1.1 向量与线性组合

一、向量的基础知识

两个独立的数字 v 1 v_1 v1 v 2 v_2 v2,将它们配对可以产生一个二维向量 v \boldsymbol{v} v 列向量 v v = [ v 1 v 2 ] v 1 = v 的第一个分量 v 2 = v 的第二个分量 \textbf{列向量}\,\boldsymbol v\kern 10pt\boldsymbol v=\begin{bmatrix}v_1\\v_2\end{bmatrix}\kern 10pt\begin{matrix}v_1=\boldsymbol v\,的第一个分量\\v_2=\boldsymbol v\,的第二个分量\end{matrix} 列向量vv=[v1v2]v1=v的第一个分量v2=v的第二个分量这里将 v \boldsymbol v v 写成一列(column),而不是一行(row),单一的字母 v \boldsymbol v v粗斜体字)表示这一对数字 v 1 v_1 v1 v 2 v_2 v2(浅色斜体字)。
向量的一个基础运算是向量的加法,即将两个向量的每个分量分别相加: 向量加法 v = [ v 1 v 2 ] 与 w = [ w 1 w 2 ] 相加得到 v + w = [ v 1 + w 1 v 2 + w 2 ] \textbf{向量加法}\kern 10pt\boldsymbol v=\begin{bmatrix}v_1\\v_2\end{bmatrix}\kern 5pt与\kern 5pt\boldsymbol w=\begin{bmatrix}w_1\\w_2\end{bmatrix}\kern 5pt相加得到\kern5pt\boldsymbol v+\boldsymbol w=\begin{bmatrix}v_1+w_1\\v_2+w_2\end{bmatrix} 向量加法v=[v1v2]w=[w1w2]相加得到v+w=[v1+w1v2+w2]减法同理, v − w \boldsymbol v-\boldsymbol w vw 的分量是 v 1 − w 1 v_1-w_1 v1w1 v 2 − w 2 v_2-w_2 v2w2
向量的另一个基础运算是数乘(scalar multiplication),一个向量可以和任意数 c c c 相乘,就是用 c c c 去乘这个向量的每个分量: 数乘 2 v = [ 2 v 1 2 v 2 ] = v + v , − v = [ − v 1 − v 2 ] \textbf{数乘}\kern 10pt2\boldsymbol v=\begin{bmatrix}2v_1\\2v_2\end{bmatrix}=\boldsymbol v+\boldsymbol v,-\boldsymbol v=\begin{bmatrix}-v_1\\-v_2\end{bmatrix} 数乘2v=[2v12v2]=v+vv=[v1v2] c v c\boldsymbol v cv 的分量是 c v 1 cv_1 cv1 c v 2 cv_2 cv2,数字 c c c 称为 “数量”(或纯量 scalar)。
需要注意的是: − v -\boldsymbol v v v \boldsymbol v v 的和(sum)是零向量,以粗体 0 \boldsymbol 0 0 表示,与一般的数字 0 0 0 不同,向量 0 \boldsymbol 0 0 的分量是 0 0 0 0 0 0
线性代数就是建立在 v + w \boldsymbol v+\boldsymbol w v+w c v c\boldsymbol v cv d w d\boldsymbol w dw 的运算 —— 向量的加法与数乘

二、线性组合

将向量的加法与数乘相结合可以产生 v \boldsymbol v v w \boldsymbol w w 的 “线性组合”。用 c c c v \boldsymbol v v d d d w \boldsymbol w w,然后相加得到 c v + d w c\boldsymbol v+d\boldsymbol w cv+dw c v 与 d w 的和是 线性组合 c v + d w c\boldsymbol v\,与\,d\boldsymbol w\,的和是\kern 10pt\colorbox{cyan}{$线性组合\,\ c\boldsymbol v+d\boldsymbol w$} cvdw的和是线性组合 cv+dw四种特殊的线性组合:和、差、零、数乘 c v c\boldsymbol v cv
1 v + 1 w = 向量的和,如图 1.1 a 1\boldsymbol v+1\boldsymbol w=向量的和,如图1.1a 1v+1w=向量的和,如图1.1a 1 v − 1 w = 向量的差,如图 1.1 b 1\boldsymbol v-1\boldsymbol w=向量的差,如图1.1b 1v1w=向量的差,如图1.1b 0 v + 0 w = 零向量 0\boldsymbol v+0\boldsymbol w=\textbf{零向量}\kern 56pt 0v+0w=零向量 c v + 0 w = 沿着 v 方向的向量 c v c\boldsymbol v+0\boldsymbol w=沿着\,\boldsymbol v 方向的向量\,c\boldsymbol v cv+0w=沿着v方向的向量cv零向量永远是可能的组合(只要系数都为零),向量的 “空间” 都包含零向量。从大局上看,线性代数的工作就是取得 v \boldsymbol v v w \boldsymbol w w 所有的线性组合。
对于代数来说,我们只需要向量的分量(如 4 4 4 2 2 2)。向量也可以画在图形上,向量 v \boldsymbol v v 由箭头表示,箭头向右横跨 v 1 = 4 v_1=4 v1=4 个单位,再往上走 v 2 = 2 v_2=2 v2=2 个单位,终点的坐标等于 ( 4 , 2 ) (4,2) (4,2)。这个点就是向量的另外一种表示法。向量 v \boldsymbol v v 可以用三种方式来描述: 向量 v 的表示法 两个数字 由 ( 0 , 0 ) 出发的箭头 平面上的点 向量\,\boldsymbol v\,的表示法\kern 10pt\colorbox{cyan}{两个数字}\,\,\colorbox{cyan}{由$(0,0)$出发的箭头}\,\,\colorbox{cyan}{平面上的点} 向量v的表示法两个数字(0,0)出发的箭头平面上的点我们用数字做加法,用箭头可视化 v + w \boldsymbol v+\boldsymbol w v+w

在这里插入图片描述
先沿着 v \boldsymbol v v 再沿着 w \boldsymbol w w 前进,或者沿着 v + w \boldsymbol v+\boldsymbol w v+w 走对角线;也可以先沿着 w \boldsymbol w w 再沿着 v \boldsymbol v v。换言之, w + v \boldsymbol w+\boldsymbol v w+v v + w \boldsymbol v+\boldsymbol w v+w 的答案相同。沿着平行四边形(本例是矩形)存在不同的前进方向。

三、三维向量

有两个分量的向量对应到 x y xy xy 平面上的一个点, v \boldsymbol v v 的分量就是点的坐标: x = v 1 x=v_1 x=v1 y = v 2 y=v_2 y=v2。向量从 ( 0 , 0 ) (0,0) (0,0) 出发,箭头在 ( v 1 , v 2 ) (v_1,v_2) (v1v2) 结束。
如果向量有三个分量,那么就对应三维的 x y z xyz xyz 空间中的一点。下面的列向量就有三个分量: v = [ 1 1 − 1 ] , w = [ 2 3 4 ] , v + w = [ 3 4 3 ] \boldsymbol v=\begin{bmatrix}1\\1\\-1\end{bmatrix},\boldsymbol w=\begin{bmatrix}2\\3\\4\end{bmatrix},\boldsymbol v+\boldsymbol w=\begin{bmatrix}3\\4\\3\end{bmatrix} v= 111 w= 234 v+w= 343 向量 v \boldsymbol v v 对应到三维空间的一个箭头,通常由原点出发,原点即 x y z xyz xyz 轴的交点,其坐标为 ( 0 , 0 , 0 ) (0,0,0) (0,0,0),箭头的终点坐标是 v 1 v_1 v1 v 2 v_2 v2 v 3 v_3 v3。三维向量同样有三种表示方式:列向量原点出发的箭头箭头的终点(空间中一点)
注意,平面向量 ( x , y ) (x,y) (x,y) 与三维空间的 ( x , y , 0 ) (x,y,0) (x,y,0) 是不同的。

在这里插入图片描述 v = [ 1 1 − 1 ] 也可以写成 v = ( 1 , 1 , − 1 ) \boldsymbol v=\begin{bmatrix}1\\1\\-1\end{bmatrix}\,\,也可以写成\,\,\boldsymbol v=(1,1,-1) v= 111 也可以写成v=(1,1,1)写成行形式(在括号中)是为了节省空间,但是 v = ( 1 , 1 , − 1 ) \boldsymbol v=(1,1,-1) v=(1,1,1) 不是行向量!它仍是列向量,与行向量 [ 1 1 − 1 ] [1\kern 6pt1\,-1] [111] 是不同的,尽管它们都具有三个分量。这里 1 × 3 1\times3 1×3 的行向量是 3 × 1 3\times1 3×1 的列向量 v \boldsymbol v v 的 “转置”(transpose)。
三维空间中, v + w \boldsymbol v+\boldsymbol w v+w 仍然是每次计算一个分量,向量的和的分量是 v 1 + w 1 v_1+w_1 v1+w1 v 2 + w 2 v_2+w_2 v2+w2 v 3 + w 3 v_3+w_3 v3+w3,同理可以推出 4 4 4 维直至 n n n 维空间中向量的加法。当 w \boldsymbol w w v \boldsymbol v v 的终点出发,则第三边为 v + w \boldsymbol v+\boldsymbol w v+w,平行四边形的另一个环绕方向是 w + v \boldsymbol w+\boldsymbol v w+v。这四个边是在同一平面的,向量的和 v + w − v − w \boldsymbol v+\boldsymbol w-\boldsymbol v-\boldsymbol w v+wvw 走完一圈产生零向量
三维空间三个向量的线性组合, u + 4 v − 2 w \boldsymbol u+4\boldsymbol v-2\boldsymbol w u+4v2w:分别用 1 1 1 4 4 4 − 2 -2 2 乘三个向量再相加的线性组合 [ 1 0 3 ] + 4 [ 1 2 1 ] − 2 [ 2 3 − 1 ] = [ 1 2 9 ] \begin{bmatrix}1\\0\\3\end{bmatrix}+4\begin{bmatrix}1\\2\\1\end{bmatrix}-2\begin{bmatrix}2\\3\\-1\end{bmatrix}=\begin{bmatrix}1\\2\\9\end{bmatrix} 103 +4 121 2 231 = 129

四、重要问题

一个向量 u \boldsymbol u u,唯一的线性组合是 c u c\boldsymbol u cu。对于两个向量,线性组合是 c u + d v c\boldsymbol u+d\boldsymbol v cu+dv。对于三个向量,线性组合是 c u + d v + e w c\boldsymbol u+d\boldsymbol v+e\boldsymbol w cu+dv+ew。对于每个 c c c d d d e e e,假设 u \boldsymbol u u v \boldsymbol v v w \boldsymbol w w 是三维空间中的向量:
(1)所有 c u c\boldsymbol u cu 的组合,图形是什么?
(2)所有 c u + d v c\boldsymbol u+d\boldsymbol v cu+dv 的组合,图形是什么?
(3)所有 c u + d v + e w c\boldsymbol u+d\boldsymbol v+e\boldsymbol w cu+dv+ew 的组合,图形是什么?
上述的答案都与 u \boldsymbol u u v \boldsymbol v v w \boldsymbol w w 有关,若它们均为零向量,所有的线性组合都是零。如果它们都是典型的非零向量(随机选定分量,即它们两两不平行,三个向量不共面):
(1)所有 c u c\boldsymbol u cu 的组合形成一条过原点(0,0,0)的直线
(2)所有的 c u + d v c\boldsymbol u+d\boldsymbol v cu+dv 的组合形成一个 过(0,0,0)的平面
(3)所有的 c u + d v + e w c\boldsymbol u+d\boldsymbol v+e\boldsymbol w cu+dv+ew 的组合形成三维空间
因为当 c c c 0 0 0 时,零向量 ( 0 , 0 , 0 ) (0,0,0) (0,0,0) 会在直线上;当 c c c d d d 都为 0 0 0 时,零向量会在平面上。向量 c u c\boldsymbol u cu 形成的直线是无限长(正向与反向)的,三维空间中两个向量的组合,全部 c u + d v c\boldsymbol u+d\boldsymbol v cu+dv 会形成三维空间内一个平面,且过原点;一条直线上的所有 c u c\boldsymbol u cu 加上另一条直线上的所有 d v d\boldsymbol v dv 就会形成 Figure1.3 所示的平面。
在这里插入图片描述
当引入第三个向量 w \boldsymbol w w 时,所有的 e w e\boldsymbol w ew 会得到第三条直线。假设第三条直线不在 u \boldsymbol u u v \boldsymbol v v 形成的平面上,则 e w e\boldsymbol w ew c u + d v c\boldsymbol u+d\boldsymbol v cu+dv 的组合可以形成整个三维空间。
典型情况下,我们会得到线、面、然后空间,但是还会有其它可能的情况。若 w \boldsymbol w w 正好等于 c u + d v c\boldsymbol u+d\boldsymbol v cu+dv 时,即第三个向量 w \boldsymbol w w 在前两个向量所形成的平面上,那么 u \boldsymbol u u v \boldsymbol v v w \boldsymbol w w 的组合仍然会在 u v \boldsymbol{uv} uv 平面内,也就不能得到整个三维空间。

五、主要内容总结

(1)二维空间的向量 v \boldsymbol v v 由两个分量 v 1 v_1 v1 v 2 v_2 v2
(2) v + w = ( v 1 + w 1 , v 2 + w 2 ) \boldsymbol v+\boldsymbol w=(v_1+w_1,v_2+w_2) v+w=(v1+w1,v2+w2) c v = ( c v 1 , c v 2 ) c\boldsymbol v=(cv_1,cv_2) cv=(cv1,cv2),每次计算一个分量。
(3)三个向量 u \boldsymbol u u v \boldsymbol v v w \boldsymbol w w 的线性组合是 c u + d v + e w c\boldsymbol u+d\boldsymbol v+e\boldsymbol w cu+dv+ew
(4)选取所有的 u \boldsymbol u u u \boldsymbol u u v \boldsymbol v v u \boldsymbol u u v \boldsymbol v v w \boldsymbol w w 的线性组合,在三维空间中,典型情况下,会形成一条直线一个平面整个空间 R 3 \textbf R^3 R3

六、例题

例1 v = ( 1 , 1 , 0 ) \boldsymbol v=(1,1,0) v=(1,1,0) w = ( 0 , 1 , 1 ) \boldsymbol w=(0,1,1) w=(0,1,1) 的线性组合会形成 R 3 \textbf R^3 R3 中的一个平面,描述这个平面,并找到一个不是 v \boldsymbol v v w \boldsymbol w w 线性组合的向量,即不在该平面上的向量。
解: v \boldsymbol v v w \boldsymbol w w 所形成的平面包含所有的组合 c v + d w c\boldsymbol v+d\boldsymbol w cv+dw,该平面上的向量允许任意和 c c c d d d 线性组合 c v + d w = c [ 1 1 0 ] + d [ 0 1 1 ] = [ c c + d d ] 形成一个平面 线性组合\kern 3ptc\boldsymbol v+d\boldsymbol w=c\begin{bmatrix}1\\1\\0\end{bmatrix}+d\begin{bmatrix}0\\1\\1\end{bmatrix}=\begin{bmatrix}c\\c+d\\d\end{bmatrix}\kern 3pt形成一个平面 线性组合cv+dw=c 110 +d 011 = cc+dd 形成一个平面可以发现其第二分量 c + d c+d c+d 为第一分量与第三分量之和。 ( 1 , 2 , 3 ) (1,2,3) (1,2,3) 即不在这个平面上,这是因为 2 ≠ 1 + 3 2\neq1+3 2=1+3

例2 v = ( 1 , 0 ) \boldsymbol v=(1,0) v=(1,0) w = ( 0 , 1 ) \boldsymbol w=(0,1) w=(0,1),描述所有的 c v c\boldsymbol v cv 点。
(1)当 c c c 为任意整数时;
(2)当 c c c 非负数时, c ≥ 0 c\geq0 c0
再将(1)(2)得到的 c v c\boldsymbol v cv 加上所有的 d w d\boldsymbol w dw,描述所有的 c v + d w c\boldsymbol v+d\boldsymbol w cv+dw
解:(1)当 c c c 为任意整数时,向量 c v = ( c , 0 ) c\boldsymbol v=(c,0) cv=(c,0) 是沿着 x x x 轴( v \boldsymbol v v 的方向)的等距点,包含 ( − 2 , 0 ) (-2,0) (2,0) ( − 1 , 0 ) (-1,0) (1,0) ( 0 , 0 ) (0,0) (0,0) ( 1 , 0 ) (1,0) (1,0) ( 2 , 0 ) (2,0) (2,0)
(2)当 c ≥ 0 c\geq0 c0 时,向量 c v c\boldsymbol v cv 形成一条半线,即 x x x 正半轴。这条线从 ( 0 , 0 ) (0,0) (0,0) 开始,此时 c = 0 c=0 c=0。包含点 ( 100 , 0 ) (100,0) (100,0) ( π , 0 ) (π,0) (π,0),但不包含 ( − 100 , 0 ) (-100,0) (100,0)
(1’)加上所有的向量 d w = ( 0 , d ) d\boldsymbol w=(0,d) dw=(0,d),会在这些等距点 c v c\boldsymbol v cv 上放置一条垂直(vertical)线,将会得到无数条(全部整数 c c c,任意的 d d d)平行线。
(2’)加上所有的向量 d w = ( 0 , d ) d\boldsymbol w=(0,d) dw=(0,d),会在半线上的每一个 c v c\boldsymbol v cv 上放置一条垂直线,将会得到一个半平面, x y xy xy 平面的右半部分包括任意的 x ≥ 0 x\geq0 x0 和任意的 y y y

例3】求出 c c c d d d 的两个方程,使得线性组合 c v + d w = b c\boldsymbol v+d\boldsymbol w=\boldsymbol b cv+dw=b v = [ 2 − 1 ] , w = [ − 1 2 ] , b = [ 1 0 ] \boldsymbol v=\begin{bmatrix}2\\-1\end{bmatrix},\boldsymbol w=\begin{bmatrix}-1\\2\end{bmatrix},\boldsymbol b=\begin{bmatrix}1\\0\end{bmatrix} v=[21]w=[12]b=[10]
解: 在应用数学中,很多问题都有两个部分:

  1. 建模(modeling)部分:利用一些方程式来表述问题。
  2. 计算(computational)部分:利用快速且正确的算法求解方程组。

这里仅讨论第一部分,使用方程组表示。这里可以使用一个线性代数的基础模型: 求 n 个数值 c 1 , ⋯ , c n ,使得 c 1 v + ⋯ c n v n = b 求\,n\,个数值\,c_1,\cdots,c_n,使得\,\,c_1\boldsymbol v+\cdots c_n\boldsymbol v_n=\boldsymbol b n个数值c1,,cn,使得c1v+cnvn=b n = 2 n=2 n=2 时即为此例题的模型。 向量方程式 c v + d w c [ 2 − 1 ] + d [ − 1 2 ] = [ 1 0 ] 向量方程式 \kern 4ptc\boldsymbol v+d\boldsymbol w\kern 10ptc\begin{bmatrix}2\\-1\end{bmatrix}+d\begin{bmatrix}-1\\2\end{bmatrix}=\begin{bmatrix}1\\0\end{bmatrix} 向量方程式cv+dwc[21]+d[12]=[10]可以得到两个一般方程式: { 2 c − d = 1 − c + 2 d = 1 \left\{\begin{matrix}2c-d=1\\-c+2d=1\end{matrix}\right. {2cd=1c+2d=1每个方程式产生一条直线,两条直线相交可以解得 c = 2 / 3 c=2/3 c=2/3 d = 1 / 3 d=1/3 d=1/3

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/157583.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux 测试端口是否放行

Linux 测试端口是否放行 1、准备2、在 CentOS 7 上放行端口,你可以使用以下方法:4、错误解决:[rootlocalhost backup]# netcat -l -p 11111 netcat: cannot use -p and -l 装了netcat不能用5、能用telnet去测试吗6、效果: 1、准备…

开源在线客服系统源码微信小程序

又来啦!今天要给大家分享的是一款在线客服微信小程序源码系统,在外面现在的日常生活中,客服是不可或缺的岗位,下面我们一起来看看这款系统的功能介绍吧。下面是部分的代码截图: 在线客服系统源码微信小程序的功能主要包…

【使用 TensorFlow 2】02/3 使用 Lambda 层创建自定义激活函数

一、说明 TensorFlow 2发布已经接近2年时间,不仅继承了Keras快速上手和易于使用的特性,同时还扩展了原有Keras所不支持的分布式训练的特性。3大设计原则:简化概念,海纳百川,构建生态.这是本系列的第三部分,…

JMeter性能测试,完整入门篇

1. Jmeter简介 Apache JMeter是一款纯java编写负载功能测试和性能测试开源工具软件。相比Loadrunner而言,JMeter小巧轻便且免费,逐渐成为了主流的性能测试工具,是每个测试人员都必须要掌握的工具之一。 本文为JMeter性能测试完整入门篇&…

Web自动化测试入门 : 前端页面的组成分析详解

目前常见的前端页面是由HTMLcssJavaScript组成。 一、HTML: 作用:定义页面呈现的内容 HTML 是用来描述网页的一种语言。 HTML 指的是超文本标记语言 (Hyper Text Markup Language)HTML 不是一种编程语言,而是一种标记语言 (markup langua…

并发编程——1.java内存图及相关内容

这篇文章,我们来讲一下java的内存图及并发编程的预备内容。 首先,我们来看一下下面的这两段代码: 下面,我们给出上面这两段代码在运行时的内存结构图,如下图所示: 下面,我们来具体的讲解一下。…

day14I102.二叉树的层序遍历

1、102.二叉树的层序遍历 题目链接:https://leetcode.cn/problems/binary-tree-level-order-traversal/ 文章链接:https://programmercarl.com/0102.%E4%BA%8C%E5%8F%89%E6%A0%91%E7%9A%84%E5%B1%82%E5%BA%8F%E9%81%8D%E5%8E%86.html#%E7%AE%97%E6%B3%95…

C# AnimeGANv2 人像动漫化

效果 项目 下载 可执行程序exe下载 源码下载 其他 C# 人像卡通化 Onnx photo2cartoon-CSDN博客 C# AnimeGAN 漫画风格迁移 动漫风格迁移 图像卡通化 图像动漫化_天天代码码天天的博客-CSDN博客

最新AI创作系统ChatGPT源码+详细搭建部署教程,支持AI绘画/支持OpenAI-GPT全模型+国内AI全模型

一、AI创作系统 SparkAi创作系统是基于OpenAI很火的ChatGPT进行开发的Ai智能问答系统AI绘画系统,支持OpenAI GPT全模型国内AI全模型。本期针对源码系统整体测试下来非常完美,可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。那么如何搭建部署…

SpringSecurity + jwt + vue2 实现权限管理 , 前端Cookie.set() 设置jwt token无效问题(已解决)

问题描述 今天也是日常写程序的一天 , 还是那个熟悉的IDEA , 还是那个熟悉的Chrome浏览器 , 还是那个熟悉的网站 , 当我准备登录系统进行登录的时候 , 发现会直接重定向到登录页 , 后端也没有报错 , 前端也没有报错 , 于是我得脸上又多了一张痛苦面具 , 紧接着在前端疯狂debug…

uniapp 使用和引入 thorui

1. npm install thorui-uni 2. "easycom": { "autoscan": true, "custom": { "tui-(.*)": "thorui-uni/lib/thorui/tui-$1/tui-$1.vue" } }, 3.

XML外部实体注入攻击XXE

xml是扩展性标记语言,来标记数据、定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言。XML文档结构包括XML声明、DTD文档类型定义(可选)、文档元素,一般无法直接打开,可以选择用excl或记事本打…

CentOS 7下JumpServer安装及配置(超详细版)

前言 Jumpserver是一种用于访问和管理远程设备的Web应用程序,通常用于对服务器进行安全访问。它基于SSH协议,提供了一个安全和可管理的环境来管理SSH访问。Jumpserver是基于Python开发的一款开源工具,其提供了强大的访问控制功能,…

NLP项目:维基百科文章爬虫和分类【02】 - 语料库转换管道

一、说明 我的NLP项目在维基百科条目上下载、处理和应用机器学习算法。相关上一篇文章中,展示了项目大纲,并建立了它的基础。首先,一个 Wikipedia 爬网程序对象,它按名称搜索文章,提取标题、类别、内容和相关页面&…

CSS 中几种常用的换行方法

1、使用 br 元素&#xff1a; 最简单的换行方法是在需要换行的位置插入 元素。例如&#xff1a; <p>This is a sentence.<br>It will be on a new line.</p>这会在 “This is a sentence.” 和 “It will be on a new line.” 之间创建一个换行。 效果&a…

云表:MES系统是工业4.0数字化转型的核心

随着信息技术与工业技术的深度融合&#xff0c;网络、计算机技术、信息技术、软件与自动化技术相互交织&#xff0c;产生了全新的价值模式。在制造领域&#xff0c;这种资源、信息、物品和人相互关联的模式被德国人定义为“工业4.0”&#xff0c;也就是第四次工业革命。工业4.0…

C#中的Dispatcher:Invoke与BeginInvoke的使用

Dispatcher是.NET框架中的一个重要概念&#xff0c;用于处理异步消息传递。在C#中&#xff0c;Dispatcher提供了两种方法&#xff1a;Invoke和BeginInvoke&#xff0c;用于控制线程上消息的顺序和执行方式。 目录 一、Dispatcher.Invoke二、Dispatcher.BeginInvoke三、使用场景…

flink1.15 savepoint 超时报错 java.util.concurrent.TimeoutException

savepoint命令 flink savepoint e04813d4e7480c526912eb4d32bba510 hdfs://flink/flink/migration/savepoint56650 -Dyarn.application.id=application_1683808492336_1222报错内容 org.apache.flink.util.FlinkException: Triggering a savepoint for the job e04813d4e7480…

Excel 自动提取某一列不重复值

IFERROR(INDEX($A$1:$A$14,MATCH(0,COUNTIF($C$1:C1,$A$1:$A$14),0)),"")注意&#xff1a;C1要空置&#xff0c;从C2输入公式 参考&#xff1a; https://blog.csdn.net/STR_Liang/article/details/105182654 https://zhuanlan.zhihu.com/p/55219017?utm_id0

【Unity】【VR】详解Oculus Integration输入

【背景】 以下内容适用于Oculus Integration开发VR场景,也就是OVR打头的Scripts,不适用于OpenXR开发场景,也就是XR打头Scripts。 【详解】 OVR的Input相对比较容易获取。重点在于区分不同动作机制的细节效果。 OVR Input的按键存在Button和RawButton两个系列 RawButton…