小白零基础如何搭建CNN

1.卷积层
在PyTorch中针对卷积操作的对象和使用的场景不同,如有1维卷积、2维卷积、
3维卷积与转置卷积(可以简单理解为卷积操作的逆操作),但它们的使用方法比较相似,都可以从torch.nn模块中调用,需要调用的类如表2-4所示。

torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros')

参数说明
in_channels:输入数据的通道数。例如,对于 RGB 图像,in_channels=3。
out_channels:输出数据的通道数,即卷积核的数量。
kernel_size:卷积核的大小,可以是一个整数(表示正方形卷积核),也可以是一个元组(表示矩形卷积核)。例如,kernel_size=3 或 kernel_size=(3, 5)。
stride:卷积核移动的步长,默认为 1。可以是一个整数(表示水平和垂直方向的步长相同),也可以是一个元组(分别表示水平和垂直方向的步长)。
padding:输入数据的填充大小,默认为 0。可以是一个整数(表示水平和垂直方向的填充相同),也可以是一个元组(分别表示水平和垂直方向的填充)。填充的作用是增加输入数据的边界,使卷积操作后输出的尺寸更大或保持不变。
dilation:卷积核的扩张率,默认为 1。可以是一个整数(表示水平和垂直方向的扩张率相同),也可以是一个元组(分别表示水平和垂直方向的扩张率)。扩张率用于增加卷积核的感受野。
groups:分组卷积的组数,默认为 1。当 groups > 1 时,输入通道和输出通道会被分成若干组,每组分别进行卷积操作。
bias:是否为卷积层添加偏置项,默认为 True。
padding_mode:填充模式,默认为 ‘zeros’,表示用零填充。其他可选值包括 ‘reflect’ 和 ‘replicate’。
在这里插入图片描述

inputimport torch
import torch.nn as nn# 创建一个 Conv2d 实例
conv_layer = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, stride=1, padding=1)# 创建一个输入张量(模拟一个 3 通道的 28x28 图像)
input_tensor = torch.randn(1, 3, 28, 28)  # (batch_size, channels, height, width)# 使用卷积层对输入张量进行卷积操作
output_tensor = conv_layer(input_tensor)print("输入张量的形状:", input_tensor.shape)
print("输出张量的形状:", output_tensor.shape)
output:输入张量的形状: torch.Size([1, 3, 28, 28])

1.1 填充层
填充(Padding) 是一种重要的操作,通常用于卷积层(Conv2d)和池化层(MaxPool2d、AvgPool2d 等)。填充的主要目的是在输入数据的边界上添加额外的值(通常是零),以控制卷积或池化操作后的输出尺寸在前面介绍的卷积操作中,可以发现经过卷积后,输出特征映射的尺寸会变小,卷积后的结果中损失了部分值,输入图像的边缘被“修剪”掉了,这是因为边缘上的像素永远不会位于卷积核中心,而卷积核也不能扩展到边缘区域以外。如果还希望输入和输出的大小应保持一致,需要在进行卷积操作前,对原矩阵进行边界填充(padding),也就是在矩阵的边界上填充一些值,以增加矩阵的大小。虽然卷积操作可以使用填充参数0进行边缘填充,但是在PyTorch中还提供了其他的填充函数,可以完成更复杂的填充任务,例如反射填充、复制填充等。针对不同的填充方式,下面使用2维矩阵的2D填充为例,展示了不同方法的填充效果,如图2-3所示
在这里插入图片描述
在这里插入图片描述
1.2 激活函数
。PyTorch提供了十几种激活函数层所对应的类,但常用的激活函数通常为S型
(Sigmoid)激活函数、双曲正切(Tanh)激活函数、线性修正单元(ReLU)激活函数等。常激活函数类和功能如表2-7所示。
在这里插入图片描述
在这里插入图片描述
1.3 归一化函数
归一化函数可以放置在卷积层和激活函数之间,也可以在激活函数之后。具体位置取决于所使用的归一化方法和网络架构的设计.常用的归一化函数层分别为批量归一化、组归一化、层归一化以及样本归一化。在图2-5中展示了各种归一化函数层的作用维度示意图,其中N表示数据中的batch(批量)维度,C表示channel(通道)维度,阴影部分表示要归一化为相同均值和方差的内容。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.池化层
池化会选取一定大小区域,将该区域内的像素值使用一个代表元素表示。如果使用平均值代替,称为平均值池化,如果使用最大值代替则称为最大值池化。这两种池化方式的示意图如图2-2所示
在这里插入图片描述在PyTorch中, 提 供 了 多 种 池 化 的 类, 分 别 是 最 大 值 池 化(MaxPool)、 最大 值 池 化 的 逆 过 程(MaxUnPool)、 平 均 值 池 化(AvgPool)与 自 适 应 池 化(AdaptiveMaxPool、AdaptiveAvgPool)等。并且均提供了1维、2维和3维的池化操作。具体的池化类和功能如表2-5所示。
在这里插入图片描述

input#定义最大池化层
max_pool=nn.MaxPool2d(kernel_size=2,stride=2,padding=0)
#创建一个输入张量(模拟一个3通道的8*8图像)
input_tensor=torch.randn(1,3,8,8)#(batch_size,channels,height,width)
output_tensor=max_pool(input_tensor)
print("输入张量的形状:", input_tensor.shape)
print("输入张量的形状:", output_tensor.shape)
output:输入张量的形状: torch.Size([1, 3, 8, 8])
输入张量的形状: torch.Size([1, 3, 4, 4])

在这里插入图片描述
3.全连接层
它的作用是把输入的特征进行“混合”和“转换”,生成新的特征,最终用于分类或回归任务。
全连接层通常由两部分组成:
a.线性变换(nn.Linear):把输入特征转换成输出特征。
b.激活函数:在输出上应用非线性激活函数,比如 ReLU、Sigmoid 等,增加模型的非线性能力

torch.nn.Linear(in_features, out_features, bias=True)

在这里插入图片描述

input:#创建一个全连接层
fc_layer=nn.Linear(in_features=3,out_features=2,bias=True)
#创建一个输入张量(模拟一个人的身高、体重、年龄)
input_tensor=torch.tensor([[175.0,70.0,25.0]])
#应用全连接层
output_tensor=fc_layer(input_tensor)
import torch.nn.functional as F
#应用激活函数
activated_output=F.relu(output_tensor)
print("输入张量的形状:",input_tensor.shape)
print("输入张量的形状:",output_tensor.shape)
print("输入张量的形状:",activated_output)
output:输入张量的形状: torch.Size([1, 3])
输入张量的形状: torch.Size([1, 2])
输入张量的形状: tensor([[87.3310, 44.2483]], grad_fn=<ReluBackward0>)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/15654.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

12.翻转、对称二叉树,二叉树的深度

反转二叉树 递归写法 很简单 class Solution { public:TreeNode* invertTree(TreeNode* root) {if(rootnullptr)return root;TreeNode* tmp;tmproot->left;root->leftroot->right;root->righttmp;invertTree(root->left);invertTree(root->right);return …

算法之 博弈问题

文章目录 巴什博弈292.Nim 游戏 尼姆博弈斐波那契博弈其他博弈1025.除数博弈 博弈问题&#xff0c;就是双方之间的PK,关注的重点是 谁先&#xff1f;以及A,B各自赢的条件 一般有数学问题&#xff0c;动态规划&#xff0c;搜索进行求解 巴什博弈 下面的这题Nim 游戏&#xff0c;…

Linux 安装 Ollama

1、下载地址 Download Ollama on Linux 2、有网络直接执行 curl -fsSL https://ollama.com/install.sh | sh 命令 3、下载慢的解决方法 1、curl -fsSL https://ollama.com/install.sh -o ollama_install.sh 2、sed -i s|https://ollama.com/download/ollama-linux|https://…

DDR原理详解

DDR原理详解 存储器主要分为只读存储器 ROM 和随机存取存储器 RAM两大类。 ROM&#xff1a;只读存储器 ROM 所存数据&#xff0c;一般是装入整机前事先写好的,整机工作过程中只能读出&#xff0c;ROM所存数据稳定&#xff0c;断电后所存数据也不会改变。 RAM&#xff1a;随机…

推荐一款 免费的SSL,自动续期

支持自动续期 、泛域名 、可视化所有证书时效性 、可配置CDN 的一款工具。免费5个泛域名和1个自动更新。 链接 支持&#xff1a;nginx、通配符证书、七牛云、腾讯云、阿里云、CDN、OSS、LB&#xff08;负载均衡&#xff09; 执行自动部署脚本 提示系统过缺少crontab 安装cro…

手写一个C++ Android Binder服务及源码分析

手写一个C Android Binder服务及源码分析 前言一、 基于C语言编写Android Binder跨进程通信Demo总结及改进二、C语言编写自己的Binder服务Demo1. binder服务demo功能介绍2. binder服务demo代码结构图3. binder服务demo代码实现3.1 IHelloService.h代码实现3.2 BnHelloService.c…

将 AMD Zynq™ RFSoC 扩展到毫米波领域

目录 将 AMD Zynq™ RFSoC 扩展到毫米波领域Avnet XRF RFSoC 系统级模块适用于 MATLAB 的 Avnet RFSoC Explorer 工具箱5G mmWave PAAM 开发平台突破性的宽带毫米波波束成形特征&#xff1a;OTBF103 Mathworks Simulink 模型优化毫米波应用中的射频信号路径 用于宽带毫米波上/下…

征程 6 相比征程 5 对算子支持扩展的具体案例讲解

引言 征程 6 相比于征程 5&#xff0c;在整体架构上得到了升级&#xff0c;相对应的&#xff0c;算法工具链的算子支持也得到了扩充&#xff0c;无论是算子支持的数量&#xff0c;还是 BPU 约束条件&#xff0c;征程 6 都有明显的加强&#xff0c;这就使得过去在征程 5 上无法…

蓝桥杯C语言组:博弈问题

概述 在编程的世界里&#xff0c;博弈问题就像是一场智力的“斗地主”&#xff0c;双方&#xff08;或者多方&#xff09;使出浑身解数&#xff0c;只为赢得最后的胜利。而蓝桥杯C语言比赛中的博弈问题&#xff0c;更是让无数参赛者又爱又恨的存在。它们就像是隐藏在代码森林中…

BS架构(笔记整理)

楔子.基本概念 1.在网络架构中&#xff1a; 服务器通常是集中式计算资源&#xff0c;负责处理和存储数据&#xff1b;客户机是请求这些服务的终端设备&#xff0c;可能是个人电脑或移动设备&#xff1b;浏览器则是客户机上用来与服务器交互的工具&#xff0c;负责展示网页内容…

【动态规划篇】:动态规划解决路径难题--思路,技巧与实例

✨感谢您阅读本篇文章&#xff0c;文章内容是个人学习笔记的整理&#xff0c;如果哪里有误的话还请您指正噢✨ ✨ 个人主页&#xff1a;余辉zmh–CSDN博客 ✨ 文章所属专栏&#xff1a;动态规划篇–CSDN博客 文章目录 一.动态规划中的路径问题1.核心思路2.注意事项 二.例题讲解…

【Linux】深入理解linux权限

&#x1f31f;&#x1f31f;作者主页&#xff1a;ephemerals__ &#x1f31f;&#x1f31f;所属专栏&#xff1a;Linux 目录 前言 一、权限是什么 二、用户和身份角色 三、文件属性 1. 文件属性表示 2. 文件类型 3. 文件的权限属性 四、修改文件的权限属性和角色 1. …

嵌入式linux系统中VIM编辑工具用法与GCC参数详解

大家好,今天主要给大家分享一下,如何使用linux系统中的VIM编辑工具和GCC的参数详解。 第一:安装VIM 命令:sudo apt get install vim 第二:工作模式 普通模式:打开一个文件时的默认模式,按ESC返回普通模式 插入模式:i/o/a进入插入模式,不同在于在光标前后插入 可视…

【前端开发】HTML+CSS+JavaScript前端三剑客的基础知识体系了解

前言 &#x1f31f;&#x1f31f;本期讲解关于HTMLCSSJavaScript的基础知识&#xff0c;小编带领大家简单过一遍~~~ &#x1f308;感兴趣的小伙伴看一看小编主页&#xff1a;GGBondlctrl-CSDN博客 &#x1f525; 你的点赞就是小编不断更新的最大动力 …

蓝桥杯---数青蛙(leetcode第1419题)

文章目录 1.题目重述2.例子分析3.思路分析4.思路总结5.代码解释 1.题目重述 这个题目算是模拟这个专题里面的一类比较难的题目了&#xff0c;他主要是使用crock这个单词作为一个整体&#xff0c;让我们确定&#xff1a;给你一个字符串&#xff0c;至少需要多少个青蛙进行完成鸣…

WidowX-250s 机械臂学习记录

官网教程&#xff1a;Python Demos — Interbotix X-Series Arms Documentation 系统&#xff1a;Ubuntu20.04&#xff0c;ROS1 相关的硬件编译配置跳过 Python Demos 这些演示展示了使用 Interbotix Python Arm 模块的各种方法&#xff08;点击链接查看完整的代码文档&…

【CubeMX-HAL库】STM32F407—无刷电机学习笔记

目录 简介&#xff1a; 学习资料&#xff1a; 跳转目录&#xff1a; 一、工程创建 二、板载LED 三、用户按键 四、蜂鸣器 1.完整IO控制代码 五、TFT彩屏驱动 六、ADC多通道 1.通道确认 2.CubeMX配置 ①开启对应的ADC通道 ②选择规则组通道 ③开启DMA ④开启ADC…

集成右键的好用软件,支持多线程操作!

今天给大家分享一个超级实用的小工具&#xff0c;真的能帮上大忙呢&#xff01;这个软件是吾爱大神无知灰灰精心制作的&#xff0c;简直就是图片转换界的“小能手”。 它能一键把webp格式的图片转换成png格式&#xff0c;而且速度超快&#xff0c;完全不输那些付费的软件&#…

CSDN 博客之星 2024:肖哥弹架构的社区耕耘总结

#博客之星2024年度总评选—主题文章创作# CSDN 博客之星 2024&#xff1a;肖哥弹架构的社区耕耘总结 肖哥弹架构 是一位专注于技术分享和社区建设的博客作者。今年&#xff0c;我荣幸地再次入选CSDN博客之星TOP300&#xff0c;这不仅是对我过去努力的认可&#xff0c;更是对未…

【分布式理论7】分布式调用之:服务间的(RPC)远程调用

文章目录 一、RPC 调用过程二、RPC 动态代理&#xff1a;屏蔽远程通讯细节1. 动态代理示例2. 如何将动态代理应用于 RPC 三、RPC序列化与协议编码1. RPC 序列化2. RPC 协议编码2.1. 协议编码的作用2.2. RPC 协议消息组成 四、RPC 网络传输1. 网络传输流程2. 关键优化点 一、RPC…