EQ 均衡器

EQ 的全称是 Equalizer,EQ 是 Equalizer 的前两个字母,中文名字叫做“均衡器”。最早是用来提升电话信号在长距离的传输中损失的高频,由此得到一个各频带相对平衡的结果,它让各个频带的声音得到了均衡。

EQ 的主要功能是:通过多个滤波器对声音某一个或多个频段进行增益或衰减处理

滤波器的种类

EQ的种类繁多,但是基本原理都是滤波器的叠加。根据参数的种类可以分为:图示均衡器和参数均衡器。根据滤波器设计又有很多EQ的设计种类:

  • 低通滤波器(lowpass):简单的处理低频效果,允许某部分低频率经过;没有增益效果
  • 高通滤波器(highpass):简单的梳理高频效果,允许某部分高频率部分经过;没有增益效果
  • 全通滤波器(allpass):稳定系统响应,使得声音浑浊。
  • 带通滤波器(bandpass):允许一定频率内通过。
  • 带阻滤波器(bandstop):使得一定频率被压制。
  • 低切滤波器(Low Shelf):切断中心频率以下的频率:可调节增益
  • 高切滤波器(High Shelf):切断中心频率以上的频率:可调节增益
  • 峰值滤波器(Peak Filter):拉高中心频率增益和频率响应。
  • 陷波滤波器(Notch Filter):压制中心频率的增益和频率响应。

对于low Shelf和Low pass的区别可以参照网站。

图示均衡器(Graphic Equalizer)

下图是Audition设计图示均衡器,该均衡器有10个频段,每个频段增益为-20dB~20dB。利用Audition中的参数滤波器得到一组EQ参数,然后将其应用到尖峰滤波器(peaking filter)

但是图示均衡器有一个缺点,它只能改变固定频带的音量,假如我们想改变1.5kHz处的音量,就没有办法了,因为它只提供了调整1kHz和2kHz的推子。

参数均衡器

参数均衡器主要使用的是峰值滤波器,峰值滤波器在中心频率附近提供提升或削减。远离升压或削减的增益是统一的,因此可以方便地将多个这样的部分串联起来。峰值滤波器的主要参数

  • 采样率$Fs$
  • 中心频率$Fc$:进行滤波的中心点,也即提升或者衰减频段的峰点或谷点所对应的频率
  • 增益(gain/dB):中心频率处的增益。增益表示输出与输入之比,$Gain=10*log(Out/In)$
  • 品质因子Q:定义滤波器影响的频率范围,描述了某一频率点提升或衰减的频带带宽。以频点为中心,Q 值越大,受影响的频带就越窄,Q 值越小,受影响的频带就越宽。中心频率变化3dB的频率差定义为Q值对应的频带带宽。举例而言,假设信号的中心频率设置为100Hz,对其施加EQ之后,该信号从原幅度衰减了3dB的整个信号被影响的频率范围是95Hz~105Hz,则受影响的频带带宽为10Hz。$Q=\frac{100}{10}=10$

  • 上下限频率$f_1,f_2$:如果是特定的滤波器,一般指频率响应强度下降到-3DB处的频率

Audition有参数均衡器功能,这种 EQ 可以随意定义频点的频率,在写有Hz数的地方输入不同的数值,再输入更改的dB数(分贝),就能改变这个频率的音量。

滤波器的设计

数字滤波器的设计类型

无限冲激响应(Infinite Impulse Response,IIR):计算量小,实时性好。

  • IIR是一种适用于许多线性时不变系统的属性,这些系统的特征是具有一个冲激响应$h(t)$,$h(t)$不会在特定点上完全变为零,而是无限期地持续。

有限冲激响应(Finite Impulse Response,FIR):稳定性好,相位可控。

  • 在有限冲激响应(FIR)系统中,对于某个有限T,在时t>T时,冲激响应恰好变为零。

多滤波系统设计类型

  • 级联型:将多个滤波器一个接着一个连接在一起,上一个滤波器的输出作为下一个滤波器的输入,类似于串联。
  • 并联型:各个滤波器并行处理,最后才将结果合并在一起。

我们选择二阶的biquad(IIR)设计滤波器,biquad响应函数如下:

$$H(z)=\frac{b_0+b_1 z^{-1}+b_2 z^{-2}}{a_0+a_1 z^{-1}+a_2 z^{-2}}$$

上下同时除以$a_0$,对$a_0$进行归一化

$$ H(z)=\frac{Y(z)}{X(z)}=\frac{b_0+b_1 \cdot z^{-1}+b_2 \cdot z^{-2}}{1+a_1 \cdot z^{-1}+a_2 \cdot z^{-2}} $$

转换到时域上差分方程计算方法:

$$y(n)=b_0 \cdot x(n)+b_1 \cdot x(n-1)+b_2 \cdot x(n-2)-a_1 \cdot y(n-1)-a_2 \cdot y(n-2)$$

设计滤波器必要参数

  • Fs:采样频率
  • f0:中心频率或角频率或架中点频率,取决于哪种过滤器类型
  • dBgain:仅用于峰值和倾斜滤波器
  • Q:对定义进行了调整,以便在相同Q和f0/Fs的情况下提高N dB,然后减少N dB,从而产生精确平坦的单位增益滤波器
  • BW:以倍频程为单位的带宽(BPF 的 -3 dB 频率之间)和陷波或中点 (dBgain/2) 增益频率之间峰值均衡器
  • S:"搁架斜率"参数(仅适用于搁置均衡器)。 当S=1时,陆架坡度尽可能陡并保持单调随着频率的增加或减少增益。 陆架坡度,在dB/倍频程,对于 a 的所有其他值仍与 S 成比例固定 f0/Fs 和 dBgain。

然后计算几个中间变量:

$A = \sqrt{10^{dBgain/20}}= 10^{dBgain/40}$ (for peaking and shelving EQ filters only)

$w0 = 2*pi*f0/Fs$

cos(w0)
sin(w0)

alpha = sin(w0)/(2*Q) (case: Q)
    = sin(w0)*sinh( ln(2)/2 * BW * w0/sin(w0) ) (case: BW)
    = sin(w0)/2 * sqrt( (A + 1/A)*(1/S - 1) + 2 ) (case: S)

供参考: 带宽与Q的关系为

  • 带BLT的数字滤波器:$1/Q = 2*sinh(ln(2)/2*BW*w0/sin(w0))$
  • 模拟滤波器原型:$1/Q = 2*sinh(ln(2)/2*BW)$

shelf slope 与Q的关系为:$1/Q = sqrt((A + 1/A)*(1/S - 1) + 2)$

$2*sqrt(A)*alpha = sin(w0) * sqrt( (A^2 + 1)*(1/S - 1) + 2*A ) $是一个方便的中间变量,用于shelf EQ滤波器。

最后,计算每种滤波器的系数,以及对应的模拟滤波器原型 H(s):

低通滤波器

LPF:$H(s) = 1 / (s^2 + s/Q + 1)$

b0 = (1 - cos(w0))/2

b1 = 1 - cos(w0)

b2 = (1 - cos(w0))/2

a0 = 1 + alpha

a1 = -2*cos(w0)

a2 = 1 - alpha

高通滤波器(High Pass Filter)

HPF:$H(s) = s^2 / (s^2 + s/Q + 1)$

b0 = (1 + cos(w0))/2

b1 = -(1 + cos(w0))

b2 = (1 + cos(w0))/2

a0 = 1 + alpha

a1 = -2*cos(w0)

a2 = 1 - alpha

带通滤波器(增益 = Q )

BPF:$H(s) = s / (s^2 + s/Q + 1)$ (constant skirt gain, peak gain = Q)

b0 = sin(w0)/2 = Q*alpha

b1 = 0

b2 = -sin(w0)/2 = -Q*alpha

a0 = 1 + alpha

a1 = -2*cos(w0)

a2 = 1 - alpha

带通滤波器( 0 db增益)

BPF: $H(s) = (s/Q) / (s^2 + s/Q + 1)$ (constant 0 dB peak gain)

b0 = alpha

b1 = 0

b2 = -alpha

a0 = 1 + alpha

a1 = -2*cos(w0)

a2 = 1 - alpha

Notch滤波器

notch: $H(s) = (s^2 + 1) / (s^2 + s/Q + 1)$

b0 = 1

b1 = -2*cos(w0)

b2 = 1

a0 = 1 + alpha

a1 = -2*cos(w0)

a2 = 1 - alpha

全通滤波器

APF: $H(s) = (s^2 - s/Q + 1) / (s^2 + s/Q + 1)$

b0 = 1 - alpha

b1 = -2*cos(w0)

b2 = 1 + alpha

a0 = 1 + alpha

a1 = -2*cos(w0)

a2 = 1 - alpha

峰值滤波器

peakingEQ: H(s) = (s^2 + s*(A/Q) + 1) / (s^2 + s/(A*Q) + 1)

b0 = 1 + alpha*A

b1 = -2*cos(w0)

b2 = 1 - alpha*A

a0 = 1 + alpha/A

a1 = -2*cos(w0)

a2 = 1 - alpha/A

低切滤波器

lowShelf: $H(s) = A * (s^2 + (sqrt(A)/Q)*s + A)/(A*s^2 + (sqrt(A)/Q)*s + 1)$

b0 = A*( (A+1) - (A-1)*cos(w0) + 2*sqrt(A)*alpha )

b1 = 2*A*( (A-1) - (A+1)*cos(w0) )

b2 = A*( (A+1) - (A-1)*cos(w0) - 2*sqrt(A)*alpha )

a0 = (A+1) + (A-1)*cos(w0) + 2*sqrt(A)*alpha

a1 = -2*( (A-1) + (A+1)*cos(w0) )

a2 = (A+1) + (A-1)*cos(w0) - 2*sqrt(A)*alpha

高通滤波器

highShelf: $H(s) = A * (A*s^2 + (sqrt(A)/Q)*s + 1)/(s^2 + (sqrt(A)/Q)*s + A)$

b0 = A*( (A+1) + (A-1)*cos(w0) + 2*sqrt(A)*alpha )

b1 = -2*A*( (A-1) + (A+1)*cos(w0) )

b2 = A*( (A+1) + (A-1)*cos(w0) - 2*sqrt(A)*alpha )

a0 = (A+1) - (A-1)*cos(w0) + 2*sqrt(A)*alpha

a1 = 2*( (A-1) - (A+1)*cos(w0) )

a2 = (A+1) - (A-1)*cos(w0) - 2*sqrt(A)*alpha

参见本文代码:PyEqualizer: 用python画出各种类型的EQ频响曲线,并且进行串联滤波。用python画出各种类型的EQ频响曲线,并且进行串联滤波(顺便帮忙点个赞呗)

上述代码需要人工设置中心频率fc,Q值和dBgain,这些参数的调节需要一定的经验,并可借助一些软件如Audition快速方便地获取合适的值。

点击Audition菜单栏的【效果】——【滤波与均衡】——【参数均衡器】,调出参数滤波器。在界面中,可见“频率”(也即中心频率),“增益”和“Q/宽度”,在新版的Audition中还有一栏“频段”,是滤波器标识符。其中【HP】和【LP】,即高通和低通,高通指允许高频通过,滤掉低频信号;低通指允许低频通过,滤掉高频信号。可任意修改【HP】对应的频率,比如设置高通【HP】频率为100Hz,即允许100Hz以上的频率通过,去除100Hz以下噪声;同时可以修改【HP】和【LP】的增益斜率,比如修改增益斜率为24dB/Oct,即低频的曲线斜率为24dB/Oct(分贝/倍频程)。Au中的EQ处理方法——图形均衡器和参数均衡器

音频频率知识

HF(高频):6kHz-16kHz,影响音色的表现力、解析力。像音乐盒那种尖锐的声音.

MID HF(中高频):600Hz-6kHz,影响音色的明亮度、清晰度。 像大提琴那种中规中矩的声音.

MID LF(中低频):200Hz-600Hz,影响音色和力茺和结实度。像大提琴那种中规中矩的声音.

LF(低频):20Hz-200Hz,影响音色的混厚度和丰满度。像低音炮那种低沉的声音.

人耳可分辨的声音频率大约是在20Hz~20kHz,因此调音台中的四段均衡器把其分为的4个频段,根据德国柏林音乐研究所资料介绍,它们是:

31Hz——这个频段需要播放器材有比较好的低频下潜能力,如果没有,当然就不容易听见,这个频段主要影响底鼓的延续音(sustain),就是踩下底鼓之后嗡嗡的声音,增强这个频段可以让音乐浑厚。

63Hz——这个频段是底鼓所在的主要频段,如果单纯把这个频点增强10dB,最明显的感受就是底鼓声变得很大,甚至破了,所以增强这个频段有助于音乐更厚实。

125Hz——这就主要是贝斯的频段了,贝斯常用的音高位置的音色主要在这一频段,当然不是说这一频段只有贝斯,增强这一频段音乐会更扎实。

基本上,如果增强了上述三个频段,你想要重低音的话就有了,这里说一下遮蔽效应,简单说就是比如你把125Hz调的很大,那么靠近125Hz的、dB数小的频率就会被遮蔽,听不到了。

250Hz——这个频段多了声音会很脏,少了声音会很干净,硬实,但它同时也是人声、弦乐、手鼓等等音色的主要共鸣点的所在频段。可以想象在水下的那种轰隆隆的感觉,是这一频段带给我的主要感受。

500Hz——和250Hz的感受相似,这一频段的增强会使一些铺底的合成器pad音色凸显出来,会使更多的男声凸显出来,这一频段多了还是会浑浊,稍微增加一些会使音乐有更多温暖、亲近的感觉。

1000Hz——这个频段可以算作一个分水岭,大部分乐器的基频都在200—1000Hz,所以调节1000以下的频段会更多的影响音色(不是影响音量),增强这一频段会使音色更明亮。

2000Hz——增强人声的可懂性,说白了听得更清楚,包括吉他贝斯的琴弦摩擦的声音,电吉他的尖刺感,两元店大喇叭里的广告,都可以让你更多的体会这一频段的特点,所以增强这一频段让音乐更清晰。

4000Hz——我个人理解这一频段是很多音色的镶边,就像是相框的边框,衣服或者窗帘的下摆,很多时候这一频段可以让声音更完整,更具细节,更多现场感,但是过多的提升也会让人觉得刺耳,听觉疲劳。5000Hz以上是几乎所有乐器的谐波成分,也是人耳最敏感的频段,比如把5000Hz提升6dB,有时会让人觉得整个音量被开大了一倍,如果过多的衰减则会让音乐听起来很远。

8000Hz——这个频段比较明显的是各种镲声、弦乐摩擦琴弦的声音、还有就是齿音,比如提升该频段会放大歌手四、是、次、字一类的发音。一般很少会大幅提升这一频段。

16000Hz——事实上这一频段确实很难分辨,如果把一首歌的16000Hz提升10dB,我一般会去听各种镲,镲会显得更亮更大声了,反之,镲声会显得小了、暗了。如果不仔细听,会感觉音乐没什么变化。

参考

【知乎】信号处理-均衡器EQ的原理与应用(含代码)

【知乎】P8:滤波器(Filter)

【SeS】3-BAND TONE CONTROL / 7-BAND PARAMETRIC EQUALIZER

【stanford】Peaking Equalizers

【musicdsp】RBJ Audio-EQ-Cookbook ;CSDN翻译

【github】Equalizer

【github】beqdesigner

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/150209.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

从零开始学习线性回归:理论、实践与PyTorch实现

文章目录 🥦介绍🥦基本知识🥦代码实现🥦完整代码🥦总结 🥦介绍 线性回归是统计学和机器学习中最简单而强大的算法之一,用于建模和预测连续性数值输出与输入特征之间的关系。本博客将深入探讨线性…

Python爬虫(二十二)_selenium案例:模拟登陆豆瓣

本篇博客主要用于介绍如何使用seleniumphantomJS模拟登陆豆瓣,没有考虑验证码的问题,更多内容,请参考:Python学习指南 #-*- coding:utf-8 -*-from selenium import webdriver from selenium.webdriver.common.keys import Keysimp…

IDEA 使用

目录 Git.gitignore 不上传取消idea自动 add file to git撤销commit的内容本地已经有一个开发完成的项目,这个时候想要上传到仓库中 Git .gitignore 不上传 在项目根目录下创建 .gitignore 文件夹,并添加内容: .gitignore取消idea自动 add…

Leetcode901-股票价格跨度

一、前言 本题基于leetcode901股票价格趋势这道题,说一下通过java解决的一些方法。并且解释一下笔者写这道题之前的想法和一些自己遇到的错误。需要注意的是,该题最多调用 next 方法 10^4 次,一般出现该提示说明需要注意时间复杂度。 二、解决思路 ①…

ArcGIS Engine:视图菜单的创建和鹰眼图的实现

目录 01 创建项目 1.1 通过ArcGIS-ExtendingArcObjects创建窗体应用 1.2 通过C#-Windows窗体应用创建窗体应用 1.2.1 创建基础项目 1.2.2 搭建界面 02 创建视图菜单 03 鹰眼图的实现 3.1 OnMapReplaced事件的触发 3.2 OnExtentUpdated事件的触发 04 稍作演示 01 创建项目…

【交互式阈值二进制图像】采用彩色或单色图像通过交互/手动方式阈值单色图像或彩色图像的单个色带研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

外部中断的基本操作

题目背景 定义一个 Working() 函数,使L1指示灯不断闪烁。将P32引脚定义成外部中断功能,按下S5按键就会产生外部中断触发信号,在中断响应函数中,点亮L8指示灯,延时较长一段时间后熄灭,该功能用两种方法实现…

selenium +IntelliJ+firefox/chrome 环境全套搭配

1第一步:下载IntelliJ idea 代码编辑器 2第二步:下载浏览器Chrome 3第三步:下载JDK 4第四步:配置环境变量(1JAVA_HOME 2 path) 5第五步:下载Maven 6第六步:配置环境变量&#x…

Scala第十六章节

Scala第十六章节 scala总目录 文档资料下载 章节目标 掌握泛型方法, 类, 特质的用法了解泛型上下界相关内容了解协变, 逆变, 非变的用法掌握列表去重排序案例 1. 泛型 泛型的意思是泛指某种具体的数据类型, 在Scala中, 泛型用[数据类型]表示. 在实际开发中, 泛型一般是结合…

CTFHUB SSRF

目录 web351 ​编辑 web352 web353 web354 sudo.cc 代表 127 web355 host长度 web356 web357 DNS 重定向 web358 bypass web359 mysql ssrf web360 web351 POST查看 flag.php即可 web352 <?php error_reporting(0); highlight_file(__FILE__); $url$_…

Java基础(二)

1. 面向对象基础 1.1 面向对象和面向过程的区别 面向过程把解决问题的过程拆成一个个方法&#xff0c;通过一个个方法的执行解决问题。面向对象会先抽象出对象&#xff0c;然后用对象执行方法的方式解决问题。 面向对象开发的方式更容易维护和迭代升级、易复用、易扩展。 1…

数据防泄密软件排行榜(企业电脑防泄密软件哪一款好用,有哪些推荐)

在当今信息化社会&#xff0c;数据已经成为了企业的重要资产。然而&#xff0c;数据的安全问题也日益突出&#xff0c;尤其是数据的泄露&#xff0c;不仅会导致企业的商业秘密被竞争对手获取&#xff0c;还可能引发一系列的法律问题。因此&#xff0c;数据防泄密软件的重要性不…

it端到端运营监控

公司的运维监控已成为确保业务顺利运行的关键。特别是对于IT部门&#xff0c;端到端运维监控不仅可以帮助企业及时发现和解决问题&#xff0c;还可以提高业务效率&#xff0c;优化客户体验。端到端运维监控的概念、重要性及其实施方法。 端到端操作监控的概念 端到端操作监控&…

NPDP35岁考还有意义吗? NPDP证书认可度如何?

一句话说的好&#xff0c;“活到老&#xff0c;学到老”&#xff0c;只要想学&#xff0c;想干事&#xff0c;什么时候都不晚&#xff0c;何况35岁正是一个人的转折阶段。当然&#xff0c;考取NPDP证书是否真的对自身有意义&#xff0c;这取决于你个人情况和职业发展目标。产品…

京东数据分析平台:2023年8月京东奶粉行业品牌销售排行榜

鲸参谋监测的京东平台8月份奶粉市场销售数据已出炉&#xff01; 鲸参谋数据显示&#xff0c;8月份京东平台上奶粉的销售量将近700万件&#xff0c;环比增长约15%&#xff0c;同比则下滑约19%&#xff1b;销售额将近23亿元&#xff0c;环比增长约4%&#xff0c;同比则下滑约3%。…

QMC5883L-磁力计椭球拟合校准

1.概述 磁力计椭球拟合校准是一种将磁力计测量数据校准到真实磁场的技术。这种技术通常使用椭球模型来拟合磁力计的测量结果&#xff0c;然后通过最小二乘法来找到拟合参数的最优解。 2.总体思想 磁力计椭球拟合校准的思想包括以下几个步骤&#xff1a; 1.数据预处理&#x…

万兆光模块的价格相比千兆光模块贵多少?

万兆光模块和千兆光模块是应用非常广泛的两款产品。万兆光模块与千兆光模块相比&#xff0c;主要优势在于速率更高、带宽更大。传输速率为万兆的光模块&#xff0c;理论上可以实现每秒传输10G的数据&#xff0c;是传输速率约为千兆的光模块的10倍&#xff0c;可以在同等时间内传…

HTML 笔记:初识 HTML(HTML文本标签、文本列表、嵌入图片、背景色、网页链接)

1 何为HTML 用来描述网页的一种语言超文本标记语言(Hyper Text Markup Language)不是一种编程语言&#xff0c;而是一种标记语言 (markup language) 2 HTML标签 HTML 标签是由尖括号包围的关键词&#xff0c;比如 <html> 作用是为了“标记”页面中的内容&#xff0c;使…

TCP VS UDP

程序员写网络程序&#xff0c;主要编写的应用层代码&#xff01; 真正要发这个数据&#xff0c;需要上层协议调用下层协议&#xff0c;应用层要调用传输层&#xff0c;则传输层给应用层提供一组api&#xff0c;统称为&#xff1a;soket api 基于UDP的api 基于TCP的api 这两个协…

深圳市重点实验室申报要求-华夏泰科

深圳市重点实验室&#xff0c;以开展基础研究、应用基础研究、前沿技术研究&#xff0c;培养人才、支撑产业和社会发展为目标而建立。它为研究人员提供了一个独特的平台&#xff0c;提供了一个展示他们创新性研究的舞台。本文将深入探讨如何申报深圳市重点实验室&#xff0c;为…