分布式事务入门

文章目录

  • 分布式事务问题
    • 本地事务
    • 分布式事务
    • 演示分布式事务问题
  • 理论基础
    • CAP定理
      • 一致性
      • 可用性
      • 分区容错
      • 矛盾
    • BASE理论
  • Seata
    • Seata的架构
    • 部署TC服务
    • 微服务集成seata
  • 动手实践
    • XA模式
      • 两阶段提交
      • Seata的XA模型
      • 实现XA模式
    • AT模式
      • Seata的AT模型
      • 流程梳理
      • 脏写问题
      • 实现AT模式
    • TCC模式
      • 流程分析
      • TCC模式原理
      • 事务悬挂和空回滚
      • 实现TCC模式
    • SAGA模式
      • 原理
      • 四种模式对比
  • 高可用
    • 高可用架构模型
    • 实现高可用
      • 模拟异地容灾的TC集群
      • 将事务组映射配置到nacos
      • 微服务读取nacos配置

分布式事务问题

本地事务

本地事务,也就是传统的单机事务。在传统数据库事务中,必须要满足四个原则:
在这里插入图片描述

分布式事务

分布式事务,就是指不是在单个服务或单个数据库架构下,产生的事务,例如:

  • 跨数据源的分布式事务
  • 跨服务的分布式事务
  • 综合情况

在数据库水平拆分、服务垂直拆分之后,一个业务操作通常要跨多个数据库、服务才能完成。例如电商行业中比较常见的下单付款案例,包括下面几个行为:

  • 创建新订单
  • 扣减商品库存
  • 从用户账户余额扣除金额

完成上面的操作需要访问三个不同的微服务和三个不同的数据库
在这里插入图片描述
订单的创建、库存的扣减、账户扣款在每一个服务和数据库内是一个本地事务,可以保证ACID原则。

但是当我们把三件事情看做一个"业务",要满足保证“业务”的原子性,要么所有操作全部成功,要么全部失败,不允许出现部分成功部分失败的现象,这就是分布式系统下的事务

此时ACID难以满足,这是分布式事务要解决的问题

演示分布式事务问题

我们通过一个案例来演示分布式事务的问题:

  • 创建数据库,名为seata_demo,然后导入课前资料提供的SQL文件:
    在这里插入图片描述

  • 导入课前资料提供的微服务:
    在这里插入图片描述
    微服务结构如下:
    在这里插入图片描述
    其中:
    seata-demo:父工程,负责管理项目依赖

    • account-service:账户服务,负责管理用户的资金账户。提供扣减余额的接口
    • storage-service:库存服务,负责管理商品库存。提供扣减库存的接口
    • order-service:订单服务,负责管理订单。创建订单时,需要调用account-service和storage-service
  • 启动nacos、所有微服务

  • 测试下单功能,发出Post请求:

    http://localhost:8082/order?userId=user202103032042012&commodityCode=100202003032041&count=2&money=200
    
  • 如图:
    在这里插入图片描述
    测试发现,当库存不足时,如果余额已经扣减,并不会回滚,出现了分布式事务问题

理论基础

解决分布式事务问题,需要一些分布式系统的基础知识作为理论指导

CAP定理

1998年,加州大学的计算机科学家 Eric Brewer 提出,分布式系统有三个指标:

  • Consistency(一致性)
  • Availability(可用性)
  • Partition tolerance (分区容错性)

它们的第一个字母分别是 C、A、P
Eric Brewer 说,这三个指标不可能同时做到。这个结论就叫做 CAP 定理

在这里插入图片描述

一致性

Consistency(一致性):用户访问分布式系统中的任意节点,得到的数据必须一致

比如现在包含两个节点,其中的初始数据是一致的:
在这里插入图片描述
当我们修改其中一个节点的数据时,两者的数据产生了差异:
在这里插入图片描述
要想保住一致性,就必须实现node01 到 node02的数据 同步:
在这里插入图片描述

可用性

Availability (可用性):用户访问集群中的任意健康节点,必须能得到响应,而不是超时或拒绝

如图,有三个节点的集群,访问任何一个都可以及时得到响应:
在这里插入图片描述
当有部分节点因为网络故障或其它原因无法访问时,代表节点不可用:
在这里插入图片描述

分区容错

Partition(分区):因为网络故障或其它原因导致分布式系统中的部分节点与其它节点失去连接,形成独立分区
Tolerance(容错):在集群出现分区时,整个系统也要持续对外提供服务
在这里插入图片描述

矛盾

在分布式系统中,系统间的网络不能100%保证健康,一定会有故障的时候,而服务有必须对外保证服务。因此Partition Tolerance不可避免

当节点接收到新的数据变更时,就会出现问题了:
在这里插入图片描述
如果此时要保证一致性,就必须等待网络恢复,完成数据同步后,整个集群才对外提供服务,服务处于阻塞状态,不可用

如果此时要保证可用性,就不能等待网络恢复,那node01、node02与node03之间就会出现数据不一致

也就是说,在P一定会出现的情况下,A和C之间只能实现一个

BASE理论

BASE理论是对CAP的一种解决思路,包含三个思想:

  • Basically Available(基本可用):分布式系统在出现故障时,允许损失部分可用性,即保证核心可用
  • Soft State(软状态):在一定时间内,允许出现中间状态,比如临时的不一致状态
  • Eventually Consistent(最终一致性):虽然无法保证强一致性,但是在软状态结束后,最终达到数据一致

分布式事务最大的问题是各个子事务的一致性问题,因此可以借鉴CAP定理和BASE理论,有两种解决思路:

  • AP模式:各子事务分别执行和提交,允许出现结果不一致,然后采用弥补措施恢复数据即可,实现最终一致
  • CP模式:各个子事务执行后互相等待,同时提交,同时回滚,达成强一致。但事务等待过程中,处于弱可用状态

但不管是哪一种模式,都需要在子系统事务之间互相通讯,协调事务状态,也就是需要一个事务协调者(TC)
在这里插入图片描述
这里的子系统事务,称为分支事务;有关联的各个分支事务在一起称为全局事务

Seata

Seata是 2019 年 1 月份蚂蚁金服和阿里巴巴共同开源的分布式事务解决方案。致力于提供高性能和简单易用的分布式事务服务,为用户打造一站式的分布式解决方案

官网地址:其中的文档、播客中提供了大量的使用说明、源码分析
在这里插入图片描述

Seata的架构

Seata事务管理中有三个重要的角色:

  • TC (Transaction Coordinator) - **事务协调者:**维护全局和分支事务的状态,协调全局事务提交或回滚
  • TM (Transaction Manager) - **事务管理器:**定义全局事务的范围、开始全局事务、提交或回滚全局事务
  • RM (Resource Manager) - **资源管理器:**管理分支事务处理的资源,与TC交谈以注册分支事务和报告分支事务的状态,并驱动分支事务提交或回
    在这里插入图片描述

Seata基于上述架构提供了四种不同的分布式事务解决方案:

  • XA模式:强一致性分阶段事务模式,牺牲了一定的可用性,无业务侵入
  • TCC模式:最终一致的分阶段事务模式,有业务侵入
  • AT模式:最终一致的分阶段事务模式,无业务侵入,也是Seata的默认模式
  • SAGA模式:长事务模式,有业务侵入

无论哪种方案,都离不开TC,也就是事务的协调者

部署TC服务

  • 首先我们要下载seata-server包

  • 解压
    在这里插入图片描述

  • 修改conf目录下的application.example.yml文件:
    在这里插入图片描述

  • 修改完application.example.yml后在修改application.yml文件,注意application.yml初始状态没有下图那么多配置,需要把application.example.yml中对应nacos配置复制到里面去
    在这里插入图片描述

  • 在nacos添加配置
    特别注意,为了让tc服务的集群可以共享配置,我们选择了nacos作为统一配置中心。因此服务端配置文件seataServer.properties文件需要在nacos中配好
    格式如下:
    在这里插入图片描述
    配置内容如下:

    # 数据存储方式,db代表数据库
    store.mode=db
    store.db.datasource=druid
    store.db.dbType=mysql
    store.db.driverClassName=com.mysql.jdbc.Driver
    store.db.url=jdbc:mysql://127.0.0.1:3306/seata?useUnicode=true&rewriteBatchedStatements=true
    store.db.user=root
    store.db.password=123456
    store.db.minConn=5
    store.db.maxConn=30
    store.db.globalTable=global_table
    store.db.branchTable=branch_table
    store.db.queryLimit=100
    store.db.lockTable=lock_table
    store.db.maxWait=5000
    # 事务、日志等配置
    server.recovery.committingRetryPeriod=1000
    server.recovery.asynCommittingRetryPeriod=1000
    server.recovery.rollbackingRetryPeriod=1000
    server.recovery.timeoutRetryPeriod=1000
    server.maxCommitRetryTimeout=-1
    server.maxRollbackRetryTimeout=-1
    server.rollbackRetryTimeoutUnlockEnable=false
    server.undo.logSaveDays=7
    server.undo.logDeletePeriod=86400000# 客户端与服务端传输方式
    transport.serialization=seata
    transport.compressor=none
    # 关闭metrics功能,提高性能
    metrics.enabled=false
    metrics.registryType=compact
    metrics.exporterList=prometheus
    metrics.exporterPrometheusPort=9898
    

    其中的数据库地址、用户名、密码都需要修改成你自己的数据库信息

  • 创建数据库表

    CREATE DATABASE seata;
    USE seata;SET NAMES utf8mb4;
    SET FOREIGN_KEY_CHECKS = 0;-- ----------------------------
    -- 分支事务表
    -- ----------------------------
    DROP TABLE IF EXISTS `branch_table`;
    CREATE TABLE `branch_table`  (`branch_id` bigint(20) NOT NULL,`xid` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,`transaction_id` bigint(20) NULL DEFAULT NULL,`resource_group_id` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,`resource_id` varchar(256) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,`branch_type` varchar(8) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,`status` tinyint(4) NULL DEFAULT NULL,`client_id` varchar(64) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,`application_data` varchar(2000) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,`gmt_create` datetime(6) NULL DEFAULT NULL,`gmt_modified` datetime(6) NULL DEFAULT NULL,PRIMARY KEY (`branch_id`) USING BTREE,INDEX `idx_xid`(`xid`) USING BTREE
    ) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Compact;-- ----------------------------
    -- 全局事务表
    -- ----------------------------
    DROP TABLE IF EXISTS `global_table`;
    CREATE TABLE `global_table`  (`xid` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,`transaction_id` bigint(20) NULL DEFAULT NULL,`status` tinyint(4) NOT NULL,`application_id` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,`transaction_service_group` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,`transaction_name` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,`timeout` int(11) NULL DEFAULT NULL,`begin_time` bigint(20) NULL DEFAULT NULL,`application_data` varchar(2000) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,`gmt_create` datetime NULL DEFAULT NULL,`gmt_modified` datetime NULL DEFAULT NULL,PRIMARY KEY (`xid`) USING BTREE,INDEX `idx_gmt_modified_status`(`gmt_modified`, `status`) USING BTREE,INDEX `idx_transaction_id`(`transaction_id`) USING BTREE
    ) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Compact;SET FOREIGN_KEY_CHECKS = 1;
    
  • 进入bin目录,运行其中的seata-server.bat即可:
    -在这里插入图片描述
    启动成功后,seata-server应该已经注册到nacos注册中心了

    • 打开浏览器,访问nacos地址:,然后进入服务列表页面,可以看到seata-tc-server的信息:
      在这里插入图片描述

微服务集成seata

  • 引入依赖

    <dependency><groupId>com.alibaba.cloud</groupId><artifactId>spring-cloud-starter-alibaba-seata</artifactId><exclusions><!--版本较低,1.3.0,因此排除--><exclusion><artifactId>seata-spring-boot-starter</artifactId><groupId>io.seata</groupId></exclusion></exclusions>
    </dependency>
    <!--seata starter 采用1.4.2版本-->
    <dependency><groupId>io.seata</groupId><artifactId>seata-spring-boot-starter</artifactId><version>${seata.version}</version>
    </dependency>
    
  • 需要修改application.yml文件,添加一些配置:

    seata:registry: # TC服务注册中心的配置,微服务根据这些信息去注册中心获取tc服务地址# 参考tc服务自己的registry.conf中的配置type: nacosnacos: # tcserver-addr: 127.0.0.1:8848namespace: ""group: DEFAULT_GROUPapplication: seata-tc-server # tc服务在nacos中的服务名称tx-service-group: seata-demo # 事务组,根据这个获取tc服务的cluster名称service:vgroup-mapping: # 事务组与TC服务cluster的映射关系seata-demo: GZ
    

动手实践

XA模式

XA 规范 是 X/Open 组织定义的分布式事务处理(DTP,Distributed Transaction Processing)标准,XA 规范 描述了全局的TM与局部的RM之间的接口,几乎所有主流的数据库都对 XA 规范 提供了支持

两阶段提交

XA是规范,目前主流数据库都实现了这种规范,实现的原理都是基于两阶段提交

一阶段:

  • 事务协调者通知每个事物参与者执行本地事务
  • 本地事务执行完成后报告事务执行状态给事务协调者,此时事务不提交,继续持有数据库锁

二阶段:

  • 事务协调者基于一阶段的报告来判断下一步操作
    • 如果一阶段都成功,则通知所有事务参与者,提交事务
    • 如果一阶段任意一个参与者失败,则通知所有事务参与者回滚事务

正常情况:
在这里插入图片描述
异常情况:
在这里插入图片描述

Seata的XA模型

Seata对原始的XA模式做了简单的封装和改造,以适应自己的事务模型,基本架构如图:
在这里插入图片描述
RM一阶段的工作:

  • 注册分支事务到TC
  • 执行分支业务sql但不提交
  • 报告执行状态到TC

TC二阶段的工作:

  • TC检测各分支事务执行状态
    a.如果都成功,通知所有RM提交事务
    b.如果有失败,通知所有RM回滚事务

RM二阶段的工作:

  • 接收TC指令,提交或回滚事务

实现XA模式

  • 修改application.yml文件(每个参与事务的微服务),开启XA模式:

    seata:data-source-proxy-mode: XA
    
  • 给发起全局事务的入口方法添加@GlobalTransactional注解:
    在这里插入图片描述

AT模式

AT模式同样是分阶段提交的事务模型,不过缺弥补了XA模型中资源锁定周期过长的缺陷

Seata的AT模型

基本流程图:
在这里插入图片描述
阶段一RM的工作:

  • 注册分支事务
  • 记录undo-log(数据快照)
  • 执行业务sql并提交
  • 报告事务状态

阶段二提交时RM的工作:

  • 删除undo-log即可

阶段二回滚时RM的工作:

  • 根据undo-log恢复数据到更新前

流程梳理

我们用一个真实的业务来梳理下AT模式的原理

比如,现在又一个数据库表,记录用户余额:

idmoney
1100

其中一个分支业务要执行的SQL为:

update tb_account set money = money - 10 where id = 1

AT模式下,当前分支事务执行流程如下:

  • 一阶段:

    • TM发起并注册全局事务到TC
    • TM调用分支事务
    • 分支事务准备执行业务SQL
    • RM拦截业务SQL,根据where条件查询原始数据,形成快照。
      {"id": 1, "money": 100
      }
      
    • RM执行业务SQL,提交本地事务,释放数据库锁。此时 money = 90
    • RM报告本地事务状态给TC
  • 二阶段:

    • TM通知TC事务结束

    • TC检查分支事务状态

      • 如果都成功,则立即删除快照
      • 如果有分支事务失败,需要回滚。读取快照数据({"id": 1, "money": 100}),将快照恢复到数据库。此时数据库再次恢复为100

脏写问题

在多线程并发访问AT模式的分布式事务时,有可能出现脏写问题,如图:
在这里插入图片描述
解决思路就是引入了全局锁的概念。在释放DB锁之前,先拿到全局锁。避免同一时刻有另外一个事务来操作当前数据
在这里插入图片描述

实现AT模式

AT模式中的快照生成、回滚等动作都是由框架自动完成,没有任何代码侵入,因此实现非常简单
只不过,AT模式需要一个表来记录全局锁、另一张表来记录数据快照undo_log

  • 导入课前资料提供的Sql文件:seata-at.sql,其中lock_table导入到TC服务关联的数据库,undo_log表导入到微服务关联的数据库:
    在这里插入图片描述

  • 修改application.yml文件,将事务模式修改为AT模式即可:

    seata:data-source-proxy-mode: AT # 默认就是AT
    
  • 给发起全局事务的入口方法添加@GlobalTransactional注解:
    在这里插入图片描述

TCC模式

TCC模式与AT模式非常相似,每阶段都是独立事务,不同的是TCC通过人工编码来实现数据恢复。需要实现三个方法:

  • Try:资源的检测和预留;
  • Confirm:完成资源操作业务;要求 Try 成功 Confirm 一定要能成功。
  • Cancel:预留资源释放,可以理解为try的反向操作

流程分析

举例,一个扣减用户余额的业务。假设账户A原来余额是100,需要余额扣减30

  • 阶段一( Try ):检查余额是否充足,如果充足则冻结金额增加30元,可用余额扣除30
    初识余额:
    在这里插入图片描述
    余额充足,可以冻结:
    在这里插入图片描述
    此时,总金额 = 冻结金额 + 可用金额,数量依然是100不变。事务直接提交无需等待其它事务
  • 阶段二(Confirm):假如要提交(Confirm),则冻结金额扣减30
    确认可以提交,不过之前可用金额已经扣减过了,这里只要清除冻结金额就好了:
    在这里插入图片描述
    此时,总金额 = 冻结金额 + 可用金额 = 0 + 70 = 70元
  • 阶段二(Canncel):如果要回滚(Cancel),则冻结金额扣减30,可用余额增加30
    需要回滚,那么就要释放冻结金额,恢复可用金额:
    在这里插入图片描述

TCC模式原理

Seata中的TCC模型依然延续之前的事务架构,如图:
在这里插入图片描述

事务悬挂和空回滚

  • 空回滚: 当某分支事务的try阶段阻塞时,可能导致全局事务超时而触发二阶段的cancel操作。在未执行try操作时先执行了cancel操作,这时cancel不能做回滚,就是空回滚
    执行cancel操作时,应当判断try是否已经执行,如果尚未执行,则应该空回滚
    在这里插入图片描述

  • 业务悬挂: 对于已经空回滚的业务,之前被阻塞的try操作恢复,继续执行try,就永远不可能confirm或cancel ,事务一直处于中间状态,这就是业务悬挂
    执行try操作时,应当判断cancel是否已经执行过了,如果已经执行,应当阻止空回滚后的try操作,避免悬挂

实现TCC模式

这里我们定义一张表:

USE `seata_demo`;DROP TABLE IF EXISTS `account_freeze_tbl`;
CREATE TABLE `account_freeze_tbl`  (`xid` VARCHAR(128) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,`user_id` VARCHAR(255) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,`freeze_money` INT(11) UNSIGNED NULL DEFAULT 0,`state` INT(1) NULL DEFAULT NULL COMMENT '事务状态,0:try1:confirm,2:cancel',PRIMARY KEY (`xid`) USING BTREE
) ENGINE = INNODB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = COMPACT;

其中:

  • xid:是全局事务id
  • freeze_money:用来记录用户冻结金额
  • state:用来记录事务状态

那此时,我们的业务开怎么做呢?

  • Try业务:
    • 记录冻结金额和事务状态到account_freeze表
    • 扣减account表可用金额
  • Confirm业务
    • 根据xid删除account_freeze表的冻结记录
  • Cancel业务
    • 修改account_freeze表,冻结金额为0,state为2
    • 修改account表,恢复可用金额
  • 如何判断是否空回滚?
    • cancel业务中,根据xid查询account_freeze,如果为null则说明try还没做,需要空回滚
  • 如何避免业务悬挂?
    • try业务中,根据xid查询account_freeze ,如果已经存在则证明Cancel已经执行,拒绝执行try业务

接下来,我们改造account-service,利用TCC实现余额扣减功能

声明TCC接口
TCC的Try、Confirm、Cancel方法都需要在接口中基于注解来声明,
我们在account-service项目中的cn.itcast.account.service包中新建一个接口,声明TCC三个接口:

@LocalTCC
public interface AccountTCCService {@TwoPhaseBusinessAction(name = "deduct", commitMethod = "confirm", rollbackMethod = "cancel")void deduct(@BusinessActionContextParameter(paramName = "userId") String userId,@BusinessActionContextParameter(paramName = "money")int money);boolean confirm(BusinessActionContext ctx);boolean cancel(BusinessActionContext ctx);
}

创建相关实体类与mapper
在这里插入图片描述
编写实现类:在account-service服务中的cn.itcast.account.service.impl包下新建一个类,实现TCC业务:

@Slf4j
@Service
public class AccountTCCServiceImpl implements AccountTCCService {@Autowiredprivate AccountMapper accountMapper;@Autowiredprivate AccountFreezeMapper accountFreezeMapper;@Override@Transactionalpublic void deduct(String userId, int money) {// 1.获取事务idString xid = RootContext.getXID();// 2.判断freeze中是否有冻结记录,如果有,一定是CANCEL执行过,我要拒绝AccountFreeze oldFreeze = accountFreezeMapper.selectById(xid);if (oldFreeze != null) {// CANCEL执行过,我要拒绝额业务return;}// 3.扣减可用余额accountMapper.deduct(userId, money);// 4.记录冻结金额,事务状态AccountFreeze freeze = new AccountFreeze();freeze.setUserId(userId);freeze.setFreezeMoney(money);freeze.setState(AccountFreeze.State.TRY);freeze.setXid(xid);accountFreezeMapper.insert(freeze);}@Overridepublic boolean confirm(BusinessActionContext ctx) {// 1.获取事务IdString xid = ctx.getXid();// 2.根据Id删除记录int flag = accountFreezeMapper.deleteById(xid);return flag == 1;}@Overridepublic boolean cancel(BusinessActionContext ctx) {// 1.查询冻结记录String xid = ctx.getXid();AccountFreeze freeze = accountFreezeMapper.selectById(xid);String userId = ctx.getActionContext("userId").toString();// 2.空回滚的判断,判断freeze是否为null,为null镇命歌try没执行,需要空回滚if (freeze == null) {// 证明try没有执行,需要空回滚freeze = new AccountFreeze();freeze.setUserId(userId);freeze.setFreezeMoney(0);freeze.setState(AccountFreeze.State.CANCEL);freeze.setXid(xid);accountFreezeMapper.insert(freeze);return true;}// 3.幂等判断if (freeze.getState() == AccountFreeze.State.CANCEL) {// 已经处理过一次CANCEL了,无需重复处理return true;}// 4.恢复可用余额accountMapper.refund(freeze.getUserId(), freeze.getFreezeMoney());// 5.将动静金额清零,状态改为CANCELfreeze.setFreezeMoney(0);freeze.setState(AccountFreeze.State.CANCEL);int flag = accountFreezeMapper.updateById(freeze);return flag == 1;}
}

注入AccountTCCService
在这里插入图片描述

SAGA模式

Saga 模式是 Seata 即将开源的长事务解决方案,将由蚂蚁金服主要贡献。
其理论基础是Hector & Kenneth 在1987年发表的论文Sagas。
Seata官网对于Saga的指南

原理

在 Saga 模式下,分布式事务内有多个参与者,每一个参与者都是一个冲正补偿服务,需要用户根据业务场景实现其正向操作和逆向回滚操作
分布式事务执行过程中,依次执行各参与者的正向操作,如果所有正向操作均执行成功,那么分布式事务提交。如果任何一个正向操作执行失败,那么分布式事务会去退回去执行前面各参与者的逆向回滚操作,回滚已提交的参与者,使分布式事务回到初始状态

Saga也分为两个阶段:

  • 一阶段:直接提交本地事务
  • 二阶段:成功则什么都不做;失败则通过编写补偿业务来回滚
    在这里插入图片描述

四种模式对比

XAATTCCSAGA
一致性强一致弱一致弱一致最终一致
隔离性完全隔离基于全局锁隔离基于资源预留隔离无隔离
代码侵入要编写三个接口要编写状态机和补偿业务
性能非常好非常好
场景对一致性、隔离性有高要求的业务基于关系型数据库的大多数分布式事务场景都可以- 对性能要求较高的事务
-有非关系型数据库要参与的事务
- 业务流长、业务流程多
- 参与者包含其它公司或遗留系统服务,无法提供 TCC模式要求的三个接口

高可用

Seata的TC服务作为分布式事务核心,一定要保证集群的高可用性

高可用架构模型

搭建TC服务集群非常简单,启动多个TC服务,注册到nacos即可

但集群并不能确保100%安全,万一集群所在机房故障怎么办?所以如果要求较高,一般都会做异地多机房容灾
比如一个TC集群在上海,另一个TC集群在杭州:
在这里插入图片描述

实现高可用

模拟异地容灾的TC集群

计划启动两台seata的tc服务节点:

节点名称ip地址端口号集群名称
seata127.0.0.18091GZ
seata2127.0.0.18092TJ

之前我们已经启动了一台seata服务,端口是8091,集群名为GZ
现在,将seata目录复制一份,起名为seata2
修改conf目录下的application.example.yml文件并复制到application.yml文件
在这里插入图片描述
进入seata2/bin目录,然后运行命令:seata-server.bat -p 8092

打开nacos控制台,查看服务列表:
在这里插入图片描述
点进详情查看:
在这里插入图片描述

将事务组映射配置到nacos

接下来,我们需要将tx-service-group与cluster的映射关系都配置到nacos配置中心

  • 新建一个配置:
    在这里插入图片描述
    配置内容如下:

    # 事务组映射关系
    service.vgroupMapping.seata-demo=GZservice.enableDegrade=false
    service.disableGlobalTransaction=false
    # 与TC服务的通信配置
    transport.type=TCP
    transport.server=NIO
    transport.heartbeat=true
    transport.enableClientBatchSendRequest=false
    transport.threadFactory.bossThreadPrefix=NettyBoss
    transport.threadFactory.workerThreadPrefix=NettyServerNIOWorker
    transport.threadFactory.serverExecutorThreadPrefix=NettyServerBizHandler
    transport.threadFactory.shareBossWorker=false
    transport.threadFactory.clientSelectorThreadPrefix=NettyClientSelector
    transport.threadFactory.clientSelectorThreadSize=1
    transport.threadFactory.clientWorkerThreadPrefix=NettyClientWorkerThread
    transport.threadFactory.bossThreadSize=1
    transport.threadFactory.workerThreadSize=default
    transport.shutdown.wait=3
    # RM配置
    client.rm.asyncCommitBufferLimit=10000
    client.rm.lock.retryInterval=10
    client.rm.lock.retryTimes=30
    client.rm.lock.retryPolicyBranchRollbackOnConflict=true
    client.rm.reportRetryCount=5
    client.rm.tableMetaCheckEnable=false
    client.rm.tableMetaCheckerInterval=60000
    client.rm.sqlParserType=druid
    client.rm.reportSuccessEnable=false
    client.rm.sagaBranchRegisterEnable=false
    # TM配置
    client.tm.commitRetryCount=5
    client.tm.rollbackRetryCount=5
    client.tm.defaultGlobalTransactionTimeout=60000
    client.tm.degradeCheck=false
    client.tm.degradeCheckAllowTimes=10
    client.tm.degradeCheckPeriod=2000# undo日志配置
    client.undo.dataValidation=true
    client.undo.logSerialization=jackson
    client.undo.onlyCareUpdateColumns=true
    client.undo.logTable=undo_log
    client.undo.compress.enable=true
    client.undo.compress.type=zip
    client.undo.compress.threshold=64k
    client.log.exceptionRate=100
    

微服务读取nacos配置

接下来,需要修改每一个微服务的application.yml文件,让微服务读取nacos中的client.properties文件:

seata:config:type: nacosnacos:server-addr: 127.0.0.1:8848username: nacospassword: nacosgroup: SEATA_GROUPdata-id: client.properties

重启微服务,现在微服务到底是连接tc的GZ集群,还是tc的TJ集群,都统一由nacos的client.properties来决定了

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/156237.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

天猫用户重复购买预测(速通一)

天猫用户重复购买预测&#xff08;一&#xff09; 赛题理解1、评估指标2、赛题分析 理论知识1.缺失值处理2.不均衡样本3.常见的数据分布 数据探索探查影响复购的各种因素1.对店铺分析2.对用户分析3.对用户性别的分析4.对用户年龄的分析 特征工程1、特征工程介绍特征归一化类别型…

本文整理了Debian 11在国内的几个软件源。

1&#xff0e;使用说明 一般情况下&#xff0c;将/etc/apt/sources.list文件中Debian默认的软件仓库地址和安全更新仓库地址修改为国内的镜像地址即可&#xff0c;比如将deb.debian.org和security.debian.org改为mirrors.xxx.com&#xff0c;并使用https访问&#xff0c;可使用…

数据结构—顺序表

目录 1.线性表 2.顺序表概念 3.实现顺序表 (1)声明结构体 (2)初始化 (3)打印数据 (4) 销毁 (5)尾插&头插 尾插 判断是否扩容 头插 (6)尾删&头删 尾删 头删 (7)指定位置插入元素 (8)删除指定位置元素 (9)查找指定元素位置 (10)修改指定位置元素 完整版…

github小记(一):清除github在add或者commit之后缓存区

github清除在add或者commit之后缓存区 前言1. 第一步之后想要撤销2. 第二步之后想要撤销a. 改变一下rrr.txt的内容b. 想提交本地文件的test文件夹c. 我后悔了突然不想提交了 前言 github自用 一般github上代码提交顺序&#xff1a; 第一步&#xff1a; git add . or git ad…

【技术干货】如何快速创建商用照明 OEM APP?

本文介绍了如何在涂鸦 IoT 平台的 App 工作台上创建一款体验版商照 App、正式版 OEM App、上架 App、以及完成通用配置。 OEM App 开发 创建 App 登录 涂鸦 IoT 平台的 App 页面。 单击 创建APP&#xff0c;选择 商照 APP 进行创建。 在提示框里&#xff0c;完善 App 信息…

milvus测试

milvus测试 目标 其实&#xff0c;我应该弄明白他的输入输出分别是什么&#xff1f; 输入是图片&#xff0c;图片经过ml模型进行特征提取&#xff0c;再在milvus中进行存储或者检索 部署 ✘ delldell-Precision-3630-Tower  /nvme/baum/git-project/milvus   master …

动态版通讯录(接上回)

利用动态内存函数ralloc()来分配空间&#xff0c;并且自动初始化为0&#xff1b; 然后再使用realloc()来进行扩容。当当前数量达到最大容量时&#xff0c;就自动加2个空间。 退出程序时释放内存。

计及电转气协同的含碳捕集与垃圾焚烧虚拟电厂优化调度(matlab代码)

目录 1 主要内容 系统结构 CCPP-P2G-燃气机组子系统 非线性处理缺陷 2 部分代码 3 程序结果 4 程序链接 1 主要内容 该程序参考《计及电转气协同的含碳捕集与垃圾焚烧虚拟电厂优化调度》模型&#xff0c;主要实现的是计及电转气协同的含碳捕集与垃圾焚烧虚拟电厂优化调度…

uni-app 实现考勤打卡功能

一、在页面中引入地图组件 <map id"map" style"width: 100%; height: 100%" :latitude"myLatitude" :longitude"myLongitude" :circles"circles" :markers"markers"> </map>属性名类型说明longitudeN…

使用ffmpeg和python脚本下载网络视频m3u8(全网最全面)

网上给娃找了些好看的电影和一些有趣的短视频&#xff0c;如何保存下来呢&#xff1f;从网上找各种工具&#xff1f;都不方便。于是想到何不编程搞定&#xff0c;搞个脚本。对程序员来说这都不是事儿。且我有华为云服务器&#xff0c;完全可以把地址记下&#xff0c;后台自动下…

MAX17058_MAX17059 STM32 iic 驱动设计

本文采用资源下载链接&#xff0c;含完整工程代码 MAX17058-MAX17059STM32iic驱动设计内含有代码、详细设计过程文档&#xff0c;实际项目中使用代码&#xff0c;稳定可靠资源-CSDN文库 简介 MAX17058/MAX17059 IC是微小的锂离子(Li )在手持和便携式设备的电池电量计。MAX170…

本地安装多个node版本,gvnm来安装切换使用。vue2和vue3对node版本要求不一样

首先&#xff0c;本地下载安装gvnm https://github.com/Kenshin/gnvm.。 里面有安装使用方式。 使用gvnm 来管理切换本地node 版本。 2&#xff0c;切换为高版本node,或是在vue2项目package.json 启动打包的时候 配置修改。就无需再切换低版本node 来启动vue2项目了 "s…

centos安装redis教程

centos安装redis教程 安装的版本为centos7.9下的redis3.2.100版本 1.下载地址 Index of /releases/ 使用xftp将redis传上去。 2.解压 tar -zxvf 文件名.tar.gz 3.安装 首先&#xff0c;确保系统已经安装了GCC编译器和make工具。可以使用以下命令进行安装&#xff1a; sudo y…

【网络基础】IP 子网划分(VLSM)

目录 一、 为什么要划分子网 二、如何划分子网 1、划分两个子网 2、划分多个子网 一、 为什么要划分子网 假设有一个B类IP地址172.16.0.0&#xff0c;B类IP的默认子网掩码是 255.255.0.0&#xff0c;那么该网段内IP的变化范围为 172.16.0.0 ~ 172.16.255.255&#xff0c;即…

基于STM32_DS18B20单总线传感器驱动

基于STM32_DS18B20单总线传感器驱动 文章目录 基于STM32_DS18B20单总线传感器驱动前言一、BS18B20&#xff1f;二、原理1.复位与检验2.基本命令3.唯一ROM识别码4.温度转换 三、驱动代码四、注意事项 前言 本文以一款典型的单总线传感器及其驱动——DS18B20为例&#xff0c;简单…

计算机毕业设计选什么题目好?springboot智慧养老中心管理系统

✍✍计算机编程指导师 ⭐⭐个人介绍&#xff1a;自己非常喜欢研究技术问题&#xff01;专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目&#xff1a;有源码或者技术上的问题欢迎在评论区一起讨论交流&#xff01; ⚡⚡ Java实战 |…

Linux磁盘常见知识

目录 一、基础概念 1.1 文件系统类型 1.2 主分区、扩展分区、逻辑分区三者关系 1.3 UUID 1.4 lvm逻辑卷管理系统 二. 常用命令 2.1 查看命令 2.2 分区命令 2.3 格式化命令 1.4 挂载命令 三、扩容根目录 一、基础概念 1.1 文件系统类型 文件系统类型决定了向分区中存放、读取数…

C++——string

目录 STL STL六大组件 标准库中的string类 string类 string类常用接口 构造函数 下标遍历[] 迭代器 范围for push_back() append() insert() operator pop_back() erase() reserve resize clear c_str() substr() find() rfind() find_first_of getline str…

MQ-小试牛刀

MQ MQ解决了什么问题&#xff1f; 异步处理 解耦合 削峰填谷 大规模数据处理 解耦 A系统发送数据到BCD三个系统&#xff0c;通过接口调用发送。如果 E 系统也要这个数据呢&#xff1f;那如果C系统现在不需要了呢&#xff1f;A系统负责人几乎崩溃… A系统跟其它各种乱七…

2023版 STM32实战9 RTC实时时钟/闹钟

RTC简介 实时时钟是一个独立的定时器。RTC模块拥有一组连续计数的计数器&#xff0c;在相应软件配置下&#xff0c;可提供时钟日历的功能。修改计数器的值可以重新设置系统当前的时间和日期。 注意事项 -1- 要手动配置中断寄存器 -2- 需要等待写操作完成 -3- 时钟闹钟中段…