基于R和gephi做宏基因组与代谢组等多组学联合network相关性网络图

写在前面

拿到多组学的数据后一直在找合适的方法将二者进行关联,比如我这里是三种体液的代谢组与一种体液的宏基因组。需求是对多组学进行关联分析,直到最近看到不少文章里利用Gephi将相关性表格进行可视化的图,效果还不错,于是写个过程记录自用。这里演示的是属水平的差异菌群相对丰度(宏基因组结果)与代谢组鉴定到的差异代谢物进行关联。

主要分为两个部分:

  • 先是计算相关性生成graphml格式文件
  • 使用Gephi软件进行可视化

数据准备

主要就是两个需要关联的表格

  • 差异代谢物表格
    image-20231011195243243

  • 差异菌属的相对丰度表格
    image-20231011195214637

这里注意:原文件如果是新建的excel,默认有3个sheet,一定记得只保留一个sheet后另存为制表符分隔的txt文件,这一点很重要,不然下面分析的时候会从读取就开始报错!

image-20231011195341323

R包Hmisc计算相关性并用igraph包生成graphml

用到Hmisc包和igraph包

这里就直接放代码吧,遇到相关的报错先仔细检查数据,一般是数据格式和内容本身的问题。不行就上网找解决办法。

###微生物和代谢物的相关性网络
##计算微生物类群丰度和代谢物鉴定强度的相关系数
setwd('F:\\Analysis\\RA_Sanhe cow\\Microgenome\\Network_Gephi module_Pretreat\\RE group\\M_metabolites_genus')
library(Hmisc)
MAG <- read.delim('differ_genus.txt',row.name = 1, check.names = FALSE)
Enzyme <- read.delim('milk_differ_metabolites_inform.txt',row.name = 1, check.names = FALSE)
MAG<-t(MAG)
Enzyme<-t(Enzyme)#计算群落组成与功能的相关性,以 spearman 相关系数为例
MAG_Enzyme_corr <- rcorr(as.matrix(MAG), as.matrix(Enzyme), type = 'spearman')#相关系数 r 值和显著性 p 值矩阵
r <- MAG_Enzyme_corr$r
p <- MAG_Enzyme_corr$P#只保留微生物丰度-功能基因丰度的相关系数
#去除微生物-微生物、功能基因-功能基因之间的相关系数
r <- r[colnames(MAG),colnames(Enzyme)]
p <- p[colnames(MAG),colnames(Enzyme)]#阈值筛选
#将 spearman 相关系数低于 0.7 的关系剔除,即 r>=0.7
#该模式下,一定要注意负值的选择是否是合适的,因为很多情况下可能负相关无意义
r[abs(r) < 0.7] <- 0#选取显著性 p 值小于 0.05 的相关系数,即 p<0.05
# p <- p.adjust(p, method = 'BH')    #可选 p 值校正,这里使用 BH 法校正 p 值
p[p>=0.05] <- -1
p[p<0.05 & p>=0] <- 1
p[p==-1] <- 0#根据上述筛选的 r 值和 p 值保留数据
z <- r * p#再转换为对称矩阵,igraph 只能识别这种样式的邻接矩阵类型
z1 <- MAG_Enzyme_corr$r
z1[z1 != 0] <- 0
z1[rownames(z),colnames(z)] <- z
z1[colnames(z),rownames(z)] <- t(z)#write.table(data.frame(z1, check.names = FALSE), 'MAG_Enzyme_corr.matrix.txt', col.names = NA, sep = '\t', quote = FALSE)##获得网络
library(igraph)#将邻接矩阵转化为 igraph 网络的邻接列表
#构建含权的无向网络,权重代表了微生物丰度和功能基因丰度间的 spearman 相关系数
g <- graph.adjacency(z1, weighted = TRUE, mode = 'undirected')
g#孤立节点的删除(删除度为 0 的节点)
g <- delete.vertices(g, names(degree(g)[degree(g) == 0]))#该模式下,边权重代表了相关系数
#由于权重通常为正值,因此最好取个绝对值,相关系数重新复制一列
E(g)$correlation <- E(g)$weight
E(g)$weight <- abs(E(g)$weight)#查看网络图
plot(g)#graphml 格式,可使用 gephi 软件打开并进行可视化编辑
write.graph(g, 'network.graphml', format = 'graphml')

plot包出的图

image-20231011200630160

Gephi软件可视化

下载地址:The Open Graph Viz Platform,支持中文

可参考 B站:Gephi可视化进阶:教你绘制一个漂亮的网络图

进一步对上面生成的network.graphml文件用Gephi可视化

  • 导入图形文件
    在这里插入图片描述

  • 导入后初始布局
    image-20231012091637492

  • 更改布局,等节点的位置没有移动变化即可停止
    在这里插入图片描述

  • 计算平均度与模块化

在这里插入图片描述

  • 模块化上色在这里插入图片描述

  • 调整节点大小
    在这里插入图片描述

  • 添加节点标识,去界面左上角数据资料处替换节点名字
    在这里插入图片描述

  • 预览图,这里根据需要可以自行摸索调整,红框圈出了我调整的部分

image-20231011205821998

  • 导出保存

image-20231011210001552

效果展示

结果图细节修改:在AI中嵌入上面导出的pdf格式结果后补充图例细节即可,下方是效果展示

image-20231012092212749

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/158362.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vscode用密钥文件连接ssh:如果一直要输密码怎么办

commandshiftP&#xff1a;打开ssh配置文件 加上这么一段&#xff0c;host就是你给主机起的名字 对IdentityFile进行更改&#xff0c;改成相应的密钥文件 然后commandshiftP链接到主机就可以了 但是有时候它会让输入密码 这是由于你给这个IdentityFile的权限太多了&#xf…

【深度学习】DDPM,Diffusion,概率扩散去噪生成模型,原理解读

看过来看过去&#xff0c;唯有此up主&#xff0c;非常牛&#xff1a; Video Explaination(Chinese) 1. DDPM Introduction q q q - 一个固定&#xff08;或预定义&#xff09;的正向扩散过程&#xff0c;逐渐向图像添加高斯噪声&#xff0c;直到最终得到纯噪声。 p θ p_θ p…

Redis的Java客户端-Jedis

目录 一、Jedis基本用法二、Jedis连接池 一、Jedis基本用法 二、Jedis连接池

晨控CK-GW06系列网关与汇川可编程控制器MOSBUSTCP通讯手册

晨控CK-GW06系列网关与汇川可编程控制器MOSBUSTCP通讯手册 晨控CK-GW06系列是支持标准工业通讯协议 MODBUSTCP 的网关控制器,方便用户集成到PLC等控制系统中。本控制器提供了网络 POE 供电和直流电源供电两种方式&#xff0c;确保用户在使用无 POE 供电功能的交换机时可采用外…

Kopler.gl笔记:可视化功能总览

1 添加数据 2 添加图层 打开“数据层”菜单&#xff0c;开始可视化。 层&#xff08;Layers&#xff09;简单来说就是可以相互叠加的数据可视化。 3 添加过滤器 在地图上添加过滤器以限制显示的数据。过滤器必须基于数据集中的列。要创建新的过滤器&#xff0c;打开“过滤器…

手机拍摄的视频噪点很多怎么办,视频怎么做降噪处理?

现如今&#xff0c;智能手机已经成为了我们生活中必不可少的存在。而随着智能手机越来越强大&#xff0c;很多人已经开始使用手机来拍摄各种类型的视频。但是由于手机的限制&#xff0c;很多人会发现自己拍摄的视频存在着很多的噪点。那么&#xff0c;我们该怎样来解决拍摄视频…

BuyVM 挂载存储块

发布于 2023-07-13 on https://chenhaotian.top/linux/buyvm-mount-block-storage/ BuyVM 挂载存储块 参考&#xff1a; https://zhujitips.com/2653https://www.pigji.com/898.html 1 控制台操作 存储块购买完毕后&#xff0c;进入后台管理界面&#xff0c;进入对应 VPS …

发货100虚拟商品自动发货系统存在SQL注入

漏洞描述 该系统存在SQL注入漏洞&#xff0c;可获取敏感信息及账号密码。 漏洞复现 构造SQL注入延时payload&#xff1a; M_id11%20AND%20(SELECT%208965%20FROM%20(SELECT(SLEEP(5)))sdhh)&typeproduct漏洞证明&#xff1a; 文笔生疏&#xff0c;措辞浅薄&#xff0c;…

pycharm连接gitlab

1、下载安装gitlab 下载地址&#xff1a;Git - Downloading Package 下载后傻瓜式安装&#xff0c;注意勾选配置环境变量 未配置自己配置&#xff0c;电脑-属性-高级系统配置-环境变量 系统变量path&#xff1a;添加git安装目录下bin目录 2、检验安装完成 桌面右键git-open…

G1 GC详解及设置

一、概述 G1 GC&#xff0c;全称Garbage-First Garbage Collector&#xff0c;在JDK1.7中引入了G1 GC&#xff0c;从JAVA 9开始&#xff0c;G1 GC是默认的GC算法。通过-XX:UseG1GC参数来启用。G1收集器是工作在堆内不同分区上的收集器&#xff0c;分区既可以是年轻代也可以是老…

蓝桥杯(七段码,C++)

思路&#xff1a; 1、把灯管的连接转为图结构&#xff0c;相邻的灯管即认为有边。 2、用深度搜索&#xff0c;去计算有多少种不同字符。 3、因为有每种字符都会重复算两遍&#xff0c;最后的结果需要数以2。 #include <iostream> using namespace std;int graph[7][7…

R语言手动绘制NHANSE数据基线表并聊聊NHANSE数据制作亚组交互效应表的问题(P for interaction)

美国国家健康与营养调查&#xff08; NHANES, National Health and Nutrition Examination Survey&#xff09;是一项基于人群的横断面调查&#xff0c;旨在收集有关美国家庭人口健康和营养的信息。 地址为&#xff1a;https://wwwn.cdc.gov/nchs/nhanes/Default.aspx 在既往的…

课题学习(八)----卡尔曼滤波动态求解倾角、方位角

一、 卡尔曼滤波 卡尔曼滤波的应用要求系统和底层过程的测量模型都是线性的。离散时间线性状态空间系统的描述为: x k Φ k , k − 1 x k − 1 G k − 1 w k − 1 x_k\Phi_{k,k-1}x_{k-1}G_{k-1}w_{k-1} xk​Φk,k−1​xk−1​Gk−1​wk−1​    式中 Φ k , k − 1 \Phi_{…

计算机毕业设计选什么题目好?springboot 旅游网站

✍✍计算机编程指导师 ⭐⭐个人介绍&#xff1a;自己非常喜欢研究技术问题&#xff01;专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目&#xff1a;有源码或者技术上的问题欢迎在评论区一起讨论交流&#xff01; ⚡⚡ Java实战 |…

Qt之submodule编译

工作中会遇到这样一种情况&#xff1a;qt应用程序在运行时提示找不到某个qt的动态库。我遇到的是缺少libQt5Websocket.so&#xff0c;因为应用程序是在x86平台银河麒麟v10上开发&#xff0c;能够正常编译运行&#xff0c;然后移植到rk3588&#xff08;aarch64架构&#xff09;上…

C++入门篇11 模板进阶

一、非类型模板参数 模板参数分为类型形参和非类型形参 类型形参&#xff1a;出现在模板参数列表里&#xff0c;跟在class/typename之后的参数类型名称非类型参数&#xff1a;就是用一个常量作为类(函数)模板的一个参数&#xff0c;在类(函数)模板中可将参数当作常量来使用 …

IDEA中SpringBoot的启动类文件变成了一个J文件的解决方案

错误如下&#xff1a; 解决方案&#xff1a; 此时可以发现已经恢复成功了

同源策略和跨域问题

1.跨域问题产生的原因 浏览器的同源策略影响&#xff0c;同源策略是一种安全机制&#xff0c;它限制了一个网页中的脚本只能访问同源的资源。 跨源网络访问的三种方式&#xff1a;跨域写操作&#xff0c;跨域资源嵌入&#xff0c;跨域读操作 2.跨域问题案例 ip和域名不一致…

C++教程(2)

C 环境设置 本地环境设置 如果您想要设置 C 语言环境&#xff0c;您需要确保电脑上有以下两款可用的软件&#xff0c;文本编辑器和 C 编译器。 文本编辑器 这将用于输入您的程序。文本编辑器包括 Windows Notepad、OS Edit command、Brief、Epsilon、EMACS 和 vim/vi。 文…

MATLAB——线性神经网络预测程序

微❤关注“电击小子程高兴的MATLAB小屋”获得资料&#xff08;专享优惠&#xff09; %% 学习目标&#xff1a; 线性神经网络 %% 收敛速度和精度比之前讲的感知器神经网络要高&#xff0c; %% 主要应用在函数逼近&#xff0c;信号预测&#xff0c;模式识别&#xff0c;系统辨…