课题学习(八)----卡尔曼滤波动态求解倾角、方位角

一、 卡尔曼滤波

   卡尔曼滤波的应用要求系统和底层过程的测量模型都是线性的。离散时间线性状态空间系统的描述为: x k = Φ k , k − 1 x k − 1 + G k − 1 w k − 1 x_k=\Phi_{k,k-1}x_{k-1}+G_{k-1}w_{k-1} xk=Φk,k1xk1+Gk1wk1
   式中 Φ k , k − 1 \Phi_{k,k-1} Φk,k1为状态转移矩阵, x k x_k xk为状态向量, G k − 1 G_{k-1} Gk1为噪声分布矩阵, w k − 1 w_{k-1} wk1为过程噪声向量,k为测量历元。
   系统的测量方程由下式给出 z k = H k x k + η k z_k=H_kx_k+\eta_k zk=Hkxk+ηk
   式中 z k z_k zk为系统输出的测量向量, H k H_k Hk为观测或设计, η k \eta_k ηk为测量噪声。系统噪声w和测量噪声 η k \eta_k ηk是具有确定的自协方差函数的非相关零均值白噪声过程。
   通过对钻柱动力学的分析,提出了一种新的状态空间模型算法。在计算方法中,我们定义KF-1的输入矢量为 X = [ a x a y a z m x m y m z ] X=\begin{bmatrix}a_x&a_y&a_z\\ m_x&m_y&m_z\end{bmatrix} X=[axmxaymyazmz],由三轴磁强计和三轴加速度计测量。KF-2的输入向量为井眼倾角和方位角,定义为 X = [ I A ] X=\begin{bmatrix}I\\ A\end{bmatrix} X=[IA],其中 I I I为井眼倾角, A A A为井眼方位角。
   求解过程如下图所示:
在这里插入图片描述
   在此过程中,设计两个卡尔曼滤波器。在KF-1之后,我们可以得到更精确的重力加速度信号gx, gy和gz,定义为KF-1的输出。利用重力加速度,通过建立钻柱旋转时的方程,可以得到钻柱的倾角和方位角。然后使用KF-2进一步平滑钻井轨迹。KF-2的输出定义为 M ′ = [ I ′ A ′ ] T M'=\begin{bmatrix}I'&A'\end{bmatrix}^T M=[IA]T,这是更精确的。

1.1 KF-1的状态空间模型

   传感器安装在钻柱的中心,在旋转过程中,x轴和y轴的测量信号呈现正弦波。理论上,加速度计和磁力计的信号有相同的规律。在实际钻井过程中,钻柱的振动对磁强计信号的影响较小。也就是说,磁力计信号是用来校准加速度计信号的。通过实验室测试,我们可以得出磁通门信号的变化与重力加速度信号的变化是一致的。
   假设角速度为 w x , y , z w_{x,y,z} wx,y,z,采样间隔为Δt,则
在这里插入图片描述
   在KF-1中,我们将状态向量定义为 X = [ g x ( k ) g y ( k ) g z ( k ) ] X=\begin{bmatrix}g_x{(k)}\\g_y{(k)}\\g_z{(k)}\end{bmatrix} X= gx(k)gy(k)gz(k) ,从 a x , a y , a z a_x,a_y,a_z ax,ay,az的振动信号可以得到重力加速度信号 x g ( k ) x_g{(k)} xg(k)。因此,系统输出的测量矢量为,当钻柱旋转时,除了z轴信号外,x轴和y轴的测量信号将呈现正弦波。因此,变换矩阵定义为 z ( k ) = [ a x a y a z ] z(k)=\begin{bmatrix}a_x\\a_y\\a_z\end{bmatrix} z(k)= axayaz , H k = [ m x ( k − 1 ) m x ( k ) 0 0 0 m y ( k − 1 ) m y ( k ) 0 0 0 1 ] H_k=\begin{bmatrix}\frac{m_x{(k-1)}}{m_x{(k)}}&0&0\\ 0&\frac{m_y{(k-1)}}{m_y{(k)}}&0\\ 0&0&1\end{bmatrix} Hk= mx(k)mx(k1)000my(k)my(k1)0001 。系统噪声 w k w_k wk和测量噪声 η k \eta_k ηk是不相关的零均值白噪声过程。因此,我们得到KF-1的状态空间模型如下: x g ( k ) = [ m x ( k − 1 ) m x ( k ) 0 0 0 m y ( k − 1 ) m y ( k ) 0 0 0 1 ] x g ( k − 1 ) + [ w x ( k − 1 ) w y ( k − 1 ) w z ( k − 1 ) ] x_g{(k)}=\begin{bmatrix}\frac{m_x{(k-1)}}{m_x{(k)}}&0&0\\ 0&\frac{m_y{(k-1)}}{m_y{(k)}}&0\\ 0&0&1\end{bmatrix}x_g{(k-1)+\begin{bmatrix}w_x{(k-1)}\\w_y{(k-1)}\\w_z{(k-1)}\end{bmatrix}} xg(k)= mx(k)mx(k1)000my(k)my(k1)0001 xg(k1)+ wx(k1)wy(k1)wz(k1)
z ( k ) = H k x g ( k ) + η ( k ) z(k)=H_kx_g{(k)}+\eta(k) z(k)=Hkxg(k)+η(k)

1.2 计算倾角和方位角

   钻柱旋转时,上述方程不适用。安装在钻柱中心的传感器,即x轴和y轴的测量信号,在旋转过程中呈现正弦波。
   通过KF-1,我们得到gx、gy和gz,它们分别定义为x、y和z轴上的重力加速度测量信号。然后定义系统的输入向量为 X ′ = [ g x g y g z m x m y m z ] X'=\begin{bmatrix}g_x&g_y&g_z\\ m_x&m_y&m_z\end{bmatrix} X=[gxmxgymygzmz]
   定义转速为R,若R为0,则用下式计算倾角和方位角。
在这里插入图片描述
   R ≠ 0 R\neq0 R=0表示钻柱在旋转,倾角I和方位角A的计算公式如下:
在这里插入图片描述
   式中 T M T_M TM为磁性工具面角: T M = t g − 1 ( − m y m x ) T_M=tg^-1(\frac{-m_y}{m_x}) TM=tg1(mxmy)。用于近直井的工具面角。磁性工具面是在垂直于井筒轴线的平面上,顺时针方向测量的井眼测量仪器在井筒内的角度或方位角;北、东、南、西方向的磁性工具面角分别为0°、90°、180°和270°。磁性工具面可以校正为参考栅格北或真北。
   虽然钻柱转速是判断钻柱是否旋转的一种方法,但这种方法的可靠性不高。相反,使用标准差统计方法来确定钻柱的运动更加可靠,因为它反映了群体中个体之间的分散程度。使用50个数据点作为时间窗口,假设它们是x1, x2,…, x49, x50,我们得到标准差 σ = 1 N ∑ i = 1 N ( x i − x ˉ ) 2 \sigma=\sqrt{\frac{1}{N}\sum_{i=1}^N(x_i-\bar{x})^2} σ=N1i=1N(xixˉ)2 ,当标准差σ接近于零时,钻柱可以认为是静止的。

1.3 KF-2的状态空间模型

   在钻孔过程中,运动状态为 σ = 0 \sigma=0 σ=0 σ ≠ 0 \sigma\neq0 σ=0交替出现。当 σ ≠ 0 \sigma\neq0 σ=0时,由于钻柱不旋转时振动较小,求解结果更为准确。我们开发了另一种卡尔曼滤波器(KF-2)来平滑钻井轨迹。(KF-2分别分为KF-2.1和KF2.2,如下图所示。)
在这里插入图片描述
   在正常的钻井过程中,为了测量倾角和方位角,钻井作业经常要停在测量站。然后根据数学假设计算两个测量站之间的井眼轨迹。例如,可以假设钻孔距离为直线、圆弧或多角线;每个都需要不同的计算方法。设实际钻井轨迹测量第N点的三维坐标为 ( x N , y N , z N ) (x_N,y_N,z_N) (xN,yN,zN),则测量(N +1)点为 ( x N + 1 , y N + 1 , z N + 1 ) (x_{N+1},y_{N+1},z_{N+1}) (xN+1,yN+1,zN+1),井深、垂深、倾角、方位角分别为 L N 、 H N 、 θ N 、 Ψ N L_N、H_N、\theta_N、\Psi_N LNHNθNΨN和$L_{N+1}、H_{N+1}、\theta_{N+1}、\Psi_{N+1}。两点之间的井眼轨迹定义如下:
在这里插入图片描述
   如果垂直深度H已知,则测量(N + 1)-th点的三维坐标可定义为
在这里插入图片描述
   我们可以通过递归计算得到每个点的空间坐标,从而得到整个钻井轨迹。如下图所示,我们可以使用井眼轨迹外推法建立相邻两个测点之间的递推关系。
在这里插入图片描述

   假设L是钻孔深度, γ \gamma γ是钻孔轨迹与其切线的夹角,然后: L ( k ) = L ( k − 1 ) + Δ L ( K ) L(k)=L(k-1)+\Delta L(K) L(k)=L(k1)+ΔL(K)
γ = a r c c o s [ c o s ( I k − 2 ) c o s ( I k − 1 ) + s i n ( I k − 2 ) s i n ( I k − 1 ) c o s ( A k − 1 − A k − 2 ) ] \gamma=arccos[cos(I_{k-2})cos(I_{k-1})+sin(I_{k-2})sin(I_{k-1})cos(A_{k-1}-A_{k-2})] γ=arccos[cos(Ik2)cos(Ik1)+sin(Ik2)sin(Ik1)cos(Ak1Ak2)]
γ ( k ) = γ Δ L ( k − 1 ) Δ L ( k ) \gamma(k)=\frac{\gamma}{\Delta L(k-1)}\Delta L(k) γ(k)=ΔL(k1)γΔL(k)
   从上面三个公式看出,我们可以使用两个点来估计下一个点,因此可以平滑井眼轨迹。我们可以使用Kalman Filter 2.2对钻井轨迹进行校准,其中将第k个测量点定义为 P ( k ) = [ I k A k ] P(k)=[I_k A_k] P(k)=[IkAk]。系统输入为P(K -2)和P(K -1), KF-2.2结合实测值和理论计算值估算P(K)。
   KF-2.2通过倾角和方位角作为输入,实现井眼轨迹平滑。假设状态向量为 x ( k ) = [ I k A k ] x(k)=\begin{bmatrix}I_k\\A_k\end{bmatrix} x(k)=[IkAk],则系统输出的测量向量为 x ( k ) = [ I k A k ] m x(k)=\begin{bmatrix}I_k\\A_k\end{bmatrix}_m x(k)=[IkAk]m H ( k ) = [ 1 0 0 1 ] H(k)=\begin{bmatrix}1&0\\0&1\end{bmatrix} H(k)=[1001]。得到KF-2.2的状态空间模型:
在这里插入图片描述
   如上所示,我们应该确定 Δ L \Delta L ΔL作为KF-2.2的输入。( Δ t \Delta t Δt期间钻头向前移动的距离)。我们可以通过测量z轴上的加速度来计算位移。 A z A_z Az是z轴上三轴加速度计的信号,它与重力加速度和振动加速度相结合。定义加速度在z轴时间序列上的测量为 a z ( k ) a_z(k) az(k)
   所以在计算位移 Δ L \Delta L ΔL之前,我们首先要排除重力的影响,如下所示: f g z ( k ) = a z ( k ) − G ⋅ c o s ( I k − 1 ) f_{g_z}(k)=a_z(k)-G·cos(I_{k-1}) fgz(k)=az(k)Gcos(Ik1)
   其中 f g z ( k ) f_{g_z}(k) fgz(k)是加速度时间序列函数,通过去掉 g z g_z gz的加速度,可以计算出 a z ( k ) a_z(k) az(k)和倾角 I k − 1 I_{k-1} Ik1对应的同一时间。
   然后我们可以使用z轴时间序列 f g z ( k ) f_{g_z}(k) fgz(k)上的加速度来计算钻探深度( Δ L \Delta L ΔL)。将状态向量定义为 Δ L ( k ) = [ Δ L ( k ) Δ L ˙ ( k ) Δ L ¨ ( k ) ] \Delta L(k)=\begin{bmatrix}\Delta L(k)\\\Delta \dot L(k)\\\Delta \ddot L(k)\end{bmatrix} ΔL(k)= ΔL(k)ΔL˙(k)ΔL¨(k) ,系统输出的测量向量为 z ( k ) = f g z ( k ) z(k)=f_{g_z}(k) z(k)=fgz(k),我们建立了KF-2.1的状态空间模型如下:
在这里插入图片描述
   通过对实测信号进行预处理,建立了一种基于底部旋转钻具动力学分析的动态方位和倾角求解算法。在理论模型的基础上,我们开发了一种卡尔曼滤波器来提高求解器的精度;在预测钻井轨迹的基础上,建立了卡尔曼滤波的状态空间方程。基于卡尔曼滤波的动态测量算法是一种能够大大降低求解误差的新模型。

二、 往期回顾

课题学习(一)----静态测量
课题学习(二)----倾角和方位角的动态测量方法(基于磁场的测量系统)
课题学习(三)----倾角和方位角的动态测量方法(基于陀螺仪的测量系统)
课题学习(四)----四元数解法
课题学习(五)----阅读论文《抗差自适应滤波的导向钻具动态姿态测量方法》
课题学习(六)----安装误差校准、实验方法
课题学习(七)----粘滑运动的动态算法

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/158345.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

计算机毕业设计选什么题目好?springboot 旅游网站

✍✍计算机编程指导师 ⭐⭐个人介绍:自己非常喜欢研究技术问题!专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目:有源码或者技术上的问题欢迎在评论区一起讨论交流! ⚡⚡ Java实战 |…

Qt之submodule编译

工作中会遇到这样一种情况:qt应用程序在运行时提示找不到某个qt的动态库。我遇到的是缺少libQt5Websocket.so,因为应用程序是在x86平台银河麒麟v10上开发,能够正常编译运行,然后移植到rk3588(aarch64架构)上…

C++入门篇11 模板进阶

一、非类型模板参数 模板参数分为类型形参和非类型形参 类型形参:出现在模板参数列表里,跟在class/typename之后的参数类型名称非类型参数:就是用一个常量作为类(函数)模板的一个参数,在类(函数)模板中可将参数当作常量来使用 …

IDEA中SpringBoot的启动类文件变成了一个J文件的解决方案

错误如下: 解决方案: 此时可以发现已经恢复成功了

同源策略和跨域问题

1.跨域问题产生的原因 浏览器的同源策略影响,同源策略是一种安全机制,它限制了一个网页中的脚本只能访问同源的资源。 跨源网络访问的三种方式:跨域写操作,跨域资源嵌入,跨域读操作 2.跨域问题案例 ip和域名不一致…

C++教程(2)

C 环境设置 本地环境设置 如果您想要设置 C 语言环境,您需要确保电脑上有以下两款可用的软件,文本编辑器和 C 编译器。 文本编辑器 这将用于输入您的程序。文本编辑器包括 Windows Notepad、OS Edit command、Brief、Epsilon、EMACS 和 vim/vi。 文…

MATLAB——线性神经网络预测程序

微❤关注“电击小子程高兴的MATLAB小屋”获得资料(专享优惠) %% 学习目标: 线性神经网络 %% 收敛速度和精度比之前讲的感知器神经网络要高, %% 主要应用在函数逼近,信号预测,模式识别,系统辨…

【基于windows desktop上的docker配置nacos,并采用宿主机访问】

1、拉取镜像(以下命令全部基于powershell) docker pull nacos/nacos-server2、启动容器 docker run -d -e PREFER_HOST_MODEhostname -e MODEstandalone -e JVM_XMS256m -e JVM_XMX256m -e JVM_XMN128m -p 8848:8848 --name nacos --restartalways nac…

STM32单片机入门学习(五)-按钮控制LED

按钮和LED接线 LED负极接B12,正极接VCC 按钮一端接B13,一端接GND,按下为低电平,松开为高电平 如图: 主程序代码:main.c #include "stm32f10x.h" #include "Delay.h" //delay函数所在头文件 #include …

ONNX推理流程

文章目录 python版API推理流程 python版API推理流程 使用netron工具查看onnx网络结构 如下图,可以看出此次要使用的网络输入为: 输入名称:input输入形状:[1, 3, 256, 256]输入数据类型:float32 网络的输出为&#xff1…

通讯网关软件020——利用CommGate X2Mysql实现Modbus TCP数据转储Mysql

本文介绍利用CommGate X2MYSQL实现从Modbus TCP设备读取数据并转储至MYSQL数据库。CommGate X2MYSQL是宁波科安网信开发的网关软件,软件可以登录到网信智汇(http://wangxinzhihui.com)下载。 【案例】如下图所示,实现从Modbus TCP设备读取数据并转储至M…

Vue项目 -- 解决Eslint导致的console报错问题

在利用vue-cli3构建的项目中引入eslint进行语法检查时,使用console.log(‘xxx’)时,控制台抛出了Unexpected console statement (no-console) 异常, 例:一使用console就提示报错 解决办法是: 在 .eslintrc.js 文件中…

Qt事件系统 day7

Qt事件系统 day7 事件系统 在Qt中,事件是派生自抽象QEvent类的对象,它表示应用程序内发生的事情或应用程序需要知道的外部活动的结果。事件可以由QObject子类的任何实例接收和处理,但它们与小部件尤其相关。Qt程序需要在main()函数创建一个…

vue绑定style和class 对象写法

适用于:要绑定多个样式,个数确定,名字也确定,但不确定用不用。 绑定 class 样式【对象写法】: .box{width: 100px;height: 100px; } .aqua{background-color: aqua; } .border{border: 20px solid red; } .radius{bor…

真人现在猫鼠躲猫猫游戏搭建流程:专业思考与深度思考

真人现在猫鼠躲猫猫游戏是种充满乐趣和挑战的团队竞技游戏。本文将从游戏规则设计、场地布置、技术实现和用户体验等方面,深入探讨人现在猫鼠躲猫猫游戏的搭建流程,并结合专业思考与深度思考,为游戏搭建提供全面指导。 一、游戏规则设计&…

小程序uView2.X框架upload组件上传方法总结+避坑

呈现效果: 1.1单图片上传 1.2多图片上传 前言:相信很多人写小程序会用到uView框架,总体感觉还算OK吧,只能这么说,肯定也会遇到图片视频上传,如果用到这个upload组件相信你,肯定遇到各种各样的问题,这是我个人总结的单图片和多图片上传方法. uView2.X框架:uView 2.0 - 全面兼容…

适用于音视频的弱网测试整理

一、什么是弱网环境 对于弱网的定义,不同的应用对弱网的定义是有一定的差别的,不仅要考虑各类型网络最低速率,还要结合业务场景和应用类型去划分。按照移动的特性来说,一般应用低于2G速率的都属于弱网,也可以将3G划分…

idea自动封装方法

例如 package com.utils;import java.lang.reflect.Field; import java.sql.*; import java.util.ArrayList; import java.util.List; import java.util.ResourceBundle;/*** author hrui* date 2023/10/13 13:49*/ public class DBUtils {private static ResourceBundle bund…

【Pytorch】pytorch中保存模型的三种方式

【Pytorch】pytorch中保存模型的三种方式 文章目录 【Pytorch】pytorch中保存模型的三种方式1. torch保存模型相关的api1.1 torch.save()1.2 torch.load()1.3 torch.nn.Module.load_state_dict()1.4 什么是state_dict()1.4. 1 举个例子 2. pytorch模型文件后缀3. 存储整个模型3…

Netty深入浅出Java网络编程学习笔记(二) Netty进阶应用篇

目录 四、应用 1、粘包与半包 现象分析 粘包 半包 本质 解决方案 短链接 定长解码器 行解码器 长度字段解码器——LTC 2、协议设计与解析 协议的作用 Redis协议 HTTP协议 自定义协议 组成要素 编码器与解码器 编写测试类 Sharable注解 自定义编解码器能否使用Sharable注解 3、在…