt.plot(X,Errors[1],color='k',linestyle='dashed',label='测试集错误',linewidth=3)
plt.plot(X,Errors[0],color='#ec2d7a',linestyle='dashdot',label='训练集错误',linewidth=3)
plt.legend()
plt.title('二分类神经网络')
plt.tight_layout()
plt.show()
# 2-19
# 实现多分类神经网络
# 1姿势正确,2坐姿偏右,3坐姿偏左,4坐姿前倾
# d = 4
import matplotlib.pyplot as plt
import pandas
import numpy as np
from scipy import stats
import random as rd
# load dataset
df = pandas.read_csv('wheelchair_dataset.csv')
data = np.array(df)
data=data.astype(np.float64)
# 随机排序
rng = np.random.default_rng(1)
rng.shuffle(data)
# 输入特征维度
d = data.shape[1] -1
# 训练次数
epoch = 3000
# 学习率
XX = 0.1
# 最大最小归一化
# maxs = np.max(data[:,:d],0)
# mins = np.min(data[:,:d],0)
# data[:,:d] = (data[:,:d]-mins)/(maxs-mins)
mean  = np.mean(data[:,:d],0)
stds = np.std(data[:,:d],0,ddof=1)
data[:,:d] = (data[:,:d]-mean)/stds
# 训练集测试集划分
train_m = int(data.shape[0]*0.8)
test_m = data.shape[0] - train_m
train_x,train_y,test_x,test_y = data[:train_m,:d],data[:train_m,d:],data[train_m:,:d],data[train_m:,d:]
train_y,test_y = train_y.transpose(),test_y.transpose()
train_y,test_y = np.array([train_y[0]==1.,train_y[0]==2.,train_y[0]==3.,train_y[0]==4.]),np.array([test_y[0]==1.,test_y[0]==2.,test_y[0]==3.,test_y[0]==4.])
# train_x m*d, train_y  c*m, test_x m*d
# 设置隐含层节点数
n = 3
# 初始化初始权重w1  d*n和偏差 b1 n*1
w1 = np.array([[rd.uniform(0,1) for _ in range(n)] for __ in range(d)])
b1 = np.array([rd.uniform(0,1) for i in range(n)]).reshape(-1,1)
# 初始化初始权重 w2 n*c 和偏差 b2 c*1
w2 = np.array([[rd.uniform(0,1) for _ in range(4)] for __ in range(n)])
b2 = np.array([rd.uniform(0,1) for i in range(4)]).reshape(-1,1)
# 存储错误
Errors = [[],[]]
# 激活函数
def ReLU(x):global nreturn np.maximum(0, x).reshape(n,-1)
# 训练
for _ in range(epoch):# 求训练集预测值部分# 第一步计算 Z1 n*mZ1 = np.dot(w1.transpose(),train_x.transpose())  + np.dot(b1,np.ones(train_m).reshape(1,-1))# 激活函数是ReLU 计算A1 n*mA1 = ReLU(Z1)# 计算Z2 c*mZ2 = np.dot(w2.transpose(),A1) + np.dot(b2,np.ones(train_m).reshape(1,-1))# 输出层使用的是sigmoid 激活函数 ,预测值为 predict_ypredict_y = np.exp(Z2)/np.dot(np.ones(4*4).reshape(4,4),np.exp(Z2))# 更新权重部分# E 计算 c*mE = predict_y - train_y# 统计错误e = np.argmax(predict_y,0)-np.argmax(train_y,0)Errors[0].append(np.sum(e*e))# 更新 b1
#     print('w2',w2.shape,'E',E.shape,'A1',A1.shape)b1 -= XX*np.dot(np.dot(w2,E)*A1,np.ones(train_m).reshape(-1,1))/train_m# 更新 w1w1 -= XX*np.dot(train_x.transpose(),(np.dot(w2,E)*A1).transpose())/train_m# 更新b2b2 -= XX*np.dot(E,np.ones(train_m).reshape(-1,1))/train_m# 更新 w2w2 -= XX*np.dot(A1,E.transpose())/train_m# 求测试集预测值部分Z1 = np.dot(w1.transpose(),test_x.transpose())  + np.dot(b1,np.ones(test_m).reshape(1,-1))# 激活函数是ReLU 计算A1 n*mA1 = ReLU(Z1)# 计算Z2 c*mZ2 = np.dot(w2.transpose(),A1) + np.dot(b2,np.ones(test_m).reshape(1,-1))# 输出层使用的是sigmoid 激活函数 ,预测值为 predict_ypredict_y = np.exp(Z2)/np.dot(np.ones(4*4).reshape(4,4),Z2)# 更新权重部分# 统计错误e = np.argmax(predict_y,0)-np.argmax(test_y,0)Errors[1].append(np.sum(e*e))# 绘图部分
print(min(Errors[0]),min(Errors[1]))
X = [i+1 for i in range(epoch)]
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
plt.plot(X,Errors[1],color='k',linestyle='dashed',label='测试集错误',linewidth=3)
plt.plot(X,Errors[0],color='#ec2d7a',linestyle='dashdot',label='训练集错误',linewidth=3)
plt.legend()
plt.title('多分类神经网络')
plt.tight_layout()
plt.show()

资源地址

gitee地址

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/147289.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

QT、C++实现地图导航系统(mapSystem)

文章目录 地图导航系统项目应用背景技术栈选择数据处理算法实现界面实现源码展示成果展示源码下载 &#xff08;免费&#xff09; 地图导航系统 项目应用背景 电子地图导航系统的主要目的是为用户提供精确、实时的导航和位置信息&#xff0c;以帮助他们在城市或地区内轻松找到…

固定式工业RFID读写器有哪些特点?如何选型?

工业读写器可分为便携式读写器和固定式读写器&#xff0c;固定式读写器主要是将读写器固定在某一位置钟&#xff0c;常常应用在工位、生产、进入库等场景中。但是很多人并不了解固定式读写器都有哪些特点&#xff0c;具体应该怎么选型&#xff0c;下面我们就一起来了解一下。 固…

C语言数组和指针笔试题(五)(一定要看)

这里写目录标题 指针运算笔试题解析题目1解析结果 题目2解析结果 题目3解析结果 题目4解析结果 题目5解析结果 题目6解析结果 题目7解析结果 题目8解析结果 感谢各位大佬对我的支持,如果我的文章对你有用,欢迎点击以下链接 &#x1f412;&#x1f412;&#x1f412;个人主页 &a…

Jmeter+jenkins接口性能测试平台实践整理

最近两周在研究jmeter&#xff0b;Jenkin的性能测试平台测试dubbo接口&#xff0c;分别尝试使用maven&#xff0c;ant和Shell进行构建&#xff0c;jmeter相关设置略。 一、Jmeterjenkins&#xff0b;Shell&#xff0b;tomcat 安装Jenkins,JDK,tomcat,并设置环境变量&#xff0…

STM32之DMA

简介 • DMA &#xff08; Direct Memory Access &#xff09;直接存储器存取 &#xff08;可以直接访问STM32内部存储器&#xff0c;如SRAM、程序存储器Flash和寄存器等&#xff09; •DMA可以提供外设和存储器或者存储器和存储器之间的高速数据传输&#xff0c;无须CPU干预&a…

在pycharm中出现下载软件包失败的解决方法

一. 一般情况下我们会选择在设置中下载软件包,过程如下. 1. 直接点击左上角的文件, 再点击设置, 再点击项目, 在右边选择python解释器,点击号,输入要下载的软件包, 在下面的一系列的包中选择相对应的包,点击安装就可以了,有的时候我们下载的是最新的版本,如果要下载固定的版本…

Spring的注解开发-注解方式整合MyBatis代码实现

之前使用xml方式整合了MyBatis&#xff0c;文章导航&#xff1a;Spring整合第三方框架-MyBatis整合Spring实现-CSDN博客 现在使用注解的方式无非是就是将xml标签替换为注解&#xff0c;将xml配置文件替换为配置类而已。 非自定义配置类 package com.example.Configure;import c…

SpringBoot banner 样式 自动生成

目录 SpringBoot banner 样式 自动生成 图案网站&#xff1a; 1.第一步创建banner.txt文件 2.访问网站Ascii艺术字实现个性化Spring Boot启动banner图案&#xff0c;轻松修改更换banner.txt文件内容&#xff0c;收集了丰富的banner艺术字和图&#xff0c;并且支持中文banner下…

基于体素场景的摄像机穿模处理

基于上一篇一种基于体素的射线检测 使用射线处理第三人称摄像头穿模问题 基于体素的第三人称摄像机拉近简单处理 摄像机移动至碰撞点处 简单的从角色身上发射一条射线到摄像机&#xff0c;中途遇到碰撞就把摄像机移动至该碰撞点 public void UpdateDistance(float defaultDist…

Unity实现设计模式——状态模式

Unity实现设计模式——状态模式 状态模式最核心的设计思路就是将对象的状态抽象出一个接口&#xff0c;然后根据它的不同状态封装其行为&#xff0c;这样就可以实现状态和行为的绑定&#xff0c;最终实现对象和状态的有效解耦。 在实际开发中一般用到FSM有限状态机的实现&…

Learning Invariant Representation for Unsupervised Image Restoration

Learning Invariant Representation for Unsupervised Image Restoration (Paper reading) Wenchao Du, Sichuan University, CVPR20, Cited:63, Code, Paper 1. 前言 近年来&#xff0c;跨域传输被应用于无监督图像恢复任务中。但是&#xff0c;直接应用已有的框架&#xf…

叶工好容6-自定义与扩展

本篇主要介绍扩展的本质以及CRD与Operator之间的区别&#xff0c;帮助大家理解相关的概念以及知道要进行扩展需要做哪些工作。 CRD&#xff08;CustomerResourceDefinition&#xff09; 自定义资源定义,代表某种自定义的配置或者独立运行的服务。 用户只定义了CRD没有任何意…

【Spring Cloud】深入探索统一网关 Gateway 的搭建,断言工厂,过滤器工厂,全局过滤器以及跨域问题

文章目录 前言为什么需要网关以及网关的作用网关的技术实现 一、Gateway 网关的搭建1.1 创建 Gateway 模块1.2 引入依赖1.3 配置网关1.4 验证网关是否搭建成功1.5 微服务结构分析 二、Gateway 断言工厂2.1 Spring 提供的断言工厂2.2 示例&#xff1a;设置断言工厂 三、Gateway …

从0手写两轮差速机器人urdf模型

文章目录 前言一、基本理论二、实现步骤1.创建一个机器人建模功能包2.使用圆柱体创建一个车体模型2.同理创建机器人其它构件3.机器人模型添加传感器 前言 最近为找到与自己课题应用场景相适应的机器人结构&#xff0c;对机器人建模方面的内容进行了了解和学习&#xff0c;计划…

【数组及指针经典笔试题解析】

1.数组和指针笔试题 题目1 int main(){int a[5] { 1&#xff0c;2&#xff0c;3&#xff0c;4&#xff0c;5};int * ptr (int * )(&a 1);printf("%d&#xff0c;%d"&#xff0c;*(a 1)&#xff0c;*(ptr - 1));return 0;}图文解析&#xff1a; int * ptr …

【JavaEE】JavaScript webAPI的基本知识

JavaScript Web API 文章目录 JavaScript Web APIwebAPI背景DOMDOM树 获取元素querySelectorquerySelectorAll 事件初识键盘事件onkeydownonkeypressonkeyup 操作元素获取/修改元素内容1.innerText2.innerHTML 获取/修改元素属性获取/修改表单元素属性获取/修改样式属性行内样式…

redis的简单使用

文章目录 环境安装与配置redis发布-订阅相关命令redis发布-订阅的客户端编程redis的订阅发布的例子 环境安装与配置 sudo apt-get install redis-server # ubuntu命令安装redis服务ubuntu通过上面命令安装完redis&#xff0c;会自动启动redis服务&#xff0c;通过ps命令确认&a…

用于YOLO格式分割的咖啡叶病害数据集。

下载链接&#xff1a;https://download.csdn.net/download/qq_40840797/88389334 数据集&#xff0c;一共1164张照片 随机选取几张照片及对应的目标标签 因为健康&#xff0c;所以标签为空

[BJDCTF2020]The mystery of ip

打开环境 点击flag&#xff0c;提示ip&#xff0c;这里确实就比较容易联想到x-forwarded-for 点击hint 这个好像没啥用 使用bp抓包 添加请求头 X-Forwarded-For:1 试一下 发现ip可控 后来查了发现 PHP可能存在Twig模版注入漏洞 参考https://www.cnblogs.com/zzjdbk/p/13…

【C语言】循环结构程序设计 (详细讲解)

前言&#xff1a;前面介绍了程序中常常用到的顺序结构和选择结构&#xff0c;但是只有这两种结构是不够的&#xff0c;还有用到循环结构(或者称为重复结构)。因为在日常生活中或是在程序所处理的问题中常常遇到需要重复处理的问题。 【卫卫卫的代码仓库】 【选择结构】 【专栏链…