Elasticsearch数据操作原理

Elasticsearch 是一个开源的、基于 Lucene 的分布式搜索和分析引擎,设计用于云计算环境中,能够实现实时的、可扩展的搜索、分析和探索全文和结构化数据。它具有高度的可扩展性,可以在短时间内搜索和分析大量数据。

Elasticsearch 不仅仅是一个全文搜索引擎,它还提供了分布式的多用户能力,实时的分析,以及对复杂搜索语句的处理能力,使其在众多场景下,如企业搜索,日志和事件数据分析等,都有广泛的应用。

本文将向你详细介绍什么是倒排索引、以及 Elasticsearch 数据存储、数据更新和数据删除的原理


文章目录

        • 1、倒排索引
          • 1.1、为什么需要倒排索引
          • 1.2、为什么叫倒排索引
          • 1.3、倒排索引的结构
        • 2、数据存储原理
          • 2.1、数据存储过程
          • 2.2、创建倒排索引的过程
          • 2.3、分词
          • 2.4、生成词项
          • 2.5、分词器
          • 2.6、创建倒排列表
          • 2.7、数据压缩
        • 3、数据更新原理
          • 3.1、数据更新过程
          • 3.2、更新倒排列表
          • 3.3、版本控制
          • 3.4、数据复制
        • 4、数据删除原理
          • 4.1、数据删除原理
          • 4.2、删除数据的恢复


1、倒排索引
1.1、为什么需要倒排索引

倒排索引,也是索引。索引,初衷都是为了快速检索到你要的数据。

每种数据库都有自己要解决的问题(或者说擅长的领域),对应的就有自己的数据结构,而不同的使用场景和数据结构,需要用不同的索引,才能起到最大化加快查询的目的。

对 Mysql 来说,是 B+ 树,对 Elasticsearch 和 Lucene 来说,是倒排索引。

Elasticsearch 是建立在全文搜索引擎库 Lucene 基础上的搜索引擎,它隐藏了 Lucene 的复杂性,取而代之的提供一套简单一致的 RESTful API,不过掩盖不了它底层也是 Lucene 的事实。Elasticsearch 的倒排索引,其实就是 Lucene 的倒排索引。

1.2、为什么叫倒排索引

“倒排索引”(Inverted Index)的概念是从"正向索引"(Forward Index)中衍生出来的。

在"正向索引"中,我们从文档出发,记录下每个文档中出现的词项,这样就可以知道每个文档包含哪些词项。而在"倒排索引"中,我们从词项出发,记录下每个词项出现在哪些文档中,这样就可以知道每个词项被哪些文档包含。

正向索引:document -> to -> words
倒排索引:word -> to -> documents

因此,“倒排索引"可以看作是"正向索引"的逆操作,所以被称为"倒排”。在全文搜索中,"倒排索引"是非常重要的数据结构,因为它可以让我们快速找到包含特定词项的所有文档。

1.3、倒排索引的结构

倒排索引作为一种数据结构,用于存储一种映射关系,即从词项到出现该词项的文档的映射。它是全文搜索引擎的核心组成部分,如 Elasticsearch、Lucene 等。

在倒排索引中,每个唯一的词项都有一个相关的倒排列表,这个列表中包含了所有包含该词项的文档的 ID。这样,当我们搜索一个词项时,搜索引擎只需要查找倒排索引,就可以快速找到所有包含这个词项的文档。

例如,假设我们有以下三个文档:

1. 文档1:I love coding
2. 文档2:I love reading
3. 文档3:I love both

对这些文档建立倒排索引后,我们会得到以下的映射关系:

- I:文档1,文档2,文档3
- love:文档1,文档2,文档3
- coding:文档1
- reading:文档2
- both:文档3

所以,当我们搜索"love"时,搜索引擎会在倒排索引中找到"love",然后返回所有包含"love"的文档,即文档1,文档2 和文档3。


2、数据存储原理
2.1、数据存储过程

创建或更新倒排索引是 Elasticsearch 数据存储过程的核心部分之一,Elasticsearch 的数据存储过程也确实包括创建倒排索引的过程,但并不仅限于此。

image-20231005215119068

Elasticsearch 的数据存储过程主要包括以下多个步骤:

  1. 接收数据:Elasticsearch 首先接收到用户通过 HTTP 请求发送的数据,数据通常是 JSON 格式的文档。
  2. 分配文档 ID:如果用户没有指定文档 ID,Elasticsearch 会为新文档自动生成一个唯一的 ID。
  3. 选择分片:Elasticsearch 会根据文档ID和索引的分片策略,选择一个分片来存储这个文档。
  4. 创建和更新倒排索引:Elasticsearch 会对文档的内容进行分词,生成词项,并为这些词项创建或更新倒排索引。这样,新的文档就可以被搜索到了。
  5. 存储文档:Elasticsearch 会将文档的原始内容和元数据(如版本号、修改时间等)存储在分片中。原始内容存储在 _source 字段中,用于在获取文档时使用。
  6. 复制文档:为了提高数据的可用性和搜索性能,Elasticsearch 会将文档复制到其他节点的副本分片中。
  7. 确认写入:当文档被成功写入主分片和所有副本分片后,Elasticsearch 会向用户发送一个确认响应。

本篇接下来内容,我们将重点关注在创建和更新倒排索引的过程之中,我们将详细研究的是创建倒排索引的过程,这是因为倒排索引是 Elasticsearch 实现快速全文搜索的关键数据结构。

2.2、创建倒排索引的过程

创建倒排索引的过程主要包括以下步骤:

  1. 分词:这是第一步,将一段文本分解成一个个的词项(Tokens)。这个过程由分词器(Tokenizer)完成,可以根据不同的语言和需求选择不同的分词器。

  2. 生成词项:对分词后的结果进行处理,生成最终的词项。这个过程可能包括转换为小写、去除停用词、词干提取等操作。

  3. 创建倒排列表:对于每个词项,都创建一个倒排列表,记录包含这个词项的所有文档的 ID。

  4. 更新倒排索引:将新的倒排列表添加到倒排索引中。如果倒排索引中已经存在这个词项,就将新的文档 ID 添加到对应的倒排列表中。

以上就是创建倒排索引的主要步骤。需要注意的是,这个过程在每次插入新的文档,或者更新已有的文档时都会进行。

2.3、分词

分词是将一段文本分解成一个个的词项(Tokens)的过程。这是全文搜索和文本分析的第一步,因为只有将文本分解成词项,才能对其进行进一步的处理和分析。

分词的过程通常由分词器(Tokenizer)完成,分词器可以根据不同的语言和需求,采用不同的分词策略。

分词策略决定了如何将文本分解成词项。以下是一些常见的分词策略:

  1. 空格分词:这是最简单的分词策略,只是简单地将文本按空格分解成词项。这种方式简单快速,但可能无法处理复杂的语言特性。

  2. 基于语法的分词:这种分词策略会考虑语言的语法规则,例如英语的复数形式、过去式等。这种方式可以提高搜索的准确性,但处理起来更复杂。

  3. 基于词典的分词:这种分词策略会使用一个词典来分解文本,可以处理一些特殊的词组和短语。这种方式可以提高搜索的相关性,但需要一个高质量的词典。

  4. N-gram 分词:这种分词策略会将文本分解成连续的 n 个字符的序列。这种方式可以处理任何语言,但可能会生成大量的词项,影响搜索的效率和准确性。

在 Elasticsearch 中,可以通过配置分词器来控制分词的策略,以适应不同的语言和搜索需求。

2.4、生成词项

生成词项是分词过程的一部分,它是将分词后的结果进行处理,生成最终用于创建倒排索引的词项。

在生成词项的过程中,可能会进行以下一些操作:

  1. 转换为小写:为了使搜索不区分大小写,通常会将所有的词项转换为小写。

  2. 去除停用词:停用词是一些常见的、没有太多实际意义的词,如英语中的 “the”、“is”、“at” 等。去除停用词可以减少倒排索引的大小,提高搜索的效率。

  3. 词干提取:词干提取是将词项转换为其基本形式(或词干)的过程。例如,英语中的 “running”、“runs”、“ran” 都会被转换为 “run”。这样可以使搜索不受词形变化的影响。

  4. 词形还原:词形还原是将词项转换为其原始形式的过程。例如,英语中的 “better” 会被转换为 “good”。这样可以使搜索更准确。

以上就是生成词项的一些常见操作。需要注意的是,这些操作的具体实现可能会依赖于特定的语言和分词器。

2.5、分词器

在 Elasticsearch 中,生成词项的设置主要通过配置分词器(Analyzer)来实现。分词器由一个分词器(Tokenizer)和多个过滤器(Filter)组成,分词器负责将文本分解成词项,过滤器负责对词项进行处理。

以下是一个简单的分词器配置示例:

{"settings": {"analysis": {"analyzer": {"my_analyzer": {"tokenizer": "standard","filter": ["lowercase", "my_stemmer"]}},"filter": {"my_stemmer": {"type": "stemmer","name": "english"}}}}
}

在这个示例中,我们定义了一个名为 “my_analyzer” 的分词器,它使用 “standard” 分词器和两个过滤器: “lowercase” 和 “my_stemmer”。 “lowercase” 过滤器会将所有词项转换为小写, “my_stemmer” 过滤器会对英语词项进行词干提取。

你可以根据需要,选择不同的分词器和过滤器,以实现不同的生成词项策略。例如,如果你不想启用词干提取,可以去掉 “my_stemmer” 过滤器;如果你想启用词形还原,可以添加一个词形还原过滤器。

需要注意的是,Elasticsearch 的分词器和过滤器都是插件形式提供的,不同的插件支持不同的语言和功能。在使用前,你需要确保你的 Elasticsearch 安装了相应的插件。

2.6、创建倒排列表

创建倒排列表是创建倒排索引过程的一部分。对于每个词项,都会创建一个倒排列表,记录包含这个词项的所有文档的 ID。

以下是创建倒排列表的基本步骤:

  1. 初始化倒排列表:对于一个新的词项,首先创建一个空的倒排列表。
  2. 添加文档 ID:当一个文档被分词并生成词项后,将这个文档的 ID 添加到对应词项的倒排列表中。
  3. 排序:为了提高搜索效率,倒排列表通常会按照文档 ID 的顺序进行排序。
  4. 压缩:为了节省存储空间,倒排列表通常会进行压缩。常见的压缩方法包括变长编码、游程编码等。
2.7、数据压缩

对于 Elasticsearch 的压缩问题,假设有这样一个数组:

[73, 300, 302, 332, 343, 372]

如何把它进行尽可能的压缩?

Elasticsearch 中的数据压缩主要通过以下三个步骤实现:

  1. 增量编码(Delta-encode):只记录元素与元素之间的增量,例如数组 [73, 300, 302, 332, 343, 372] 经过增量编码后变为 [73, 227, 2, 30, 11, 29]。

  2. 分割成块(Split into blocks):在 Lucene 中,每个块包含 256 个文档 ID,这样可以保证每个块增量编码后,每个元素都不会超过 256(1 byte)。例如,我们可以将上述数组分割为两个块:[73, 227, 2] 和 [30, 11, 29]。

  3. 按需分配空间(Bit packing):根据每个块中最大元素的大小,按需分配空间。例如,对于第一个块 [73, 227, 2],最大元素是 227,需要 8 bits,所以为这个块的每个元素分配 8 bits 的空间。对于第二个块 [30, 11, 29],最大元素是 30,只需要 5 bits,所以为这个块的每个元素分配 5 bits 的空间。

这三个步骤共同组成了一种编码技术,称为 Frame Of Reference(FOR)。

image-20231005215949403

这种技术可以有效地压缩数据,降低存储空间的需求。


3、数据更新原理
3.1、数据更新过程

Elasticsearch 的数据更新是不是就是 Elasticsearch 更新倒排列表?Elasticsearch 的数据更新过程确实包括更新倒排索引,但并不仅限于此。

当一个已存在的文档在 Elasticsearch 中被更新时,以下步骤会被执行:

  1. 版本控制:Elasticsearch 会检查更新请求中的版本信息,如果版本信息与当前文档的版本不匹配,更新操作会被拒绝。
  2. 删除旧文档:Elasticsearch 会将旧文档标记为删除,但不会立即从磁盘中删除。
  3. 插入新文档:Elasticsearch 会将新文档插入到索引中,这包括存储新文档的原始内容和元数据,以及更新倒排索引。
  4. 复制更新:为了提高数据的可用性和搜索性能,Elasticsearch 会将更新操作复制到其他节点的副本分片中。
  5. 确认更新:当更新操作被成功应用到主分片和所有副本分片后,Elasticsearch 会向用户发送一个确认响应。

所以,虽然更新倒排索引是 Elasticsearch 数据更新过程的重要部分,但并不是全部。Elasticsearch 还会进行一些其他处理,如版本控制、数据复制等。

3.2、更新倒排列表

更新倒排列表是在插入新的文档或更新已有文档时,对应词项的倒排列表需要进行更新。

以下是更新倒排列表的基本步骤:

  1. 查找词项:首先,根据词项查找对应的倒排列表。
  2. 添加文档 ID:如果是插入新的文档,将新文档的 ID 添加到倒排列表中。
  3. 删除文档 ID:如果是更新已有的文档,首先从倒排列表中删除旧文档的 ID,然后添加新文档的 ID。
  4. 排序:为了提高搜索效率,每次更新后都需要重新对倒排列表进行排序。
  5. 压缩:为了节省存储空间,每次更新后都需要重新对倒排列表进行压缩。
3.3、版本控制

在 Elasticsearch 中,版本控制主要有以下两个目的:

  1. 确保数据一致性:在分布式系统中,同一份数据可能会被多个节点同时操作,如果没有合适的控制机制,就可能导致数据不一致。通过版本控制,Elasticsearch 可以确保即使在并发操作的情况下,数据的一致性也能得到保证。
  2. 防止更新丢失:在并发更新的情况下,如果没有版本控制,较晚发出的更新请求可能会覆盖较早发出的更新请求的结果,导致更新丢失。通过版本控制,Elasticsearch 可以确保每个更新请求都会被正确地应用,防止更新丢失。

在 Elasticsearch 中,每个文档都有一个与之关联的版本号。当一个文档被更新时,Elasticsearch 会检查更新请求中的版本号,只有当版本号匹配时,才会执行更新操作。这样,就可以防止由于并发更新导致的数据不一致和更新丢失。

以下是版本控制的基本步骤:

  1. 检查版本号:当接收到一个更新请求时,Elasticsearch 会检查请求中的版本号。如果请求中的版本号与当前文档的版本号不匹配,Elasticsearch 会拒绝这个更新请求。

  2. 更新文档:如果版本号匹配,Elasticsearch 会进行更新操作,包括更新倒排列表、存储新的文档内容和元数据等。

  3. 更新版本号:完成更新操作后,Elasticsearch 会将文档的版本号加一。新的版本号会被存储在文档的元数据中,也会被返回给用户。

  4. 复制更新:为了保持数据的一致性,Elasticsearch 会将包含新的版本号的更新操作复制到所有的副本分片。

3.4、数据复制

在 Elasticsearch 中,为了提高数据的可用性和搜索性能,每个文档都会被复制到一个或多个副本分片中。因此,当更新倒排列表时,也需要将这个更新操作复制到所有的副本分片。

以下是数据复制的基本步骤:

  1. 发送复制请求:当主分片完成了更新操作后,它会将这个更新操作以请求的形式发送给所有的副本分片。

  2. 应用更新操作:副本分片收到复制请求后,会按照相同的步骤应用这个更新操作,包括更新倒排列表、存储新的文档内容和元数据等。

  3. 确认更新:副本分片完成更新操作后,会向主分片发送一个确认响应。

  4. 等待所有确认:主分片会等待所有副本分片的确认响应。当所有副本分片都确认更新操作成功后,主分片才会向用户发送一个确认响应。

以上就是 Elasticsearch 更新倒排列表时的数据复制过程。需要注意的是,这个过程可能会受到网络条件、副本分片的状态、集群的配置等因素的影响。


4、数据删除原理
4.1、数据删除原理

在 Elasticsearch 中,数据的删除并不是立即从磁盘中移除数据,而是通过标记的方式来实现的。

以下是 Elasticsearch 数据删除的基本步骤:

  1. 标记删除:当接收到一个删除请求时,Elasticsearch 不会立即删除数据,而是将对应的文档标记为已删除。
  2. 更新倒排索引:虽然文档被标记为已删除,但是它的词项仍然存在于倒排索引中。因此,Elasticsearch 会更新倒排索引,将已删除文档的词项从倒排索引中移除。
  3. 复制删除:为了保持数据的一致性,Elasticsearch 会将删除操作复制到所有的副本分片。
  4. 确认删除:当删除操作被成功应用到主分片和所有副本分片后,Elasticsearch 会向用户发送一个确认响应。
  5. 物理删除:被标记为已删除的文档在一段时间后,会在后台的合并(Segment Merging)过程中被物理删除。

以上就是 Elasticsearch 数据删除的基本原理。需要注意的是,这个过程可能会受到网络条件、副本分片的状态、集群的配置等因素的影响。

4.2、删除数据的恢复

在 Elasticsearch 中,一旦数据被删除,就无法直接恢复。这是因为 Elasticsearch 的删除操作是不可逆的,一旦一个文档被标记为已删除,就无法取消这个标记。

然而,你可以通过以下方式来尽可能地恢复被删除的数据:

  1. 备份和恢复:如果你有定期备份 Elasticsearch 数据,你可以从备份中恢复被删除的数据。Elasticsearch 提供了 Snapshot 和 Restore 功能,可以用来备份和恢复整个集群的数据。

  2. 重新索引:如果被删除的数据仍然存在于原始数据源中,你可以重新索引这些数据。这需要你有一个完整的数据源,并且知道如何从数据源中提取和索引数据。

  3. 使用软删除:在某些情况下,你可能希望保留被删除的数据,以便于以后恢复。这时,你可以使用软删除(Soft Delete)功能。软删除并不会真正删除数据,而是将数据标记为已删除。你可以在需要时取消这个标记,从而恢复数据。

需要注意的是,以上方法都有一定的限制,并不能保证100%恢复被删除的数据。因此,最好的策略还是定期备份数据,以防止数据丢失。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/149231.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Apollo Planning2.0决策规划算法代码详细解析 (2): vscode gdb单步调试环境搭建

前言: apollo planning2.0 在新版本中在降低学习和二次开发成本上进行了一些重要的优化,重要的优化有接口优化、task插件化、配置参数改造等。 GNU symbolic debugger,简称「GDB 调试器」,是 Linux 平台下最常用的一款程序调试器。GDB 编译器通常以 gdb 命令的形式在终端…

抄写Linux源码(Day14:从 MBR 到 C main 函数 (3:研究 head.s) )

回忆我们需要做的事情: 为了支持 shell 程序的执行,我们需要提供: 1.缺页中断(不理解为什么要这个东西,只是闪客说需要,后边再说) 2.硬盘驱动、文件系统 (shell程序一开始是存放在磁盘里的,所以需要这两个东…

vertx的学习总结7之用kotlin 与vertx搞一个简单的http

这里我就简单的聊几句&#xff0c;如何用vertx web来搞一个web项目的 1、首先先引入几个依赖&#xff0c;这里我就用maven了&#xff0c;这个是kotlinvertx web <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apac…

【C++】一文带你走入vector

文章目录 一、vector的介绍二、vector的常用接口说明2.1 vector的使用2.2 vector iterator的使用2.3 vector空间增长问题2.4 vector 增删查改 三、总结 ヾ(๑╹◡╹)&#xff89;" 人总要为过去的懒惰而付出代价ヾ(๑╹◡╹)&#xff89;" 一、vector的介绍 vector…

[C国演义] 第十三章

第十三章 三数之和四数之和 三数之和 力扣链接 根据题目要求: 返回的数对应的下标各不相同三个数之和等于0不可包含重复的三元组 – – 即顺序是不做要求的 如: [-1 0 1] 和 [0, 1, -1] 是同一个三元组输出答案顺序不做要求 暴力解法: 排序 3个for循环 去重 — — N^3, …

企业微信机器人对接GPT

现在网上大部分微信机器人项目都是基于个人微信实现的&#xff0c;常见的类库都是模拟网页版微信接口。 个人微信作为我们自己日常使用的工具&#xff0c;也用于支付场景&#xff0c;很怕因为违规而被封。这时&#xff0c;可以使用我们的企业微信机器人&#xff0c;利用企业微信…

互联网Java工程师面试题·Elasticsearch 篇·第二弹

12、详细描述一下 Elasticsearch 索引文档的过程。 协调节点默认使用文档 ID 参与计算&#xff08;也支持通过 routing &#xff09;&#xff0c;以便为路由提供合适的分片。 shard hash(document_id) % (num_of_primary_shards) 1 、当分片所在的节点接收到来自协调节点…

Qt creator+cmake编译并安装

1、qt creator打开项目中的CMakeLists.txt 2、修改“构建设置“-“Cmake”-”Current Configuration“&#xff0c;其中&#xff0c;安装路径为CMAKE_INSTALL_PREFIX 3、修改“构建设置“-“构建的步骤”-”目标“&#xff0c;勾选"all"和"install" 4、构…

C语言qsort函数

排序qsort int int cmp(const void *a, const void *b) {return *(int *)a - *(int *)b;//先强转成int型&#xff0c;后解引用取值比较大小 }字符串数组 char a[] “hello world” //字符串数组&#xff0c;存放的是字符 int cmp(const void *a, const void *b) {return *(…

7.wifi开发【智能家居:终】,实践总结:智能开关,智能采集温湿,智能灯。项目运行步骤与运行细节,技术归纳与提炼,项目扩展

一。项目运行步骤与运行细节 1.项目运行步骤&#xff08;一定有其他的运行方式&#xff0c;我这里只提供一种我现在使用的编译方式&#xff09; &#xff08;1&#xff09;项目运行使用软件与技术&#xff1a; 1.Virtual linux 使用这个虚拟机进行程序的编译 2.Makefile与shl…

阿里云服务器镜像系统Anolis OS龙蜥详细介绍

阿里云服务器Anolis OS镜像系统由龙蜥OpenAnolis社区推出&#xff0c;Anolis OS是CentOS 8 100%兼容替代版本&#xff0c;Anolis OS是完全开源、中立、开放的Linux发行版&#xff0c;具备企业级的稳定性、高性能、安全性和可靠性。目前阿里云服务器ECS可选的Anolis OS镜像系统版…

【Java】猫和狗接口版本思路分析

目录 猫&#x1f431;和狗&#x1f415;&#xff08;接口版本&#xff09; 画图分析 案例代码 猫&#x1f431;和狗&#x1f415;&#xff08;接口版本&#xff09; 需求&#xff1a;对猫和狗进行训练&#xff0c;它们就可以跳高了&#xff0c;这里加入了跳高功能&#xff0…

Vue中实现自定义编辑邮件发送到指定邮箱(纯前端实现)

formspree里面注册账号 注册完成后进入后台新建项目并且新建表单 这一步完成之后你将得到一个地址 最后就是在项目中请求这个地址 关键代码如下&#xff1a; submitForm() {this.fullscreenLoading true;this.$axios({method: "post",url: "https://xxxxxxx…

MATLAB算法实战应用案例精讲-【优化算法】火烈鸟搜索优化算法(FSA)(附python代码实现)

前言 火烈鸟搜索算法(flamingo search algorithm,fsa)是一种模拟火烈鸟群体觅食行为的新型智能优化算法,可以用于路径规划领域。根据fsa的寻优过程可知,fsa存在以下不足:(1)初始化种群位置是随机的,不能保证种群质量;(2)在个体的迭代更新过程中缺少变异机制,导致种群多…

程序三高的方法

程序三高的方法 目录概述需求&#xff1a; 设计思路实现思路分析1.1&#xff09;高并发 参考资料和推荐阅读 Survive by day and develop by night. talk for import biz , show your perfect code,full busy&#xff0c;skip hardness,make a better result,wait for change,c…

Git使用【中】

欢迎来到Cefler的博客&#x1f601; &#x1f54c;博客主页&#xff1a;那个传说中的man的主页 &#x1f3e0;个人专栏&#xff1a;题目解析 &#x1f30e;推荐文章&#xff1a;题目大解析3 目录 &#x1f449;&#x1f3fb;分支管理分支概念git branch&#xff08;查看/删除分…

华为云云耀云服务器L实例评测|基于canal缓存自动更新流程 SpringBoot项目应用案例和源码

前言 最近华为云云耀云服务器L实例上新&#xff0c;也搞了一台来玩&#xff0c;期间遇到各种问题&#xff0c;在解决问题的过程中学到不少和运维相关的知识。 在之前的博客中&#xff0c;介绍过canal的安装和配置&#xff0c;参考博客 拉取创建canal镜像配置相关参数 & …

UG\NX CAM二次开发 加工模块获取 UF _ask_application_module

文章作者:代工 来源网站:NX CAM二次开发专栏 简介: UG\NX CAM二次开发 加工模块获取 UF _ask_application_module 代码: void MyClass::do_it() { // TODO: add your code here // 获取NX当前所在的模块 int module_id = 0; // UF_ask_application_module(&…

JMeter性能测试

性能测试前言 老师开局一句话&#xff1a;性能测试和你会不会JMeter一点关系没有…… 作者坚持技多不压身的原则&#xff0c;还是多学一点JMeter吧&#xff0c;看老师到底要怎么讲下去&#xff0c;什么并发量、吞吐量啥的…… 性能测试的核心思想&#xff1a;在于创造大量并发去…