Deepseek-v3 / Dify api接入飞书机器人go程序

准备工作

  1. 开通了接收消息权限的飞书机器人,例如我希望用户跟飞书机器人私聊,就需要开通这个权限:读取用户发给机器人的单聊消息 im:message.p2p_msg:readonly
  2. 准备好飞书机器人的API key 和Secret
  3. deepseek-v3的api key+secret:https://platform.deepseek.com/api_keys 这里获取,一开始有10元的免费额度,趁能充多充点,经常不让充值。
  4. 自己部署一下dify,推荐使用docker-compose方式,这个有很多教程就不赘述了

飞书机器人通过长连接获取用户私聊发的消息

我们使用长连接的方式接收用户消息,需要在飞书开发者后台中配置一下应用,见
配置回调订阅方式
代码如下:

import(larkevent "github.com/larksuite/oapi-sdk-go/v3/event""github.com/larksuite/oapi-sdk-go/v3/event/dispatcher""github.com/larksuite/oapi-sdk-go/v3/service/auth/v3"larkim "github.com/larksuite/oapi-sdk-go/v3/service/im/v1"larkws "github.com/larksuite/oapi-sdk-go/v3/ws"
)
var sent map[string]struct{} // 这里简单去个重 实际使用要自己再写去重部分
// 飞书消息过来Content字段值是{\"text\":\"早上好~\"}这样的,需要再解析一下
type Text struct {Text string `json:"text"`
}
// 处理接收到用户消息的事件
func callback() {sent = make(map[string]struct{})// 注册事件回调,OnP2MessageReceiveV1 为接收消息 v2.0;OnCustomizedEvent 内的 message 为接收消息 v1.0。NewEventDispatcher()里的两个参数都填空字符串eventHandler := dispatcher.NewEventDispatcher("", "").OnP2MessageReceiveV1(func(ctx context.Context, event *larkim.P2MessageReceiveV1) error {// messageid简单去重if _, ok := sent[*event.Event.Message.MessageId]; ok {return nil} else {sent[*event.Event.Message.MessageId] = struct{}{}}fmt.Printf("[ OnP2MessageReceiveV1 access ], data: %s\n", larkcore.Prettify(event))fmt.Println(event.Event.Message.Content) // content中就是用户发过来的消息内容var text Textjson.Unmarshal([]byte(*event.Event.Message.Content), &text)fmt.Println(text.Text)// 这里可以把用户输入发给deepseek或者dify并接收其响应,具体实现后面讲//resp, e := deepseek.CallDeepSeekAPI(text.Text)//if e != nil {//	return e//}resp := dify.ChatMessages(text.Text)fmt.Println(resp)// 这里组织飞书机器人发送消息的content格式,跟接收到消息的一样,也是{\"text\":\"say something\"}var contentStruct struct {Text string `json:"text"`}contentStruct.Text = respcontent, _ := json.Marshal(contentStruct)// 这个messages是机器人发送消息函数,见下方messages(getTernantAccessToken(), *event.Event.Sender.SenderId.OpenId, *event.Event.Message.MessageType, string(content))return nil}).//im:message.p2p_msg:readonly 这个先不用管OnCustomizedEvent("", func(ctx context.Context, event *larkevent.EventReq) error {fmt.Printf("[ OnCustomizedEvent access ], type: message, data: %s\n", string(event.Body))return nil})// 创建Clientcli := larkws.NewClient(AppID, AppSecret,larkws.WithEventHandler(eventHandler),larkws.WithLogLevel(larkcore.LogLevelDebug),)// 启动客户端 保持一个长链接err := cli.Start(context.Background())if err != nil {panic(err)}
}//发送消息
func messages(token, receiveID, msgType, content string) {// 创建 Clientclient := lark.NewClient(AppID, AppSecret)// 创建请求对象receiveIDType := "open_id"if strings.HasPrefix(receiveID, "oc") { // 这里我简单区分了一下群聊和个人receiveIDType = "chat_id"}req := larkim.NewCreateMessageReqBuilder().ReceiveIdType(receiveIDType).Body(larkim.NewCreateMessageReqBodyBuilder().ReceiveId(receiveID).MsgType(msgType).Content(content).Build()).Build()// 发起请求resp, err := client.Im.Message.Create(context.Background(), req, larkcore.WithTenantAccessToken(token))// 处理错误if err != nil {fmt.Println(err)return}// 服务端错误处理if !resp.Success() {fmt.Println(resp.Code, resp.Msg, resp.RequestId())return}// 业务处理//fmt.Println(larkcore.Prettify(resp))fmt.Println(string(resp.RawBody))
}

tips: 获取的用户消息长这样:

{EventV2Base: {Schema: "2.0",Header: {EventID: "xx",EventType: "im.message.receive_v1",AppID: "xx",TenantKey: "xx",CreateTime: "1738892348642",Token: ""}},EventReq: {Body: <binary> len 672,RequestURI: ""},Event: {Sender: {SenderId: {UserId: "xx",OpenId: "xx",UnionId: "xx"},SenderType: "user",TenantKey: "xx"},Message: {MessageId: "xx",CreateTime: "1738892348363",UpdateTime: "1738892348363",ChatId: "xx",ChatType: "p2p",MessageType: "text",Content: "{\"text\":\"早上好~\"}"}}
}

接下来就是实现调用deepseek或dify的api的逻辑了

Deepseek-v3 API调用代码

package deepseekimport ("bytes""encoding/json""fmt""io""net/http""net/http/httputil"
)
var (// DeepSeek-R1 API 的配置DeepSeekAPIURL = "https://api.deepseek.com/chat/completions" // 直接用这个就行DeepSeekAPIKey = "你的key"
)
// DeepSeek-R1 API 请求数据结构
type DeepSeekRequest struct {Model    string        `json:"model"`Messages []RoleContent `json:"messages"`Stream   bool          `json:"stream"`
}
type RoleContent struct {Role    string `json:"role"`Content string `json:"content"`
}// DeepSeek-R1 API 响应数据结构
type DeepSeekResponse struct {Choices []struct {Message struct {Content string `json:"content"`} `json:"message"`} `json:"choices"`
}// 调用 DeepSeek-R1 API
func CallDeepSeekAPI(msg string) (string, error) {requestBody := DeepSeekRequest{Model: "deepseek-chat",Messages: []RoleContent{{Role: "system", Content: "You are a helpful assistant."}, // 这里可以自行修改{Role: "user", Content: msg}, // msg就是用户发的消息},Stream: false, // 这里先不用流式输出}requestBytes, err := json.Marshal(requestBody)if err != nil {return "", err}req, err := http.NewRequest("POST", DeepSeekAPIURL, bytes.NewBuffer(requestBytes))if err != nil {return "", err}req.Header.Set("Authorization", "Bearer "+DeepSeekAPIKey)req.Header.Set("Content-Type", "application/json")// 这里我dump了一下请求看发的是否正确 可以删掉dump, _ := httputil.DumpRequest(req, true)fmt.Println(string(dump))// 发请求client := &http.Client{}resp, err := client.Do(req)if err != nil {return "", err}defer resp.Body.Close()body, err := io.ReadAll(resp.Body)if err != nil {return "", err}// 解析响应var deepSeekResponse DeepSeekResponseif err := json.Unmarshal(body, &deepSeekResponse); err != nil {return "", err}// 拿content返回if len(deepSeekResponse.Choices) > 0 {return deepSeekResponse.Choices[0].Message.Content, nil}return "", fmt.Errorf("no response from DeepSeek API")
}

Dify api调用方法

如何在dify中接入大模型并制作一个问答机器人参考:https://docs.dify.ai/zh-hans/guides/application-orchestrate/conversation-application
点击【发布】之后,去【访问api】页面,右上角有一个在这里插入图片描述
点击这个API密钥保存下来

调用代码如下:

package difyimport ("bytes""encoding/json""fmt""io""log""net/http""net/http/httputil""strconv""strings"
)type ChatMessageRequest struct {Inputs         map[string]interface{} `json:"inputs"`Query          string                 `json:"query"`ResponseMode   string                 `json:"response_mode"`ConversationID string                 `json:"conversation_id,omitempty"`User           string                 `json:"user"`
}type ChatMessageResponse struct {ID             string `json:"id"`Answer         string `json:"answer"`ConversationID string `json:"conversation_id"`CreatedAt      int    `json:"created_at"`
}const (DifyBaseURL = "http://192.168.xx.xx:12345/v1" // 这里是你的dify服务地址DifyApiKey  = "app-xxxx" // dify提供的api密钥ChatMsgPath = "/chat-messages"
)func ChatMessages(msg string) string {requestData := ChatMessageRequest{Query:        msg,ResponseMode: "blocking", // 我们先选择阻塞模式,就是等回答全部生成后发回来,而不是sse那种模拟打字输出的形式(streaming)User:         "abc123",}// 将请求数据序列化为 JSONrequestBody, err := json.Marshal(requestData)if err != nil {fmt.Errorf("failed to marshal request data: %v", err)}// 创建 HTTP 请求req, err := http.NewRequest("POST", DifyBaseURL+ChatMsgPath, bytes.NewBuffer(requestBody))if err != nil {log.Fatalf("Failed to create request: %v", err)}// 设置请求头req.Header.Set("Authorization", "Bearer "+DifyApiKey)req.Header.Set("Content-Type", "application/json")// 发送请求client := &http.Client{}// 这里dump了一下看发送请求是否正确,可以删掉dump, _ := httputil.DumpRequest(req, true)fmt.Println(string(dump))resp, err := client.Do(req)if err != nil {log.Fatalf("Failed to send request: %v", err)}defer resp.Body.Close()// 读取响应body, err := io.ReadAll(resp.Body)if err != nil {log.Fatalf("Failed to read response body: %v", err)}// 输出响应fmt.Println("Response Status:", resp.Status)fmt.Println("Response Body:", string(body))var res ChatMessageResponseif err := json.Unmarshal(body, &res); err != nil {fmt.Errorf("Failed to unmarshal response body: %v", err)return ""}fmt.Println("Answer:", res.Answer)return res.Answer // 这个就是dify调大模型获得的返回内容
}

效果

如此这般就可以让飞书机器人接收消息->调用dify或者deepseek的api获得回答->把回答发给用户了
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/15747.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vue动态table 动态表头数据+动态列表数据

效果图: <template><div style"padding: 20px"><el-scrollbar><div class"scrollbar-flex-content"><div class"opt-search"><div style"width: 100px"> </div><div class"opt-b…

Vue(4)

一.组件的三大组成部分-注意点说明 &#xff08;1&#xff09;scoped样式冲突 默认情况&#xff1a;写在组件中的样式会全局生效 → 因此很容易造成多个组件之间的样式冲突 ①全局样式&#xff1a;默认组件中的样式会作用到全局 ②局部样式&#xff1a;可以给组件加上scoped属…

python-leetcode 23.回文链表

题目&#xff1a; 给定单链表的头节点head,判断该链表是否为回文链表&#xff0c;如果是&#xff0c;返回True,否则&#xff0c;返回False 输入&#xff1a;head[1,2,2,1] 输出&#xff1a;true 方法一&#xff1a;将值复制到数组中后用双指针法 有两种常用的列表实现&#…

INFINI Labs 产品更新 - Easysearch 增强 Rollup 能力,Console 完善 TopN 指标等

INFINI Labs 产品更新发布&#xff01;此次更新&#xff0c;Easysearch 增强 Rollup 能力&#xff0c;支持更多的聚合方式&#xff1b;Console 完善了 TopN 的指标&#xff0c;支持自定义视图&#xff0c;并内嵌视图模板&#xff1b;Gateway 进行了多处优化以及修复相关 Bug 等…

仿 RabbitMQ 实现的简易消息队列

文章目录 项目介绍开放环境第三⽅库介绍ProtobufMuduo库 需求分析核⼼概念实现内容 消息队列系统整体框架服务端模块数据管理模块虚拟机数据管理模块交换路由模块消费者管理模块信道&#xff08;通信通道&#xff09;管理模块连接管理模块 客户端模块 公共模块日志类其他工具类…

Node.js开发属于自己的npm包(发布到npm官网)

在 Node.js 中开发并发布自己的 npm 包是一个非常好的练习&#xff0c;可以帮助我们更好地理解模块化编程和包管理工具&#xff0c;本篇文章主要阐述如何使用nodejs开发一个属于自己的npm包&#xff0c;并且将其发布在npm官网。在开始之前确保已经安装了 Node.js 和 npm。可以在…

二、通义灵码插件保姆级教学-IDEA(使用篇)

一、IntelliJ IDEA 中使用指南 1.1、代码解释 选择需要解释的代码 —> 右键 —> 通义灵码 —> 解释代码 解释代码很详细&#xff0c;感觉很强大有木有&#xff0c;关键还会生成流程图&#xff0c;对程序员理解业务非常有帮忙&#xff0c;基本能做到哪里不懂点哪里。…

Python----PyQt开发(PyQt基础,环境搭建,Pycharm中PyQttools工具配置,第一个PyQt程序)

一、QT与PyQT的概念和特点 1.1、QT QT是一个1991年由The Qt Company开发的跨平台C图形用户界面应用程序开发 框架&#xff0c;可构建高性能的桌面、移动及Web应用程序。也可用于开发非GUI程序&#xff0c;比如 控制台工具和服务器。Qt是面向对象的框架&#xff0c;使用特殊的代…

【数据结构】双向链表(真正的零基础)

链表是一种物理存储单元上非连续、非顺序的存储结构。数据元素的逻辑顺序是通过指针的链接来实现的&#xff01;在上篇我们学习了单向链表&#xff0c;而单向链表虽然空间利用率高&#xff0c;插入和删除也只需改变指针就可以达到&#xff01;但是我们在每次查找、删除、访问..…

pip3命令全解析:Python3包管理工具的详细使用指南

pip3命令全解析:Python3包管理工具的详细使用指南 一、基本使用二、升级和更新三、其他常用命令四、换源操作五、注意事项六、帮助信息pip3命令使用说明 pip3 是 Python 3 的包管理工具,用于安装、升级和卸载 Python 3 的包。以下是 pip3 的常用命令及详细说明: 一、基本使…

开启对话式智能分析新纪元——Wyn商业智能 BI 携手Deepseek 驱动数据分析变革

2月18号&#xff0c;Wyn 商业智能 V8.0Update1 版本将重磅推出对话式智能分析&#xff0c;集成Deepseek R1大模型&#xff0c;通过AI技术的深度融合&#xff0c;致力于打造"会思考的BI系统"&#xff0c;让数据价值触手可及&#xff0c;助力企业实现从数据洞察到决策执…

使用PyCharm创建项目以及如何注释代码

创建好项目后会出现如下图所示的画面&#xff0c;我们可以通过在项目文件夹上点击鼠标右键&#xff0c;选择“New”菜单下的“Python File”来创建一个 Python 文件&#xff0c;在给文件命名时建议使用英文字母和下划线的组合&#xff0c;创建好的 Python 文件会自动打开&#…

第三个Qt开发实例:利用之前已经开发好的LED驱动在Qt生成的界面中控制LED2的亮和灭

前言 上一篇博文 https://blog.csdn.net/wenhao_ir/article/details/145459006 中&#xff0c;我们是直接利用GPIO子系统控制了LED2的亮和灭&#xff0c;这篇博文中我们利用之前写好的LED驱动程序在Qt的生成的界面中控制LED2的亮和灭。 之前已经在下面两篇博文中实现了LED驱动…

【Unity】性能优化:UI的合批 图集和优化

目录 前言一、合批测试二、图集 前言 注意&#xff1a;DC指的是Draw Call。 温馨小提示&#xff1a;Frame Debugger 窗口&#xff08;菜单&#xff1a;Window > Analysis > Frame Debugger&#xff09;会显示绘制调用信息&#xff0c;并允许您控制正在构建的帧的“回放”…

【安当产品应用案例100集】037-强化OpenVPN安全防线的卓越之选——安当ASP身份认证系统

在当前数字化时代&#xff0c;网络安全已成为企业发展的重要组成部分。对于使用OpenVPN的企业而言&#xff0c;确保远程访问的安全性尤为重要。安当ASP身份认证系统凭借其强大的功能和便捷的集成方式&#xff0c;为OpenVPN的二次登录认证提供了理想的解决方案&#xff0c;特别是…

表单与交互:HTML表单标签全面解析

目录 前言 一.HTML表单的基本结构 基本结构 示例 二.常用表单控件 文本输入框 选择控件 文件上传 按钮 综合案例 三.标签的作用 四.注意事项 前言 HTML&#xff08;超文本标记语言&#xff09;是构建网页的基础&#xff0c;其中表单&#xff08;<form>&…

python卷积神经网络人脸识别示例实现详解

目录 一、准备 1&#xff09;使用pytorch 2&#xff09;安装pytorch 3&#xff09;准备训练和测试资源 二、卷积神经网络的基本结构 三、代码实现 1&#xff09;导入库 2&#xff09;数据预处理 3&#xff09;加载数据 4&#xff09;构建一个卷积神经网络 5&#xff0…

防御保护-----前言

HCIE安全防御 前言 计算机病毒 ​ 蠕虫病毒----->具备蠕虫特性的病毒&#xff1a;1&#xff0c;繁殖性特别强&#xff08;自我繁殖&#xff09;&#xff1b;2&#xff0c;具备破坏性 蠕虫病毒是一种常见的计算机病毒&#xff0c;其名称来源于它的传播方式类似于自然界中…

java和vue开发的图书馆借阅管理系统小程序

主要功能&#xff1a; 学生借书还书&#xff0c;管理员管理图书管理学生借书还书。系统显示在馆数量和图书总数量&#xff0c;借书时借书数量不可超过在馆数量&#xff0c;还书时需要输入归还数量&#xff08;可借2本书&#xff0c;归还的时候一本一本归还&#xff0c;可查看归…

【R】Dijkstra算法求最短路径

使用R语言实现Dijkstra算法求最短路径 求点2、3、4、5、6、7到点1的最短距离和路径 1.设置data&#xff0c;存放有向图信息 data中每个点所在的行序号为起始点序号&#xff0c;列为终点序号。 比如&#xff1a;值4的坐标为(1,2)即点1到点2距离为4&#xff1b;值8的坐标为(6,7)…