数据结构-优先级队列(堆)

文章目录

目录

文章目录

前言

一 . 堆

二 . 堆的创建(以大根堆为例)

堆的向下调整(重难点)

 堆的创建

 堆的删除

向上调整

堆的插入

三 . 优先级队列

总结


前言

大家好,今天给大家讲解一下堆这个数据结构和它的实现 - 优先级队列


一 . 堆

堆(Heap)是一种基于完全二叉树的数据结构,具有以下特点:

  1. 完全二叉树:堆是一种完全二叉树,即除了最后一层外,其他层的节点都是满的,并且最后一层的节点都靠左排列。

  2. 堆序性:堆中的每个节点都满足堆序性质,即对于最大堆(Max Heap),父节点的值大于或等于其子节点的值;对于最小堆(Min Heap),父节点的值小于或等于其子节点的值。

堆通常用数组来实现,其中数组的索引表示节点在堆中的位置。对于一个节点在索引i的堆,其左子节点在索引2i,右子节点在索引2i+1,父节点在索引i/2。

堆常常被用来实现优先级队列,因为它能够快速找到最大或最小的元素,并且在插入和删除操作时保持堆序性质。

常见的堆有两种类型:

  1. 最大堆(大根堆):父节点的值大于或等于其子节点的值。最大堆的根节点是堆中的最大元素。

  2. 最小堆(小根堆):父节点的值小于或等于其子节点的值。最小堆的根节点是堆中的最小元素。

堆的常见操作包括:

  1. 插入(Insertion):将一个元素插入到堆中,需要保持堆序性质。

  2. 删除根节点(Delete Root):删除堆中的根节点,需要调整堆以保持堆序性质。

  3. 查找最大/最小元素(Find Max/Min):在最大堆中查找最大元素,在最小堆中查找最小元素,时间复杂度为O(1)。

  4. 堆排序(Heap Sort):利用堆的性质进行排序,时间复杂度为O(nlogn)。


二 . 堆的创建(以大根堆为例)

初始化工作

public class BigHeap {int[] elem; // 用来记录堆中的元素int size;public BigHeap(int capacity) {elem = new int[capacity];}//再初始化的时候默认给一个数组public void initHeap(int[] arr) {for (int i = 0; i < arr.length; i++) {elem[i] = arr[i];size++;}}public boolean isFull() {return elem.length == size;}public void swap(int i,int j){int temp = elem[i];elem[i] = elem[j];elem[j] = temp;}

}

堆的向下调整(重难点)

对于集合{ 27,15,19,18,28,34,65,49,25,37 }中的数据,如果将其创建成大根堆呢?

父节点的值大于或等于其子节点的值。最大堆的根节点是堆中的最大元素。

根据层序遍历构建出的二叉树显然并不符合我们的要求,这个是时候我们就需要进行向下调整

在最大堆中,向下调整的过程是将当前节点与其子节点中较大的节点进行比较,如果当前节点小于其中较大的子节点,就将它们交换位置。然后,继续向下比较和交换,直到当前节点不再小于其子节点或者已经到达叶子节点。

思考一下,这个时候我们应该从哪个节点进行调整?

我们通常是从最后一个非叶子节点开始向下调整,直到根节点或者到达叶子节点为止。从最后一个非叶子节点开始向下调整的原因是,只有非叶子节点才有子节点,而叶子节点没有子节点,所以没有必要对叶子节点进行向下调整操作。

最后一个非叶子节点的索引可以通过公式计算得到:n/2-1,其中n是堆中元素的数量。

步骤

1. 让parent标记需要调整的节点,child标记parent的左孩子(注意:parent如果有孩子一定先是有左孩子,因为是完全二叉树)

2. 如果parent的左孩子存在,即:child < len, 进行以下操作,直到parent的左孩子不存在

  • parent右孩子是否存在,存在找到左右孩子中最大的孩子,让child进行标记
  • 将parent与较大的孩子child比较如果:
  1. parent小大于较大的孩子child,调整结束
  2. 否则:交换parent与较大的孩子child,交换完成之后,parent中小的元素向下移动,可能导致子树不满足堆的性质,因此需要继续向下调整,即parent = child;child = parent*2+1; 然后继续2(上面的)。

图解

{ 27,15,19,18,28,34,65,49,25,37 }

len: 数组的长度

parent: 表示指向需要调整的节点指针

child: 表示指向孩子节点的指针

最后一个非叶子节点: 根据公式parent = (child-1)/2 在这里child表示最后一个节点的索引

parent = (len - 1 - 1)/2 = 4 我们应该从4索引开始进行向下调整

 进行到这里左子树宣告调整完毕,开始进行右子树的调整

 调整完毕!

代码实现

    private void shiftDown(int parent, int len) {int child = 2 * parent + 1;// 对交换引起的堆结构的改变进行调整(如果改变就调整)while (child < len) {// 找出左右孩子中最大的孩子,用child进行记录if (child + 1 < len && elem[child] < elem[child + 1]) {child++;}// 判断大小关系if (elem[child] > elem[parent]) {swap(child,parent);// parent中大的元素往下移动,可能会造成子树不满足堆的性质,因此需要继续向下调整parent = child;child = 2 * parent + 1;} else {// 左孩子为空,表示以最开始的parent为根的二叉树已经是大根堆结构break;}}}

 堆的创建

    public void createHeap() {// 找倒数第一个非叶子节点,从该节点位置开始往前一直到根节点,遇到一个节点,应用向下调整for (int parent = (size - 1 - 1) / 2; parent >= 0; parent--) {shiftDown(parent, size);}}

 堆的删除

注意:堆的删除一定删除的是堆顶元素。具体如下:

1. 将堆顶元素对堆中最后一个元素交换

2. 将堆中有效数据个数减少一个

3. 对堆顶元素进行向下调整

    public int poll(){int temp = elem[0];swap(0, size);size--;// 调整完之后需要进行先下调整,因为原来的最后一个元素变成了堆顶元素,不用想的肯定不满足大根堆的结构shiftDown(0, size);return temp;}

向上调整

在最大堆中,向上调整的过程是将当前节点与其父节点进行比较,如果当前节点大于其父节点,就将它们交换位置。然后,继续向上比较和交换,直到当前节点不再大于其父节点或者已经到达根节点。

    private void shiftUp(int child) {while (child != 0) {int parent = (child - 1) / 2;if (elem[parent] < elem[child]) {swap(child,parent);child = parent;} else {break;}}}

堆的插入

堆的插入总共需要两个步骤:

1. 先将元素放入到底层空间中(注意:空间不够时需要扩容)

2. 将最后新插入的节点向上调整,直到满足堆的性质

小根堆中插入10

    public void offer(int val) {if (isFull()) {this.elem = Arrays.copyOf(this.elem, 2 * this.elem.length);}elem[size] = val;shiftUp(size);size++;}

 总代码

public class BigHeap {int[] elem;int size;public BigHeap(int capacity) {elem = new int[capacity];}public void initHeap(int[] arr) {for (int i = 0; i < arr.length; i++) {elem[i] = arr[i];size++;}}public void createHeap() {for (int parent = (size - 1 - 1) / 2; parent >= 0; parent--) {shiftDown(parent, size);}}public int poll(){int temp = elem[0];swap(0, size);size--;// 调整完之后需要进行先下调整,因为原来的最后一个元素变成了堆顶元素,不用想的肯定不满足大根堆的结构shiftDown(0, size);return temp;}private void shiftDown(int parent, int len) {int child = 2 * parent + 1;// 对交换引起的堆结构的改变进行调整(如果改变就调整)while (child < len) {// 找出左右孩子中最大的孩子,用child进行记录if (child + 1 < len && elem[child] < elem[child + 1]) {child++;}// 判断大小关系if (elem[child] > elem[parent]) {swap(child,parent);// parent中大的元素往下移动,可能会造成子树不满足堆的性质,因此需要继续向下调整parent = child;child = 2 * parent + 1;} else {// 左孩子为空,表示以最开始的parent为根的二叉树已经是大根堆结构break;}}}public void offer(int val) {if (isFull()) {this.elem = Arrays.copyOf(this.elem, 2 * this.elem.length);}elem[size] = val;shiftUp(size);size++;}private void shiftUp(int child) {while (child != 0) {int parent = (child - 1) / 2;if (elem[parent] < elem[child]) {swap(child,parent);child = parent;} else {break;}}}public boolean isFull() {return elem.length == size;}public void swap(int i,int j){int temp = elem[i];elem[i] = elem[j];elem[j] = temp;}
}

三 . 优先级队列

前面介绍过队列,队列是一种先进先出(FIFO)的数据结构,但有些情况下,操作的数据可能带有优先级,一般出队 列时,可能需要优先级高的元素先出队列,该中场景下,使用队列显然不合适,比如:在手机上玩游戏的时候,如果有来电,那么系统应该优先处理打进来的电话;初中那会班主任排座位时可能会让成绩好的同学先挑座位。 在这种情况下,数据结构应该提供两个最基本的操作,一个是返回最高优先级对象,一个是添加新的对象。这种数 据结构就是优先级队列(Priority Queue)。

优先级队列可以用于很多场景,例如任务调度、进程调度、事件处理等。在任务调度中,可以根据任务的优先级来决定先执行哪些任务;在进程调度中,可以根据进程的优先级来决定先执行哪些进程;在事件处理中,可以根据事件的优先级来决定先处理哪些事件。

在实际应用中,优先级队列可以通过使用堆来实现,因为堆具有良好的时间复杂度和空间复杂度。通过使用堆来实现优先级队列,可以在log₂ n的时间复杂度内插入和删除元素,以及在O(1)的时间复杂度内获取优先级最高的元素。

注意点:

1. 使用时必须导入PriorityQueue所在的包

2. PriorityQueue中放置的元素必须要能够比较大小,不能插入无法比较大小的对象,否则会抛出 ClassCastException异常

3. 不能插入null对象,否则会抛出NullPointerException

4. 没有容量限制,可以插入任意多个元素,其内部可以自动扩容

5. 插入和删除元素的时间复杂度为O(log₂ n)

6. PriorityQueue底层使用了堆数据结构

7. PriorityQueue默认情况下是小堆---即每次获取到的元素都是最小的元素 

堆模拟实现优先级队列

    class MyPriorityQueue {// 演示作用,不再考虑扩容部分的代码private int[] array = new int[100];private int size = 0;public void offer(int e) {array[size++] = e;shiftUp(size - 1);}public int poll() {int oldValue = array[0];array[0] = array[size--];shiftDown((size-1-1)/2,size);return oldValue;}public int peek() {return array[0];}}


总结

这篇文章给大家重点讲解了堆的模拟实现还有其应用之一 优先级队列,大家好好理解,我们下一篇博客见。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/150906.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

林沛满-Wireshark的提示

本文整理自&#xff1a;《Wireshark网络分析的艺术 第1版》 作者&#xff1a;林沛满 著 出版时间&#xff1a;2016-02 最近有不少同事开始学习 Wireshark&#xff0c;他们遇到的第一个困难就是理解不了主界面上的提示信息&#xff0c;于是跑来问我。问的人多了&#xff0c;我也…

VMProtect使用教程(VC++MFC中使用)

VMProtect使用教程(VCMFC中使用) VMProtect是一种商业级别的代码保护工具&#xff0c;可以用于保护VC MFC程序。以下是使用VMProtect保护VC MFC程序的步骤&#xff1a; 1. 下载并安装VMProtect,C包含库及目录。 2. 在VC MFC项目中添加VMProtectSDK.h头文件&#xff0c;并在需…

小谈设计模式(18)—适配器模式

小谈设计模式&#xff08;18&#xff09;—适配器模式 专栏介绍专栏地址专栏介绍 适配器模式角色分析目标接口&#xff08;Target&#xff09;源接口&#xff08;Adaptee&#xff09;适配器&#xff08;Adapter&#xff09; 核心思想应用场景Java程序实现输出结果程序分析123 优…

R语言通过接口获取网上数据平台的免费数据

大家好&#xff0c;我是带我去滑雪&#xff01; 作为一名统计学专业的学生&#xff0c;时常和数据打交道&#xff0c;我深知数据的重要性。数据是实证研究的重要基础&#xff0c;每当在完成一篇科研论文中的实证研究部分时&#xff0c;我都能深刻体会实证研究最复杂、最耗时的工…

零基础,想做一名网络安全工程师,我可以去哪里学,或者有什么建议?

这应该是全网最全的网络安全扫盲帖了&#xff01;发CSDN也有一段时间了&#xff0c;经常会有朋友在后台问我各种问题&#xff0c;比如“应该如何选方向”、“网络安全前景如何”、“怎么选适合的安全岗位”等等。于是今天借这个问题来给大家好好说说&#xff0c;如果你是零基础…

软件定制开发的细节|网站搭建|APP小程序定制

软件定制开发的细节|网站搭建|APP小程序定制 在定制开发的过程中&#xff0c;一些小的细节往往能够影响到最终的产品质量和用户体验。下面我将为大家介绍一些软件定制开发的细节。 第一&#xff0c;明确需求。在定制开发之前&#xff0c;我们需要明确客户的需求和目标。只有明确…

微信、支付宝、百度、抖音开放平台第三方代小程序开发总结

大家好&#xff0c;我是小悟 小伙伴们都开启小长假了吧&#xff0c;值此中秋国庆双节之际&#xff0c;小悟祝所有的小伙伴们节日快乐。 支付宝社区很用心&#xff0c;还特意给寄了袋月饼&#xff0c;愿中秋节的圆月带给你身体健康&#xff0c;幸福团圆&#xff0c;国庆节的旗帜…

【生成模型】解决生成模型面对长尾类型物体时的问题 RE-IMAGEN: RETRIEVAL-AUGMENTED TEXT-TO-IMAGE GENERATOR

介绍 尽管最先进的模型可以生成常见实体的高质量图像&#xff0c;但它们通常难以生成不常见实体的图像&#xff0c;例如“Chortai&#xff08;狗&#xff09;”或“Picarones&#xff08;食物&#xff09;”。为了解决这个问题&#xff0c;我们提出了检索增强文本到图像生成器…

漏刻有时数据可视化大屏引导页设计2(偏移卡片、动态数字翻牌、countUp.min.js)

引入外部文件 <title>漏刻有时引导页</title><script src="js/jquery-3.3.1.min.js"></script><script src="js/countUp.min.js"></script><link rel="stylesheet" href="css/common.css">…

乌班图20.04简易部署k8s+kuboard第三方面板

1. 问题&#xff1a; 使用官方只能说步骤挺全。 &#x1f604;出错&#xff1f;出错不管&#xff0c;无论是系统问题&#xff0c;版本兼容问题&#xff0c;网络插件问题&#xff0c;还是防火墙问题&#xff0c;我只能说特异性问题分析检索起来很难很难。 新人很难搞懂&#x…

玩转ChatGPT:DALL·E 3生成图像

一、写在前面 好久不更新咯&#xff0c;因为没有什么有意思的东西分享的。 今天更新&#xff0c;是因为GPT整合了自家的图像生成工具&#xff0c;名字叫作DALLE 3。 DALLE 3是OpenAI推出的一种生成图像的模型&#xff0c;它基于GPT-3架构进行训练&#xff0c;但是它的主要目…

ubuntu系统开机黑屏(只显示logo、左上角光标闪烁)问题

问题背景 在使用pycharm的时候&#xff0c;我使用了pycharm的快捷键ctrlaltF7&#xff0c;结果进入了ubuntu的ttf界面&#xff0c;由于之前不知道这个东西&#xff0c;百度一顿乱搜&#xff0c;以为显卡驱动出问题了&#xff0c;就把驱动删了&#xff0c;其实我完全可以ctrlal…

黑马JVM总结(二十七)

&#xff08;1&#xff09;synchronized代码块 synchronized代码块的底层原理&#xff0c;它是给一个对象进行一个加锁操作&#xff0c;它是如何保证如果你出现了synchronized代码块中出现了问题&#xff0c;它需要给这个对象有一个正确的解锁操作呢&#xff0c;加锁解锁是成对…

Kafka在企业级应用中的实践

前言 前面说了很多Kafka的性能优点&#xff0c;有些童鞋要说了&#xff0c;这Kafka在企业开发或者企业级应用中要怎么用呢&#xff1f;今天咱们就来简单探究一下。 1、 使用 Kafka 进行消息的异步处理 Kafka 提供了一个可靠的消息传递机制&#xff0c;使得企业能够将不同组件…

2023年9月:比特币逆势崛起!全球市场暴跌中的优异表现引人瞩目!

比特币在 9 月份上涨&#xff0c;而许多传统资产遭受了重大损失&#xff0c;凸显了加密货币的多元化特性。全球市场的压力似乎源于政府债券收益率上升和油价上涨。 随着比特币链上指标在本月的改善&#xff0c;强劲的基本面发挥了关键作用。稳定币市值在去年下降后趋于稳定&am…

数据中心负载测试中常见的挑战和解决方案有哪些?

数据中心负载测试中常见的挑战一个是搭建真实的测试环境&#xff0c;需要考虑到数据中心的规模、硬件设备、网络拓扑等因素&#xff0c;以确保测试的准确性和可靠性。在进行负载测试时&#xff0c;需要合理管理资源&#xff0c;包括服务器、存储设备、网络带宽等&#xff0c;以…

ssm+vue的公司人力资源管理系统(有报告)。Javaee项目,ssm vue前后端分离项目。

演示视频&#xff1a; ssmvue的公司人力资源管理系统&#xff08;有报告&#xff09;。Javaee项目&#xff0c;ssm vue前后端分离项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结…

【微信小程序开发】一文学会使用CSS样式布局与美化

引言 在微信小程序开发中&#xff0c;CSS样式布局和美化是非常重要的一部分&#xff0c;它能够为小程序增添美感&#xff0c;提升用户体验。本文将介绍如何学习使用CSS进行样式布局和美化&#xff0c;同时给出代码示例&#xff0c;帮助开发者更好地掌握这一技巧。 一、CSS样式布…

Linux系统之部署h5ai目录列表程序

Linux系统之部署h5ai目录列表程序 一、h5ai介绍1.1 h5ai简介1.2 h5ai特点 二、本地环境介绍2.1 本地环境规划2.2 本次实践介绍 三、检查本地环境3.1 检查本地操作系统版本3.2 检查系统内核版本 四、安装httpd软件4.1 检查yum仓库4.2 安装httpd软件4.3 启动httpd服务4.4 查看htt…

【Python_PyQtGraph 学习笔记(八)】基于PyQtGraph将X轴坐标设置为系统时间

【Python_PyQtGraph 学习笔记(八)】基于PyQtGraph将X轴坐标设置为系统时间 前言正文1、获取plotItem的bottom轴对象2、设置刻度值,即获取时间3、刻度值与显示数值绑定4、设置bottom轴的刻度数值显示前言 基于PySide2、PyQtGraph和PySide2动态绘图,将X轴坐标设置为系统事件…