竞赛 深度学习 opencv python 公式识别(图像识别 机器视觉)

文章目录

  • 0 前言
  • 1 课题说明
  • 2 效果展示
  • 3 具体实现
  • 4 关键代码实现
  • 5 算法综合效果
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于深度学习的数学公式识别算法实现

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:4分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题说明

手写数学公式识别较传统OCR问题而言,是一个更复杂的二维手写识别问题,其内部复杂的二维空间结构使得其很难被解析,传统方法的识别效果不佳。随着深度学习在各领域的成功应用,基于深度学习的端到端离线数学公式算法,并在公开数据集上较传统方法获得了显著提升,开辟了全新的数学公式识别框架。然而在线手写数学公式识别框架还未被提出,论文TAP则是首个基于深度学习的端到端在线手写数学公式识别模型,且针对数学公式识别的任务特性提出了多种优化。

公式识别是OCR领域一个非常有挑战性的工作,工作的难点在于它是一个二维的数据,因此无法用传统的CRNN进行识别。

在这里插入图片描述

2 效果展示

这里简单的展示一下效果

在这里插入图片描述

在这里插入图片描述

3 具体实现

在这里插入图片描述

神经网络模型是 Seq2Seq + Attention + Beam
Search。Seq2Seq的Encoder是CNN,Decoder是LSTM。Encoder和Decoder之间插入Attention层,具体操作是这样:Encoder到Decoder有个扁平化的过程,Attention就是在这里插入的。具体模型的可视化结果如下

在这里插入图片描述

4 关键代码实现

class Encoder(object):"""Class with a __call__ method that applies convolutions to an image"""def __init__(self, config):self._config = configdef __call__(self, img, dropout):"""Applies convolutions to the imageArgs:img: batch of img, shape = (?, height, width, channels), of type tf.uint8tf.uint8 因为 2^8 = 256,所以元素值区间 [0, 255],线性压缩到 [-1, 1] 上就是 img = (img - 128) / 128Returns:the encoded images, shape = (?, h', w', c')"""with tf.variable_scope("Encoder"):img = tf.cast(img, tf.float32) - 128.img = img / 128.with tf.variable_scope("convolutional_encoder"):# conv + max pool -> /2# 64 个 3*3 filters, strike = (1, 1), output_img.shape = ceil(L/S) = ceil(input/strike) = (H, W)out = tf.layers.conv2d(img, 64, 3, 1, "SAME", activation=tf.nn.relu)image_summary("out_1_layer", out)out = tf.layers.max_pooling2d(out, 2, 2, "SAME")# conv + max pool -> /2out = tf.layers.conv2d(out, 128, 3, 1, "SAME", activation=tf.nn.relu)image_summary("out_2_layer", out)out = tf.layers.max_pooling2d(out, 2, 2, "SAME")# regular conv -> idout = tf.layers.conv2d(out, 256, 3, 1, "SAME", activation=tf.nn.relu)image_summary("out_3_layer", out)out = tf.layers.conv2d(out, 256, 3, 1, "SAME", activation=tf.nn.relu)image_summary("out_4_layer", out)if self._config.encoder_cnn == "vanilla":out = tf.layers.max_pooling2d(out, (2, 1), (2, 1), "SAME")out = tf.layers.conv2d(out, 512, 3, 1, "SAME", activation=tf.nn.relu)image_summary("out_5_layer", out)if self._config.encoder_cnn == "vanilla":out = tf.layers.max_pooling2d(out, (1, 2), (1, 2), "SAME")if self._config.encoder_cnn == "cnn":# conv with stride /2 (replaces the 2 max pool)out = tf.layers.conv2d(out, 512, (2, 4), 2, "SAME")# convout = tf.layers.conv2d(out, 512, 3, 1, "VALID", activation=tf.nn.relu)image_summary("out_6_layer", out)if self._config.positional_embeddings:# from tensor2tensor lib - positional embeddings# 嵌入位置信息(positional)# 后面将会有一个 flatten 的过程,会丢失掉位置信息,所以现在必须把位置信息嵌入# 嵌入的方法有很多,比如加,乘,缩放等等,这里用 tensor2tensor 的实现out = add_timing_signal_nd(out)image_summary("out_7_layer", out)return out

学长编码的部分采用的是传统的卷积神经网络,该网络主要有6层组成,最终得到[N x H x W x C ]大小的特征。

其中:N表示数据的batch数;W、H表示输出的大小,这里W,H是不固定的,从数据集的输入来看我们的输入为固定的buckets,具体如何解决得到不同解码维度的问题稍后再讲;

C为输入的通道数,这里最后得到的通道数为512。

当我们得到特征图之后,我们需要进行reshape操作对特征图进行扁平化,代码具体操作如下:

N    = tf.shape(img)[0]
H, W = tf.shape(img)[1], tf.shape(img)[2] # image
C    = img.shape[3].value                 # channels
self._img = tf.reshape(img, shape=[N, H*W, C])

当我们在进行解码的时候,我们可以直接运用seq2seq来得到我们想要的结果,这个结果可能无法达到我们的预期。因为这个过程会相应的丢失一些位置信息。

位置信息嵌入(Positional Embeddings)

通过位置信息的嵌入,我不需要增加额外的参数的情况下,通过计算512维的向量来表示该图片的位置信息。具体计算公式如下:

在这里插入图片描述

其中:p为位置信息;f为频率参数。从上式可得,图像中的像素的相对位置信息可由sin()或cos表示。

我们知道,sin(a+b)或cos(a+b)可由cos(a)、sin(a)、cos(b)以及sin(b)等表示。也就是说sin(a+b)或cos(a+b)与cos(a)、sin(a)、cos(b)以及sin(b)线性相关,这也可以看作用像素的相对位置正、余弦信息来等效计算相对位置的信息的嵌入。

这个计算过程在tensor2tensor库中已经实现,下面我们看看代码是怎么进行位置信息嵌入。代码实现位于:/model/components/positional.py。

def add_timing_signal_nd(x, min_timescale=1.0, max_timescale=1.0e4):static_shape = x.get_shape().as_list()  # [20, 14, 14, 512]num_dims = len(static_shape) - 2  # 2channels = tf.shape(x)[-1]  # 512num_timescales = channels // (num_dims * 2)  # 512 // (2*2) = 128log_timescale_increment = (math.log(float(max_timescale) / float(min_timescale)) /(tf.to_float(num_timescales) - 1))  # -0.1 / 127inv_timescales = min_timescale * tf.exp(tf.to_float(tf.range(num_timescales)) * -log_timescale_increment)  # len == 128 计算128个维度方向的频率信息for dim in range(num_dims):  # dim == 0; 1length = tf.shape(x)[dim + 1]  # 14 获取特征图宽/高position = tf.to_float(tf.range(length))  # len == 14 计算x或y方向的位置信息[0,1,2...,13]scaled_time = tf.expand_dims(position, 1) * tf.expand_dims(inv_timescales, 0)  # pos = [14, 1], inv = [1, 128], scaled_time = [14, 128] 计算频率信息与位置信息的乘积signal = tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=1)  # [14, 256] 合并两个方向的位置信息向量prepad = dim * 2 * num_timescales  # 0; 256postpad = channels - (dim + 1) * 2 * num_timescales  # 512-(1;2)*2*128 = 256; 0signal = tf.pad(signal, [[0, 0], [prepad, postpad]])  # [14, 512] 分别在矩阵的上下左右填充0for _ in range(1 + dim):  # 1; 2signal = tf.expand_dims(signal, 0)for _ in range(num_dims - 1 - dim):  # 1, 0signal = tf.expand_dims(signal, -2)x += signal  # [1, 14, 1, 512]; [1, 1, 14, 512]return x

得到公式图片x,y方向的位置信息后,只需要要将其添加到原始特征图像上即可。

5 算法综合效果

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/149833.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

notion + nextjs搭建博客

SaaS可以通过博客来获得SEO流量,之前我自己在nextjs上,基于MarkDown Cloudfare来构建博客,很快我就了解到更优雅的方案:notion nextjs搭建博客,之前搭建了过,没有记录,这次刚好又要弄&#xf…

算法题:分发饼干

这个题目是贪心算法的基础练习题,解决思路是排序双指针谈心法,先将两个数组分别排序,优先满足最小胃口的孩子。(本题完整题目附在了最后面) 代码如下: class Solution(object):def findContentChildren(se…

[笔记] Windows内核课程:保护模式《二》段寄存器介绍

文章目录 前言1、什么是段寄存器? 有哪些 ?2. 段寄存器的结构 前言 段寄存器,页寄存器 1、什么是段寄存器? 有哪些 ? 当我们用汇编读写某一个地址时: mov dword ptr ds:[0x123456],eax我们真正读写的地址是: ds.base 0x123456ES、CS、SS、DS、FS、GS、LDTR…

云原生边缘计算KubeEdge安装配置

1. K8S集群部署,可以参考如下博客 请安装k8s集群,centos安装k8s集群 请安装k8s集群,ubuntu安装k8s集群 2.安装kubEedge 2.1 编辑kube-proxy使用ipvs代理 kubectl edit configmaps kube-proxy -n kube-system #修改kube-proxy#大约在40多行…

华为云云耀云服务器L实例评测|SpringCloud相关组件——nacos和sentinel的安装和配置 运行内存情况 服务器被非法登陆尝试的解决

前言 最近华为云云耀云服务器L实例上新,也搞了一台来玩,期间遇到各种问题,在解决问题的过程中学到不少和运维相关的知识。 本篇博客介绍SpringCloud相关组件——nacos和sentinel的安装和配置,并分析了运行内存情况,此…

RHCE---作业2

文章目录 目录 文章目录 一.远程连接服务器 二.基于域名和虚目录建立网站 一.远程连接服务器 配置 ssh 免密登陆:客户端主机通过 redhat 用户基于秘钥验证方式进行远程连接服务器的 root 用户 #服务端关闭防火墙 [roottimeserver ~]# systemctl disable --now fir…

Spring的事务控制

基于AOP的声明事务控制 Spring事务编程概述 事务是开发过程中必不可少的东西,使用JDBC开发时,我们使用connection对事务进行控制,使用MyBatis时,我们使用SqlSession对事物进行控制,缺点显而易见,当我们切…

C++设计模式-桥接(Bridge)

目录 C设计模式-桥接(Bridge) 一、意图 二、适用性 三、结构 四、参与者 五、代码 C设计模式-桥接(Bridge) 一、意图 将抽象部分与它的实现部分分离,使它们都可以独立地变化。 二、适用性 你不希望在抽象和它…

桌面应用开发:Go 语言和 Web 技术的融合创新 | 开源日报 No.46

TheAlgorithms/Python Stars: 161.5k License: MIT 这个开源项目是一个用 Python 实现的算法库,旨在提供教育目的下使用的各种算法。 提供了大量常见算法的 Python 实现。适合学习和教育目的,可以帮助读者更好地理解不同类型的算法。 airbnb/javascri…

CSS3实现动画加载效果

<!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta name"viewport" content"widthdevice-width, initial-scale1.0" /><title>加载效果</title><link rel"style…

数据结构与算法-(7)---栈的应用-(4)后缀表达式求值

&#x1f308;write in front&#x1f308; &#x1f9f8;大家好&#xff0c;我是Aileen&#x1f9f8;.希望你看完之后&#xff0c;能对你有所帮助&#xff0c;不足请指正&#xff01;共同学习交流. &#x1f194;本文由Aileen_0v0&#x1f9f8; 原创 CSDN首发&#x1f412; 如…

1.7.C++项目:仿muduo库实现并发服务器之Poller模块的设计

项目完整在&#xff1a; 文章目录 一、Poller模块&#xff1a;描述符IO事件监控模块二、提供的功能三、实现思想&#xff08;一&#xff09;功能&#xff08;二&#xff09;意义&#xff08;三&#xff09;功能设计 四、封装思想五、代码&#xff08;一&#xff09;框架&#…

CLIP与DINOv2的图像相似度对比

在计算机视觉领域有两个主要的自监督模型:CLIP和DINOv2。CLIP彻底改变了图像理解并且成为图片和文字之间的桥梁&#xff0c;而DINOv2带来了一种新的自监督学习方法。 在本文中&#xff0c;我们将探讨CLIP和DINOv2的优势和它们直接微妙的差别。我们的目标是发现哪些模型在图像相…

WEB各类常用测试工具

一、单元测试/测试运行器 1、Jest 知名的 Java 单元测试工具&#xff0c;由 Facebook 开源&#xff0c;开箱即用。它在最基础层面被设计用于快速、简单地编写地道的 Java 测试&#xff0c;能自动模拟 require() 返回的 CommonJS 模块&#xff0c;并提供了包括内置的测试环境 …

UDP通信程序的详细解析

2.UDP通信程序 2.1 UDP发送数据 Java中的UDP通信 UDP协议是一种不可靠的网络协议&#xff0c;它在通信的两端各建立一个Socket对象&#xff0c;但是这两个Socket只是发送&#xff0c;接收数据的对象&#xff0c;因此对于基于UDP协议的通信双方而言&#xff0c;没有所谓的客户端…

JMeter学习第一、二、三天

首先&#xff0c;我们来了解一下到底什么是接口测试与性能测试&#xff1a; 接口测试 定义 接口测试主要关注系统组件之间的交互&#xff0c;确保各个接口按预期工作。这包括验证传递的数据、数据格式、调用的频率和其他与接口调用相关的任何限制。 目的 确保系统的各个组件可…

Qt中 QMap 类、QHash 类、QVector 类详解

目录 一、QMap 类 1.插入数据信息 2.删除数据信息 3.迭代器 4.STL类型迭代 5.key键/T键查找 6.修改键值 7. 一个键对应多个值 直接使用QMultiMap类来实例化一个QMap对象 二、QHash 类 三、QVector类 一、QMap 类 QMap<Key,T>提供一个从类型为 Key 的键到类型为…

解决WPF+Avalonia在openKylin系统下默认字体问题

一、openKylin简介 openKylin&#xff08;开放麒麟&#xff09; 社区是在开源、自愿、平等和协作的基础上&#xff0c;由基础软硬件企业、非营利性组织、社团组织、高等院校、科研机构和个人开发者共同创立的一个开源社区&#xff0c;致力于通过开源、开放的社区合作&#xff…

【MySQL】索引特性

目录 MySQL索引特性 索引的概念 认识磁盘 磁盘的结构 磁盘的随机访问&#xff08;Random Access&#xff09;与连续访问&#xff08;Sequential Access&#xff09; MySQL与磁盘交互的基本单位 索引的理解 观察主键索引现象 推导主键索引结构的构建 索引结构可以采用…

IPSG技术和IP组播

1&#xff0c;IPSG技术概述 实验&#xff1a; DHCP snooping IPSG 拓扑&#xff1a; 需求&#xff1a; 1&#xff0c;实现PC1 和PC2 动态获取IP地址 2, 在SW2 配置DHCP snooping 实现DHCP 服务器的安全 3, 在 连接PC 1 和 PC2 的 接口上 做IPSG &#xff0c;防止终端…