《计算机视觉中的多视图几何》笔记(12)

12 Structure Computation

本章讲述如何在已知基本矩阵 F F F和两幅图像中若干对对应点 x ↔ x ′ x \leftrightarrow x' xx的情况下计算三维空间点 X X X的位置。

文章目录

  • 12 Structure Computation
    • 12.1 Problem statement
    • 12.2 Linear triangulation methods
    • 12.3 Geometric error cost function
    • 12.4 Sampson approximation (first-order geometric correction)
    • 12.5 An optimal solution
      • 12.5.1 Reformulation of the minimization problem
      • 12.5.2 Details of the minimization
      • 12.5.3 Local minima
      • 12.5.4 Evaluation on real images
    • 12.6 Probability distribution of the estimated 3D point
    • 12.7 Line Reconstruction

12.1 Problem statement

我们假设已知摄像机矩阵 P P P P ′ P' P,基本矩阵 F F F,还有两幅图像中若干对对应点 x ↔ x ′ x \leftrightarrow x' xx。因为有噪声的存在,图像中的点反投影回去的两条射线不一定相交, x F x ′ xFx' xFx也不一定等于0,所以简单三角化不一定可行。

我们先回忆一下第10章三维重建的知识。我们介绍了好几种不同种类的三维重建,这取决于我们对摄像机矩阵的知晓程度。那么结合本章的三角化,我们希望三角化在不同种类的重建之间能给出同样的结果。我们首先用 τ \tau τ来代表三角化的过程,如果 τ \tau τ能满足下式,那么我们就说三角化在变换 H H H下是不变的:
τ ( x , x ′ , P , P ′ ) = H − 1 τ ( x , x ′ , P H − 1 , P ′ H − 1 ) \tau(x,x',P,P') = H^{-1}\tau(x,x',PH^{-1},P'H^{-1}) τ(x,x,P,P)=H1τ(x,x,PH1,PH1)

为什么需要讨论这个?这是因为我们首先需要确定三维重建的种类,才能决定优化目标的形式。如果我们只知道摄像机矩阵是一个projective matrix,那么我们就不能在三维空间最优化目标函数。因为这样的优化函数在投影变换中不能给出唯一的结果,因为距离和垂直度等概念在projective geometry的背景下无效。所以,本章给出的三角化方法优化的是二维图像上的距离,所以本章的方法在投影变换(projective transformation)中是不变的。
在这里插入图片描述

12.2 Linear triangulation methods

对于两幅图像,我们分别有 x = P X , x ′ = P X ′ x=PX,x'=PX' x=PX,x=PX,我们可以将第一个方程改成 x × P X = 0 x \times PX=0 x×PX=0,第二幅图也一样。我们继续改写就可以有 A X = 0 AX=0 AX=0

Homogeneous method 找出 A A A最小特征值对应的特征向量

Inhomogeneous method 参见4.1.2节,原书P90

讨论
Inhomogeneous method假设点不在无穷远处,不适合projective reconstruction。其实这两个方法都不适合。

Inhomogeneous method适合affine reconstruction。

Homogeneous method不适合affine reconstruction。

12.3 Geometric error cost function

在这里插入图片描述
由于图像中有噪声的存在, x ↔ x ′ x \leftrightarrow x' xx其实不能满足极线的约束,我们用 x ˉ , x ′ ˉ \bar{x},\bar{x'} xˉ,xˉ表示没有噪声的点。那么我们可以构建以下优化函数:

C ( x , x ′ ) = d ( x , x ^ ) 2 + d ( x ′ , x ^ ′ ) 2 s u b j e c t t o x ′ ^ T F x ^ = 0 C(x,x') = d(x,\hat{x})^2 + d(x',\hat{x}')^2 \\ subject \ to \ \hat{x'}^{T}F\hat{x} = 0 C(x,x)=d(x,x^)2+d(x,x^)2subject to x^TFx^=0

其中 d d d表示两点之间的欧氏距离。这相当于最小化点 X X X的重投影误差,该点 X X X通过与 F F F一致的投影矩阵映射到两个点,如图12.2。

12.4 Sampson approximation (first-order geometric correction)

在这里插入图片描述
我们定义 X X X X ^ \hat{X} X^之间的差为 δ X \delta_X δX
δ X = − J T ( J J T ) − 1 ϵ \delta_X = -J^T(JJ^T)^{-1} \epsilon δX=JT(JJT)1ϵ

其中
ϵ = x ′ T F x J = ∂ ϵ / ∂ x = [ ( F T x ′ ) 1 , ( F T x ′ ) 2 , ( F X ) 1 , ( F X ) 2 ] \epsilon = x'^{T}Fx \\ J = \partial \epsilon/ \partial x=[(F^{T}x')_{1}, (F^{T}x')_{2},(FX)_{1},(FX)_{2}] ϵ=xTFxJ=ϵ/x=[(FTx)1,(FTx)2,(FX)1,(FX)2]

其中 ( F T x ′ ) 1 = f 11 x ′ + f 21 y ′ + f 31 (F^{T}x')_{1}=f_{11}x'+f_{21}y'+f_{31} (FTx)1=f11x+f21y+f31,以此类推。
所以我们可以看出该差值其实是基本矩阵方程关于 x x x的导数
那么 X X X X ^ \hat{X} X^之间的关系可以写成:
X ^ = X + δ X \hat{X} = X + \delta_X X^=X+δX

我们只需要把 δ X \delta_X δX算出来,然后对计算出的理论点 X X X按照上式进行一个纠正就可以了。
在这里插入图片描述

12.5 An optimal solution

本节介绍一种可以找到全局最优解的优化函数,并且是非迭代的,我们同时假设噪声服从高斯分布。

12.5.1 Reformulation of the minimization problem

先对问题进行一个梳理。

我们知道第一幅图的极点一定在极线上,第二幅图的极点也满足这个性质。反过来,在极线上的点也满足基本矩阵的约束。那么就能让观测到的点尽可能靠近极线,也就是找观测点到极线的距离,并使其最小。

所以我们就可以构建出以下损失函数
d ( x , l ) 2 + d ( x ′ + l ′ ) 2 d(x,l)^2 + d(x'+l')^2 d(x,l)2+d(x+l)2

我们的策略如下:

  1. 将极线方程参数化,所以第一幅图像中的极线方程就可以写为 l ( t ) l(t) l(t)
  2. 利用基本矩阵 F F F,和 l ( t ) l(t) l(t)来计算第二幅图像中的极线l ′ ( t ) '(t) (t)
  3. 将损失函数写成 d ( x , l ( t ) ) 2 + d ( x ′ + l ′ ( t ) ) 2 d(x,l(t))^2 + d(x'+l'(t))^2 d(x,l(t))2+d(x+l(t))2
  4. 求解最优的 t t t

12.5.2 Details of the minimization

接下来我们讲一下需要注意的一些细节。

首先,两幅图中对应点都不能与极点重合。

并且,我们可以对两幅图都做一个刚体变换,那么 x , x ′ x,x' x,x就可以被放置在原点 ( 0 , 0 , 1 ) (0,0,1) (0,0,1),那么两幅图的极点分别是 ( 1 , 0 , f ) , ( 1 , 0 , f ′ ) (1,0,f),(1,0,f') (1,0,f),(1,0,f)。我们知道极点也是要满足 F F F的,所以我们有 F ( 1 , 0 , f ) T = ( 1 , 0 , f ′ ) F = 0 F(1,0,f)^T = (1,0,f')F = 0 F(1,0,f)T=(1,0,f)F=0,如此以来我们就可以把基本矩阵表示为一种特殊形式:
F = [ f f ′ d − f ′ c − f ′ d − f b a b − f d c d ] F = \left[ \begin{matrix} ff'd & -f'c & -f'd \\ -fb & a & b\\ -fd & c & d \\ \end{matrix} \right] F= ffdfbfdfcacfdbd

同时我们也知道极线会通过极点 ( 1 , 0 , f ) (1,0,f) (1,0,f),我们再找一个特殊点,那就是极线与 y y y轴的交点 ( 0 , t , 1 ) (0,t,1) (0,t,1),所以极线就可以写成 ( 1 , 0 , f ) × ( 0 , t , 1 ) = ( t f , 1 , − t ) (1,0,f) \times (0,t,1) = (tf,1,-t) (1,0,f)×(0,t,1)=(tf,1,t),那么该直线到原点的距离就是:
d ( x , l ( t ) ) 2 = t 2 1 + ( t f ) 2 d(x,l(t))^2 = \frac{t^2}{1+(tf)^2} d(x,l(t))2=1+(tf)2t2

紧接着我们找下一个极线:
l ′ ( t ) = F ( 0 , t , 1 ) T = ( − f ′ ( c t + d ) , a t + b , c t + d ) T l'(t) = F(0,t,1)T=(-f'(ct+d),at+b,ct+d)^T l(t)=F(0,t,1)T=(f(ct+d),at+b,ct+d)T

该极线到原点的距离:
d ( x ′ , l ′ ( t ) ) 2 = ( c t + d ) 2 ( a t + v ) 2 + f ′ 2 ( c t + d ) 2 d(x',l'(t))^2 = \frac{(ct+d)^2}{(at+v)^2 +f'^2(ct+d)^2} d(x,l(t))2=(at+v)2+f′2(ct+d)2(ct+d)2

于是我们把 d ( x ′ , l ′ ( t ) ) 2 , d ( x , l ( t ) ) 2 d(x',l'(t))^2, d(x,l(t))^2 d(x,l(t))2,d(x,l(t))2 加在一起,记为 s ( t ) s(t) s(t)求导数,令导数等于0,就可以了。

一些讨论 s ( t ) s(t) s(t)是6次多项式,那么它就有6个实根,对应于3个最小值和3个最大值。顺便别忘了检查 x → ∞ x \rightarrow \infty x的情况。

下面我们把整个算法流程重复一遍,对应于P318算法12.1。

算法输入:观测到的对应点 x ↔ x ′ x \leftrightarrow x' xx,基本矩阵 F F F

算法输出:寻找一对 x ^ ↔ x ^ ′ \hat{x} \leftrightarrow \hat{x}' x^x^可以使几何损失函数最小,同时这一对点满足 x ^ ′ T F x ^ = 0 \hat{x}'^{T}F\hat{x} = 0 x^TFx^=0

算法步骤:

  1. 定义一对转换矩阵,可以把 x = ( x , y , 1 ) T , x ′ = ( x ′ , y ′ , t ) T x=(x,y,1)^{T},x'=(x',y',t)^{T} x=(x,y,1)T,x=(x,y,t)T转换到原点
    T = [ 1 − x 1 − y 1 ] T=\left[ \begin{matrix} 1 & & -x \\ &1 & -y \\ & & 1\\ \end{matrix} \right] T= 11xy1

    T ′ T' T的形式与 T T T是类似的

  2. 将基本矩阵 F F F变成 T ′ − T F T − 1 T'^{-T}FT^{-1} TTFT1

  3. 计算左极点 e = ( e 1 , e 2 , e 3 ) e=(e_1,e_2,e_3) e=(e1,e2,e3)和右极点 e ′ = ( e 1 ′ , e 2 ′ , e 3 ′ ) e'=(e'_1,e'_2,e'_3) e=(e1,e2,e3),并且归一化,使得 e 1 + e 2 = 1 e_1+e_2=1 e1+e2=1

  4. 构造两个旋转矩阵,这两个矩阵可以把 e e e旋转到 ( 1 , 0 , e 3 ) (1,0,e_3) (1,0,e3) ( 1 , 0 , e 3 ′ ) (1,0,e'_3) (1,0,e3).
    R = [ e 1 e 2 − e 2 e 1 1 ] R=\left[ \begin{matrix} e_1 &e_2 & \\ -e_2 &e_1 & \\ & & 1\\ \end{matrix} \right] R= e1e2e2e11
    R ′ R' R R R R类似

  5. F F F改成 R ′ F R T R'FR^{T} RFRT

  6. 设置以下等式 f = e 3 , f ′ = e 3 , a = F 22 , b = F 23 , c = F 32 , d = F 33 f=e_3,f'=e_3,a=F_{22},b=F_{23},c=F_{32},d=F_{33} f=e3,f=e3,a=F22,b=F23,c=F32,d=F33

  7. 将第6步中的等式带入 s ( t ) s(t) s(t)中,求解t

  8. 对求得的解进行验证,同时检查 t → ∞ t \rightarrow \infty t 的情况

  9. t t t带入极线方程,找到 x ^ , x ^ ′ \hat{x},\hat{x}' x^x^,极线知道了,观测点 x , x ′ x,x' x,x也知道,求直线上某个点,它要满足到已知点距离最近,由于我们把 x , x ′ x,x' x,x转到了原点,那么问题就转变成了直线上求某一点,它到原点距离最近。书中给出了一个公式,对于一个一般的直线 ( λ , μ , ν ) (\lambda, \mu, \nu) (λ,μ,ν),直线上到原点最近的点是 ( − λ ν , − μ ν , λ 2 + μ 2 ) (-\lambda \nu, -\mu \nu, \lambda^2+\mu^2) (λν,μν,λ2+μ2)

  10. 知道 x ^ , x ^ ′ \hat{x},\hat{x}' x^,x^后,再把他们旋转到原坐标, x ^ = T − 1 R T x ^ \hat{x} = T^{-1} R^{T} \hat{x} x^=T1RTx^ x ^ ′ = T − 1 R T x ^ ′ \hat{x}' = T^{-1} R^{T} \hat{x}' x^=T1RTx^

  11. 可以顺便利用 x ^ , x ^ ′ \hat{x},\hat{x}' x^,x^计算出三维空间点 X ^ \hat{X} X^(三角化,12.2)

12.5.3 Local minima

g ( t ) g(t) g(t)有6个自由度,所以它最多有三个最小值。那么如果用迭代的方法去寻找最小值,可能陷在局部最小值里出不来。

12.5.4 Evaluation on real images

本节大概展示了一些实验结果,在P320

12.6 Probability distribution of the estimated 3D point

估计三维点的概率分布。

通过两幅图像估计出来的三维空间点应该是满足一定概率分布的。其准确与否主要取决于从摄像机出发的,两条射线之间的角度。本节就对这个问题进行建模。书中为了简化这个问题,只考虑空间某平面上的点 X = ( x , y ) T X=(x,y)^T X=(x,y)T,其图像上的点分别表示为 x = f ( X ) , x ′ = f ′ ( X ) x=f(X), x'=f'(X) x=f(X),x=f(X), f , f ′ f,f' f,f 2 × 3 2 \times 3 2×3的矩阵,而不是 3 × 4 3 \times 4 3×4 如果忘了可以复习一下p175 6.4.2节

我们线考虑第一幅图像上的点 x x x,并且我们假设噪声服从均值为0,方差为 σ 2 \sigma^2 σ2的高斯分布,那么在已知 X X X的条件下 x x x的概率分布可以表示为 p ( x ∣ X ) p(x|X) p(xX),对第二幅图上的点 x ′ x' x有相同的结论 p ( x ′ ∣ X ) p(x'|X) p(xX)。那么当 x , x ′ x,x' x,x已知的时候,我们可以用贝叶斯公式反推 X X X的概率分布

p ( X ∣ x , x ′ ) = p ( x , x ′ ∣ X ) p ( X ) / p ( x , x ′ ) p(X|x,x') = p(x,x'|X)p(X) / p(x,x') p(Xx,x)=p(x,xX)p(X)/p(x,x)

再加上 x , x ′ x,x' x,x独立的假设,上式就可以化成

p ( X ∣ x , x ′ ) ∼ p ( x ∣ X ) p ( x ′ ∣ X ) p(X|x,x') \sim p(x|X)p(x'|X) p(Xx,x)p(xX)p(xX)

12.7 Line Reconstruction

我们现在要重建空间中的一个线段。它在两幅图像上分别表示为 l , l ′ l, l' l,l。我们可以把 l , l ′ l,l' l,l反投影回去,那么他们在空间中就是两个平面 π , π ′ \pi, \pi' π,π, 这两个平面的交点就是所求直线。我们可以形式化的表示为 π = P T l , π ′ = P ′ T l ′ \pi = P^Tl, \pi' = P'^T l' π=PTl,π=PTl,那么三维空间中的线就可以用这两个平面来表示 ( L L L是一个 2 × 4 2 \times 4 2×4的矩阵)
L = [ l T P l ′ T P ′ ] L = \left[ \begin{matrix} l^T P \\ l'^T P' \end{matrix} \right] L=[lTPlTP]

空间中的点 X X X L L L上,所以 L X = 0 LX=0 LX=0

在这里插入图片描述
在这里插入图片描述

退化的情况

如果这个直线在极平面上,那么上一节的方法就失效了,而且这样直线会和基线相交。在实际情况下,几乎要和基线相交的线也不能用以上方法来重建.

多平面相交的重建

假设有 n n n个平面,那么我们就他们像前文 L L L一样放在一起,形成一个 n × 4 n \times 4 n×4的矩阵 A A A。对 A A A做SDV分解 A = U D V T A=UDV^T A=UDVT,从 D D D中找出两个最大的特征值对应的特征向量,用他们来表示平面,也可以假设空间中直线 L L L投影到各个平面,然后计算投影直线和观测直线之间的几何损失函数,用极大似然估计求解。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/149942.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Java】内部类

目录 概念: 内部类访问特点 示例代码: 运行结果: 内部类分类 1. 成员内部类 示例代码: 2. 静态内部类 示例代码: 3. 方法内部类(局部内部类) 示例代码: 4. 匿名内部类 示例代码: 概…

【开发篇】十七、消息:模拟订单短信通知

文章目录 1、消息2、JMS3、AMQP4、案例:模拟订单短信通知 相关文章: 【同步通讯与异步通讯】 1、消息 消息的发送方,即生产者。消息的接收方,即消费者。同步通信就行打视频,等着对方接电话才能继续往下,而…

文件编码格式

一、问题场景 笔者在写controller层出现了一些小问题:测试controller层的一些请求的时候,后端控制台打印的是乱码,网上找了很多说改UTF-8的,但是我去设置里面全部都改为UTF-8了,结果仍然无济于事,甚至还把…

泊车功能专题介绍 ———— AVP系统基础数据交互内容

文章目录 系统架构系统功能描述云端子系统车辆子系统场端子系统用户APP 工作流程基础数据交互内容AVP 系统基础数据交互服务车/用户 - 云基础数据交互内容车位查询工作流程技术要求数据交互要求 车位预约工作流程技术要求数据交互要求 取消预约工作流程技术要求数据交互要求 泊…

2023最新ICP备案查询系统源码 附教程 Thinkphp框架

2023最新ICP备案查询系统源码 附教程 thinkphp框架 本系统支持网址备案,小程序备案,APP备案查询,快应用备案查询 优势: 响应速度快,没有延迟,没有缓存,数据与官方同步 源码下载:ht…

关于MAC电脑无法正常登陆H3C iNodes登陆的解决办法

背景 前段时间,单位的网络在做升级改造,网络出口也进行彻底调整同时单位的网络出口设备做了机房物理迁移,迁移后网络正常使用,但是出现自己的MAC电脑无法登陆iNodes问题,总是出现“正在查询SSL 网关参数..查询SSL 网关…

sheng的学习笔记-【中文】【吴恩达课后测验】Course 2 - 改善深层神经网络 - 第二周测验

课程2_第2周_测验题 目录:目录 第一题 1.当输入从第8个mini-batch的第7个的例子的时候,你会用哪种符号表示第3层的激活? A. 【  】 a [ 3 ] { 8 } ( 7 ) a^{[3]\{8\}(7)} a[3]{8}(7) B. 【  】 a [ 8 ] { 7 } ( 3 ) a^{[8]\{7\}(3)} a…

无状态自动配置 DHCPv6无状态配置 DHCPv6有状态配置

1、无状态自动配置 配置命令 AR1 ipv6 #开启路由器ipv6报文转发功能 interface GigabitEthernet0/0/0 ipv6 enable #开启路由器接口IPv6报文转发功能 ipv6 address FC01::1/64 …

怎么将Linux上的文件上传到github上

文章目录 1. 先在window浏览器中创建一个存储项目的仓库2. 复制你的ssh下的地址1) 生成ssh密钥 : 在Linux虚拟机的终端中,运行以下命令生成ssh密钥2)将ssh密钥添加到github账号 : 运行以下命令来获取公钥内容: 3. 克隆GitHub存储库:在Linux虚拟机的终端中&#xff0…

Springboot实现登录功能(token、redis、登录拦截器、全局异常处理)

登录流程: 1、前端调用登录接口,往接口里传入账号,密码 2、根据账号判断是否有这个用户,如果有则继续判断密码是否正确 3、验证成功后,则是根据账号,登录时间生成token(用JWT) 4、将…

数据结构与算法(四):哈希表

参考引用 Hello 算法 Github:hello-algo 1. 哈希表 1.1 哈希表概述 哈希表(hash table),又称散列表,其通过建立键 key 与值 value 之间的映射,实现高效的元素查询 具体而言,向哈希表输入一个键…

VR开发(一)——SteamVR实现摇杆移动

一、基础环境搭建 1.AssetStore 找到SteamVR并导入; 2.添加一个 VR 中代表玩家自己的物体。我可以打开 Assets/SteamVR/InteractionSystem/Core 文件夹,将 Player 物体拖入场景: 二、修改手柄按钮映射集 3.windows/steamVR input&#xff…

Http常见问题

说说 HTTP 常用的状态码及其含义? HTTP 状态码首先应该知道个大概的分类: 1XX:信息性状态码2XX:成功状态码3XX:重定向状态码4XX:客户端错误状态码5XX:服务端错误状态码 301:永久性…

C#,数值计算——数据建模FGauss的计算方法与源程序

1 文本格式 using System; namespace Legalsoft.Truffer { public class FGauss : MultiFuncd { public void funk(double x, double[] a, ref double y, double[] dyda) { int na a.Length; y 0.0; for (int …

卷积网络的发展历史-LeNet

简介 LeNet是CNN结构的开山鼻祖,第一次定义了卷积神经网络的结构。 LeNet模型包含了多个卷积层和池化层,以及最后的全连接层用于分类。其中,每个卷积层都包含了一个卷积操作和一个非线性激活函数,用于提取输入图像的特征。池化层…

TCP端口崩溃,msg:socket(): Too many open files

一、现象 linux系统中运行了一个TCP服务器,该服务器监听的TCP端口为10000。但是长时间运行时发现该端口会崩溃,TCP客户端连接该端口会失败: 可以看到进行三次握手时,TCP客户端向该TCP服务器的10000端口发送了SYN报文,…

驱动器类产品的接口EMC拓扑方案

驱动器类产品的接口EMC拓扑方案 1. 概述 本文以高压伺服驱动器和变频器类产品为例,对常用端口滤波拓扑方案进行总结,后续根据不同的应用场景可进行适当删减,希望对大家有帮助。 2. 驱动器验证等级 本文推荐拓扑的实验结果,满足…

jar 命令启动java 指定配置文件路径 jar如何启动

一、各种启动方式 1.java -jar # 例子 java -jar test.jar 1. 2. 这是最简单的启动方式,同时弊端也是很多的。 弊端1:exit 退出终端会导致java进程中断。 弊端2:ctrlc 退出启动展示页会导致java进程中断。 弊端3:直接关闭终端会…

IDEA添加Vue文件模板

代码模板&#xff1a; <!-- *${COMPONENT_NAME} *author niemengshi *date ${DATE} ${TIME} --> <template> #[[$END$]]# </template> <script> export default { name: "${COMPONENT_NAME}", props: { }, components: {}, mounted: {}, d…

mysql-执行计划

1. 执行计划表概述 id相同表示加载表的顺序是从上到下。 id不同id值越大&#xff0c;优先级越高&#xff0c;越先被执行。id有相同&#xff0c;也有不同&#xff0c;同时存在。 id相同的可以认为是一组&#xff0c;从上往下顺序执行&#xff1b;在所有的组中&#xff0c;id的值…