【群智能算法改进】一种改进的光学显微镜算法 IOMA算法[1]【Matlab代码#60】

文章目录

    • 【`获取资源`请见文章第5节:资源获取】
    • 1. 光学显微镜算法(OMA)
      • 1.1 物镜放大倍数
      • 1.2 目镜放大倍数
    • 2. 改进后的IOMA算法
      • 2.1 透镜成像折射方向学习
    • 3. 部分代码展示
    • 4. 仿真结果展示
    • 5. 资源获取说明


获取资源请见文章第5节:资源获取】


1. 光学显微镜算法(OMA)

光学显微镜算法(Optical Microscope Algorithm,OMA)是受显微镜放大倍数启发的一种新的元启发式算法,可用于解决工程优化问题。

新颖的 OMA 具有鲁棒性、易于实现且使用较少控制参数的特点,可用于解决各种数值优化问题。

OMA 是一种基于物理的算法,它模拟观察者放大物体的过程,从观察者的眼睛开始,然后通过显微镜镜头。OMA用于获得最佳目标对象的四步过程如下图所示。
在这里插入图片描述

1.1 物镜放大倍数

该算法中目标物体的放大倍数遵循复合显微镜使用的放大原理,并使用公式(1)进行建模。
M t o t a l = M O ∗ M E (1) M_{total}=M_{O}*M_{E}\tag1 Mtotal=MOME(1)
其中, M t o t a l M_{total} Mtotal代表显微镜的总视觉放大倍数, M O M_{O} MO是物镜的放大倍数, M E M_{E} ME并且是目镜的放大倍数。物镜的放大倍率方程一般用用公式(2)表示:
M O = L f 0 (2) M_{O}=\frac{L}{f_{0}}\tag2 MO=f0L(2)
其中, L L L是显微镜的镜筒长度, f 0 f_{0} f0是物镜的焦距。要计算这两个值,需要从最佳目标对象的位置进行参考( M b e s t M_{best} Mbest),用物镜放大。
修改后的目标对象 M i , n e w M_{i,new} Mi,new的数学表达式为:
M i , n e w = M i + m r ∗ 1.40 ∗ M b e s t (3) M_{i,new}=M_{i}+m^{r}*1.40*M_{best}\tag3 Mi,new=Mi+mr1.40Mbest(3)
修改后的目标对象( M i , n e w M_{i,new} Mi,new)然后与当前物体进行比较,选择两者中较好的一个作为最佳放大倍数。

1.2 目镜放大倍数

显微镜的第二个透镜是目镜,它是继物镜之后用来放大物体的。目镜的放大倍率方程一般用公式(4)表示:
M O = D f e (4) M_{O}=\frac{D}{f_{e}}\tag4 MO=feD(4)
其中, D D D是最短视觉距离, f e f_{e} fe并且是目镜的焦距。目镜阶段是高级放大倍率的更具体的阶段。因此,为了确定两者的长度,需要从用目镜放大的局部搜索空间的距离作为参考。
为了模拟目镜的放大效果,根据所选目标物体之间的距离确定放大空间( i i i)和群体中的另一个目标对象( j j j)。目标对象( i i i)被随机选择来计算局部搜索空间。

这种修改后的放大倍数被认为是对本地搜索空间的有效利用。公式(5)和(6)分别用于模拟目标物体的放大和修改模式。
s p a c e = { M j − M i , i f f ( M i ) > = f ( M j ) M i − M j , i f f ( M i ) < f ( M j ) (5) space=\left\{\begin{matrix}M_{j}-M_{i},\quad if \quad f(M_{i})>=f(M_{j}) \\M_{i}-M_{j},\quad if \quad f(M_{i})<f(M_{j}) \end{matrix}\right.\tag5 space={MjMi,iff(Mi)>=f(Mj)MiMj,iff(Mi)<f(Mj)(5)
M i , n e w = M i + m r ∗ 0.55 ∗ s p a c e (6) M_{i,new}=M_{i}+m^{r}*0.55*space\tag6 Mi,new=Mi+mr0.55space(6)

2. 改进后的IOMA算法

2.1 透镜成像折射方向学习

透镜成像折射反向学习策略的思想来自于凸透镜成像的原理。通过基于当前坐标生成一个反向位置来扩展搜索范围,如图1所示。
在这里插入图片描述

图1 透镜成像折射反向学习原理图

在二维坐标中,x轴的搜索范围为(a, b), y轴表示一个凸透镜。假设物体A在x轴上的投影为x,高度为h,通过透镜成像,另一侧的图像为A*, A在x轴上的投影为x,高度为h*。通过以上分析,我们可以得到如下公式:
( a + b ) / 2 − x x ∗ − ( a + b ) / 2 = h h ∗ (7) \frac{(a+b)/2-x}{x^{*}-(a+b)/2 }=\frac{h}{h^{*}} \tag7 x(a+b)/2(a+b)/2x=hh(7)
对公式(7)进行转换,即可得到反向解x*的表达式为:
x ∗ = a + b 2 + a + b 2 k − x k (8) x^{*} =\frac{a+b}{2}+\frac{a+b}{2k}-\frac{x}{k} \tag8 x=2a+b+2ka+bkx(8)
其中, k = h / h ∗ k=h/h^{*} k=h/h a a a b b b可以视为某维度的上下限。本文中的 k k k是一个与迭代次数相关的动态自适应值。

3. 部分代码展示

close all
clear 
clcSearchAgents_no=30; % Number of search agentsFunction_name='F4'; % Name of the test function that can be from F1 to F23 (Table 1,2,3 in the paper)Max_iteration=500; % Maximum numbef of iterations% Load details of the selected benchmark function
[lb,ub,dim,fobj]=Get_Functions_details(Function_name);[OMA_Best_score,OMA_Best_pos,OMA_cg_curve]=OMA(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);
[IOMA_Best_score,IOMA_Best_pos,IOMA_cg_curve]=IOMA(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);figure('Position',[500 500 660 290])
% Draw search space
subplot(1,2,1);
func_plot(Function_name);
title('Parameter space')
xlabel('x_1');
ylabel('x_2');
zlabel([Function_name,'( x_1 , x_2 )'])% Draw objective space
subplot(1,2,2);
semilogy(OMA_cg_curve,'Color','k','Linewidth',1.5)
hold on
semilogy(IOMA_cg_curve,'Color','r','Linewidth',1.5)
title('寻优过程')
xlabel('迭代次数');
ylabel('适应度值曲线');axis tight
grid on
box on
legend('OMA','IOMA')display(['The best solution obtained by OMA is : ', num2str(OMA_Best_pos)]);
display(['The best optimal value of the objective funciton found by OMA is : ', num2str(OMA_Best_score)]);
display(['The best solution obtained by IOMA is : ', num2str(IOMA_Best_pos)]);
display(['The best optimal value of the objective funciton found by IOMA is : ', num2str(IOMA_Best_score)]);

4. 仿真结果展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5. 资源获取说明

可以获取完整代码资源。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/155006.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Vuex的基础使用存值及异步

目录 一、概述 ( 1 ) 讲述 ( 2 ) 概念 ( 3 ) 作用 二、取值 1. 安装 2. 菜单栏 3. 模块 4. 引用 三、改值 四、异步&后台请求 带来的获取 一、概述 ( 1 ) 讲述 Vuex 是一个专为 Vue.js 应用程序开发的状态管理模式。它采用集中式存储管理应用的所有组件的…

JVM第一讲:JVM相关知识体系详解+面试(P6熟练 P7精通)

JVM相关知识体系详解面试(P6熟练 P7精通) 面试时常常被面试官问到JVM相关的问题。本系列将给大家构建JVM核心知识点全局知识体系&#xff0c;本文是JVM第一讲&#xff0c;JVM相关知识体系详解和相关面试题梳理。 文章目录 JVM相关知识体系详解面试(P6熟练 P7精通)1、JVM学习建议…

大数据之Hudi数据湖_执行编译hudi命令和jar包位置_hudi和hive集成_和spark集成_和presto集成_和flink集成_和trino集成---大数据之Hudi数据湖工作笔记0004

在hudi源码的根目录执行就可以了,注意要指定spark的版本上面指定的是3.2 如果不指定默认是3,最好都指定一下. 这里在执行编译之前,我们可以先去看一下在hudi的源码目录下,有个README.md 这个文件 去看看她支持的java 版本和git maven版本 看看spark支持的版本 看看对应的scala…

PayPal VS Block:开启全球金融科技的新未来

来源&#xff1a;猛兽财经 作者&#xff1a;猛兽财经 总结&#xff1a; &#xff08;1&#xff09;PayPal&#xff08;PYPL&#xff09;的战略重点是专注于 branded checkout、先付后买、人工智能驱动的创新&#xff0c;以及进入稳定币市场。 &#xff08;2&#xff09;Block&a…

指针拔尖(2)(巩固提高,全网最牛,包会,看不懂带电脑来找我)

文章目录 前言变量的声明 一、函数指针二、函数指针数组三、指向函数指针数组的指针四、 回调函数总结 前言 提示&#xff1a;本章是指针拔尖系列的终章&#xff0c;有四大知识点。 一、函数指针 二、函数指针数组 三、指向函数指针数组的指针 四、回调函数 但学习这些知识点我…

目标检测新思路:DETR

Transformer是一种基于自注意力机制的神经网络架构&#xff0c;它能够从序列中提取重要信息&#xff0c;已被广泛应用于自然语言处理和语音识别等领域。随着Transformer的提出和发展&#xff0c;目标检测领域也开始使用Transformer来提高性能。 DETR是第一篇将Transformer应用于…

Cocos Creator3.8 项目实战(八)2D UI DrawCall优化详解(上)

游戏开发的朋友都知道&#xff0c;在游戏开发过程中&#xff0c;DrawCall 是我们优化性能的一个非常重要的指标&#xff0c;直接影响游戏的整体性能表现&#xff0c;DrawCall数量越多&#xff0c;帧率会降低&#xff0c;能明显感觉到卡顿。 那今天我们就来聊一聊&#xff0c;2D…

零售超市商家怎么做微信小程序

随着互联网的发展&#xff0c;越来越多的零售超市商家开始关注如何借助微信小程序引流&#xff0c;以提高销售额和客户满意度。下面将介绍几个策略&#xff0c;帮助零售超市商家借助微信小程序实现引流。 首先&#xff0c;商家需要开发一款适合自己的微信小程序。小程序是一种轻…

pyqt 划线标注工具

效果图: 代码: import osfrom PyQt5.QtWidgets import QWidget, QApplication, QVBoxLayout, QPushButton, QLabel from PyQt5.QtGui import QPainter, QPen, QColor, QImage, QPixmap from PyQt5.QtCore import Qt, QPoint import sys import jsonclass ImageLabel(QLabel)…

centos7下 编译coreboot生成真机可用的bios固件, 并在真机上演示 (上篇)

看了国内的corebot相关文章以及b站的corebot视频, 大不部分都是编译 用于虚拟机(qemu)或者模拟器上运行的 很少有编译corebot项目 出可以再真机上使用的的 bios 本教程应该是全网最详细的了, 真机版的coreboot bios固件, 所以有点长, 希望对你有帮助 #coreboot编译总说明文档…

论文阅读——Large Selective Kernel Network for Remote Sensing Object Detection

目录 基本信息标题目前存在的问题改进网络结构另一个写的好的参考 基本信息 期刊CVPR年份2023论文地址https://arxiv.org/pdf/2303.09030.pdf代码地址https://github.com/zcablii/LSKNet 标题 遥感目标检测的大选择核网络 目前存在的问题 相对较少的工作考虑到强大的先验知…

深度学习基础知识 使用torchsummary、netron、tensorboardX查看模参数结构

深度学习基础知识 使用torchsummary、netron、tensorboardX查看模参数结构 1、直接打印网络参数结构2、采用torchsummary检测、查看模型参数结构3、采用netron检测、查看模型参数结构3、使用tensorboardX 1、直接打印网络参数结构 import torch.nn as nn from torchsummary im…

从裸机启动开始运行一个C++程序(七)

前序文章请看&#xff1a; 从裸机启动开始运行一个C程序&#xff08;六&#xff09; 从裸机启动开始运行一个C程序&#xff08;五&#xff09; 从裸机启动开始运行一个C程序&#xff08;四&#xff09; 从裸机启动开始运行一个C程序&#xff08;三&#xff09; 从裸机启动开始运…

Httpd(一)

介绍 httpd是apache超文本传输协议(HTTP)服务器的主程序。被设计为一个独立运行的后台进程&#xff0c;它会建立一个处理请求的子进程或线程的池。 特性 高度模块化&#xff1a;core modules DSO&#xff1a;Dynamic Shared Object 动态加载/卸载 MPM&#xff1a;multi-p…

【工作流引擎】Activiti的使用03

流程定义查询 // 获取部署时的信息ProcessEngine processEngine ProcessEngines.getDefaultProcessEngine();RepositoryService repositoryService processEngine.getRepositoryService();ProcessDefinitionQuery processDefinitionQuery repositoryService.createProcessDe…

人工智能在教育上的应用2-基于大模型的未来数学教育的情况与实际应用

大家好&#xff0c;我是微学AI ,今天给大家介绍一下人工智能在教育上的应用2-基于大模型的未来数学教育的情况与实际应用&#xff0c;随着人工智能(AI)和深度学习技术的发展&#xff0c;大模型已经开始渗透到各个领域&#xff0c;包括数学教育。本文将详细介绍基于大模型在数学…

【ARM AMBA5 CHI 入门 12.1 -- CHI 链路层详细介绍 】

文章目录 CHI 版本介绍1.1 CHI 链路层介绍1.1.1 Flit 切片介绍1.1.2 link layer credit(L-Credit)机制1.1.3 Channel1.1.4 Port1.1. RN Node 接口定义1.1.6 SN Node 接口定义1.2 Channel interface signals1.2.1 Request, REQ, channel1.2.2 Response, RSP, channel1.2.3 Snoop…

MongoDB 笔记

1 insert 、create、save区别 insert: 主键不存在则正常插入&#xff1b;主键已存在&#xff0c;抛出DuplicateKeyException 异常 save: 主键不存在则正常插入&#xff1b;主键已存在则更新 insertMany&#xff1a;批量插入&#xff0c;等同于批量执行 insert create&#x…

PowerShell pnpm : 无法加载文件 C:\Users\lenovo\AppData\Roaming\npm\pnpm.ps1

1、右键点击【开始】&#xff0c;打开Windows PowerShell&#xff08;管理员&#xff09; 2、运行命令set-ExecutionPolicy RemoteSigned 3、根据提示&#xff0c;输入A,回车 此时管理员权限已经可以运行pnpm 如果vsCode还报该错误 继续输入 4、右键点击【开始】&#xff0c;打…

【gmail注册教程】手把手教你注册Google邮箱账号

手把手教你注册Google邮箱账号 写在前面&#xff1a; 要注意&#xff0c;注册Google邮箱必须要确保自己能够 科学上网&#xff0c;如果暂时做不到&#xff0c;请先进行相关学习。使用的手机号是大陆&#xff08;86&#xff09;的。 在保证自己能够科学上网后&#xff0c;在浏…