深度学习基础知识 使用torchsummary、netron、tensorboardX查看模参数结构

深度学习基础知识 使用torchsummary、netron、tensorboardX查看模参数结构

  • 1、直接打印网络参数结构
  • 2、采用torchsummary检测、查看模型参数结构
  • 3、采用netron检测、查看模型参数结构
  • 3、使用tensorboardX

1、直接打印网络参数结构

import torch.nn as nn
from torchsummary import summary
import torchclass Alexnet(nn.Module):def __init__(self):super().__init__()self.net = nn.Sequential(nn.Conv2d(3, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(),nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),nn.Flatten(), nn.Linear(256 * 5 * 5, 4096), nn.ReLU(),nn.Dropout(0.5),nn.Linear(4096, 4096), nn.ReLU(),nn.Dropout(0.5),nn.Linear(4096, 10))def forward(self, X):return self.net(X)if __name__=="__main__":device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu")model=Alexnet().to(device)print(model)# summary(model,(3,224,224),16)

结果输出:

Alexnet((net): Sequential((0): Conv2d(3, 96, kernel_size=(11, 11), stride=(4, 4), padding=(1, 1))(1): ReLU()(2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)(3): Conv2d(96, 256, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(4): ReLU()(5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)(6): Conv2d(256, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(7): ReLU()(8): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(9): ReLU()(10): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(11): ReLU()(12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)(13): Flatten(start_dim=1, end_dim=-1)(14): Linear(in_features=6400, out_features=4096, bias=True)(15): ReLU()(16): Dropout(p=0.5, inplace=False)(17): Linear(in_features=4096, out_features=4096, bias=True)(18): ReLU()(19): Dropout(p=0.5, inplace=False)(20): Linear(in_features=4096, out_features=10, bias=True))
)

上述方案存在的问题是:当网络参数设置存在错误时,无法检测出来

2、采用torchsummary检测、查看模型参数结构

安装torchsummary

pip install torchsummary

通常采用torchsummary打印网络结构参数时,会出现以下问题
代码:

import torch.nn as nn
from torchsummary import summaryclass Alexnet(nn.Module):def __init__(self):super().__init__()self.net = nn.Sequential(nn.Conv2d(3, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(),nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),nn.Flatten(), nn.Linear(256 * 5 * 5, 4096), nn.ReLU(),nn.Dropout(0.5),nn.Linear(4096, 4096), nn.ReLU(),nn.Dropout(0.5),nn.Linear(4096, 10))def forward(self, X):return self.net(X)net = Alexnet()
print(summary(net, (3, 224, 224), 8))

报错内容如下:

RuntimeError: Input type (torch.cuda.FloatTensor) and weight type (torch.FloatTensor) should be the same

报错原因分析:

在使用torchsummary可视化模型时候报错,报这个错误是因为类型不匹配,根据报错内容可以看出Input type为torch.FloatTensor(CPU数据类型),而weight type(即网络权重参数这些)为torch.cuda.FloatTensor(GPU数据类型)

解决方案:

将model传到GPU上便可。将代码如下修改便可正常运行

if __name__ == "__main__":from torchsummary import summarydevice = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")model = UNet().to(device)	# modifyprint(model)summary(model, input_size=(3, 224, 224))

整体代码:

import torch.nn as nn
from torchsummary import summary
import torchclass Alexnet(nn.Module):def __init__(self):super().__init__()self.net = nn.Sequential(nn.Conv2d(3, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(),nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),nn.Flatten(), nn.Linear(256 * 5 * 5, 4096), nn.ReLU(),nn.Dropout(0.5),nn.Linear(4096, 4096), nn.ReLU(),nn.Dropout(0.5),nn.Linear(4096, 10))def forward(self, X):return self.net(X)if __name__=="__main__":device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu")model=Alexnet().to(device)# print(model)summary(model,(3,224,224),16)  # 16:表示传入的数据批次

打印结果:

----------------------------------------------------------------Layer (type)               Output Shape         Param #
================================================================Conv2d-1           [16, 96, 54, 54]          34,944ReLU-2           [16, 96, 54, 54]               0MaxPool2d-3           [16, 96, 26, 26]               0Conv2d-4          [16, 256, 26, 26]         614,656ReLU-5          [16, 256, 26, 26]               0MaxPool2d-6          [16, 256, 12, 12]               0Conv2d-7          [16, 384, 12, 12]         885,120ReLU-8          [16, 384, 12, 12]               0Conv2d-9          [16, 384, 12, 12]       1,327,488ReLU-10          [16, 384, 12, 12]               0Conv2d-11          [16, 256, 12, 12]         884,992ReLU-12          [16, 256, 12, 12]               0MaxPool2d-13            [16, 256, 5, 5]               0Flatten-14                 [16, 6400]               0Linear-15                 [16, 4096]      26,218,496ReLU-16                 [16, 4096]               0Dropout-17                 [16, 4096]               0Linear-18                 [16, 4096]      16,781,312ReLU-19                 [16, 4096]               0Dropout-20                 [16, 4096]               0Linear-21                   [16, 10]          40,970
================================================================
Total params: 46,787,978
Trainable params: 46,787,978
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 9.19
Forward/backward pass size (MB): 163.58
Params size (MB): 178.48
Estimated Total Size (MB): 351.25
----------------------------------------------------------------

3、采用netron检测、查看模型参数结构

安装netron与onnx

pip install netron onnx

代码实现:

import torch.nn as nn
import netron
import torch
from onnx import shape_inference
import onnxclass Alexnet(nn.Module):def __init__(self):super().__init__()self.net = nn.Sequential(nn.Conv2d(3, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(),nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),nn.Flatten(), nn.Linear(256 * 5 * 5, 4096), nn.ReLU(),nn.Dropout(0.5),nn.Linear(4096, 4096), nn.ReLU(),nn.Dropout(0.5),nn.Linear(4096, 10))def forward(self, X):return self.net(X)if __name__=="__main__":device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu")model=Alexnet()temp_image=torch.rand((1,3,224,224))# 1、利用torch.onnx.export,先将模型导出为onnx格式的文件,保存到本地./model.onnxtorch.onnx.export(model=model,args=temp_image,f='model.onnx',input_names=['image'],output_names=['feature_map'])# 2、加载进onxx模型,并推理,然后再保存覆盖原先模型onnx.save(onnx.shape_inference.infer_shapes(onnx.load("model.onnx")),"model.onnx")netron.start('model.onnx')

运行后,显示结构:
在这里插入图片描述
在这里插入图片描述

3、使用tensorboardX

在这里插入图片描述
代码实现:

import torch
import torch.nn as nn
from tensorboardX import SummaryWriter as SummaryWriterclass Alexnet(nn.Module):def __init__(self):super().__init__()self.net = nn.Sequential(nn.Conv2d(3, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(),nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),nn.Flatten(), nn.Linear(256 * 5 * 5, 4096), nn.ReLU(),nn.Dropout(0.5),nn.Linear(4096, 4096), nn.ReLU(),nn.Dropout(0.5),nn.Linear(4096, 10))def forward(self, X):return self.net(X)net = Alexnet()
img = torch.rand((1, 3, 224, 224))
with SummaryWriter(log_dir='logs') as w:w.add_graph(net, img)

运行后,会在本地生成一个log日志文件
在命令行运行以下指令:

tensorboard --logdir ./logs --port 6006

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/154987.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

从裸机启动开始运行一个C++程序(七)

前序文章请看: 从裸机启动开始运行一个C程序(六) 从裸机启动开始运行一个C程序(五) 从裸机启动开始运行一个C程序(四) 从裸机启动开始运行一个C程序(三) 从裸机启动开始运…

Httpd(一)

介绍 httpd是apache超文本传输协议(HTTP)服务器的主程序。被设计为一个独立运行的后台进程,它会建立一个处理请求的子进程或线程的池。 特性 高度模块化:core modules DSO:Dynamic Shared Object 动态加载/卸载 MPM:multi-p…

【工作流引擎】Activiti的使用03

流程定义查询 // 获取部署时的信息ProcessEngine processEngine ProcessEngines.getDefaultProcessEngine();RepositoryService repositoryService processEngine.getRepositoryService();ProcessDefinitionQuery processDefinitionQuery repositoryService.createProcessDe…

人工智能在教育上的应用2-基于大模型的未来数学教育的情况与实际应用

大家好,我是微学AI ,今天给大家介绍一下人工智能在教育上的应用2-基于大模型的未来数学教育的情况与实际应用,随着人工智能(AI)和深度学习技术的发展,大模型已经开始渗透到各个领域,包括数学教育。本文将详细介绍基于大模型在数学…

【ARM AMBA5 CHI 入门 12.1 -- CHI 链路层详细介绍 】

文章目录 CHI 版本介绍1.1 CHI 链路层介绍1.1.1 Flit 切片介绍1.1.2 link layer credit(L-Credit)机制1.1.3 Channel1.1.4 Port1.1. RN Node 接口定义1.1.6 SN Node 接口定义1.2 Channel interface signals1.2.1 Request, REQ, channel1.2.2 Response, RSP, channel1.2.3 Snoop…

MongoDB 笔记

1 insert 、create、save区别 insert: 主键不存在则正常插入;主键已存在,抛出DuplicateKeyException 异常 save: 主键不存在则正常插入;主键已存在则更新 insertMany:批量插入,等同于批量执行 insert create&#x…

PowerShell pnpm : 无法加载文件 C:\Users\lenovo\AppData\Roaming\npm\pnpm.ps1

1、右键点击【开始】,打开Windows PowerShell(管理员) 2、运行命令set-ExecutionPolicy RemoteSigned 3、根据提示,输入A,回车 此时管理员权限已经可以运行pnpm 如果vsCode还报该错误 继续输入 4、右键点击【开始】,打…

【gmail注册教程】手把手教你注册Google邮箱账号

手把手教你注册Google邮箱账号 写在前面: 要注意,注册Google邮箱必须要确保自己能够 科学上网,如果暂时做不到,请先进行相关学习。使用的手机号是大陆(86)的。 在保证自己能够科学上网后,在浏…

基于ChatGPT+词向量/词嵌入实现相似商品推荐系统

最近一个项目有个业务场景是相似商品推荐,给一个商品描述(比如 WIENER A/B 7IN 5/LB FZN ),系统给出商品库中最相似的TOP 5种商品,这种单纯的推荐系统用词向量就可以实现,不过,这个项目特点是商品库巨大,有…

上海亚商投顾:沪指探底回升 华为汽车概念股集体大涨

上海亚商投顾前言:无惧大盘涨跌,解密龙虎榜资金,跟踪一线游资和机构资金动向,识别短期热点和强势个股。 一.市场情绪 三大指数昨日探底回升,早盘一度集体跌超1%,随后震荡回暖,深成指、创业板指…

idea 插件推荐(持续更新)

文章目录 Material Theme UIcodeium(建议有梯子的使用)Key Promoter XCodeGlanceRainbow BracketsMarkdown NavigatorRestfulToolkitString Manipulation Material Theme UI 谁不想拥有一款狂拽炫酷 吊炸天 的编码主题呢,给你推荐Material Theme UI Plugin Material Theme UI是…

地产三维实景vr展示的功能及特点

随着科技的不断发展,VR(虚拟现实)技术也越来越成熟。VR技术的广泛应用,已经逐渐渗透到各个领域,其中引人注目的就是虚拟展馆。虚拟展馆是一种利用VR技术构建的线上展示空间,让观众可以在家中就能参观展览,带来了极大地…

那些年,我们一起发现的Bug

一、背景 在这篇文章中,分享一些自己在工作中或别人发现的一些常见Bug,与大家共同成长~ 二、常见Bug分类 1、前后命名不一致 举个例子 接口入参中的名称是:aslrboot Java代码中使用的名称是:aslrBoot Codis中存储的名称是&…

[硬件基础]-双稳态多谐振荡器配置

双稳态多谐振荡器配置 文章目录 双稳态多谐振荡器配置1、概述2、双稳态多谐振荡器的内部运行原理 在上一篇文章中,我们深入了解了555定时器在单稳态模式下的内部工作原理。 如果您已经理解了上一篇文章,那么本文对您来说将会非常简单。 我们将研究 555 定…

京东数据接口|电商运营中数据分析的重要性

在电商运营中,数据分析是非常重要的一环,它可以帮助电商企业更好地了解市场、了解消费者、了解产品、了解销售渠道等各种信息,从而制定更为科学有效的运营策略,提高销售效益。 数据方面用户可以直接选择使用数据接口来获取&#…

95740-26-4|用于体内DNA合成的探针F-ara-EdU

产品简介:(2S)-2-Deoxy-2-fluoro-5-ethynyluridine,一种用于体内DNA合成的探针,其毒性比EdU和BrdU都小。当需要延长细胞存活时间和不受干扰的细胞周期进展时,非常适合进行代谢DNA标记。 CAS号:95740-26-4 分子式&…

AIGC|利用大语言模型实现智能私域问答助手

随着ChatGPT的爆火,最近大家开始关注到大语言模型(LLM)这个领域。像雨后春笋一样,国内外涌现出了很多LLM。作为开发者,我们通常会关注LLM各自擅长的领域和能力,然后思考如何利用它们的能力来解决某个场景或…

ARM day5

三盏灯流水 .text .global _start _start: 1.LDR R0,0X50000A28LDR R1,[R0]ORR R1,R1,#(0X1<<4)STR R1,[R0] 1.LDR R0,0X50000A28LDR R1,[R0]ORR R1,R1,#(0X1<<5)STR R1,[R0] 2.LDR R0,0X50006000LDR R1,[R0]BIC R1,R1,#(0X3<<20)ORR R1,R1,#(0X1<<…

【数据结构】二叉树的顺序结构及实现

目录 1. 二叉树的顺序结构 2. 堆的概念及结构 3. 堆的实现 3.1 堆向下调整算法 3.2 堆的创建 3.3 建堆时间复杂度 3.4 堆的插入 3.5 堆的删除 3.6 堆的代码实现 4. 堆的应用 4.1 堆排序 4.2 TOP-K问题 1. 二叉树的顺序结构 普通的二叉树是不适合用数组来存储的&…

【算法-动态规划】不同路径

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kuan 的首页,持续学…