Pytorch从零开始实战05

Pytorch从零开始实战——运动鞋识别

本系列来源于365天深度学习训练营

原作者K同学

文章目录

  • Pytorch从零开始实战——运动鞋识别
    • 环境准备
    • 数据集
    • 模型选择
    • 数据可视化
    • 模型预测
    • 总结

环境准备

本文基于Jupyter notebook,使用Python3.8,Pytorch2.0.1+cu118,torchvision0.15.2,需读者自行配置好环境且有一些深度学习理论基础。本次实验的目的是了解如何设置动态学习率。
第一步,导入常用包。

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torch.nn.functional as F
import random
from time import time
import numpy as np
import pandas as pd
import datetime
import gc
import os
os.environ['KMP_DUPLICATE_LIB_OK']='True'  # 用于避免jupyter环境突然关闭
torch.backends.cudnn.benchmark=True  # 用于加速GPU运算的代码

设置随机数种子,428不好用,这次设置为55

torch.manual_seed(55)
torch.cuda.manual_seed(55)
torch.cuda.manual_seed_all(55)
random.seed(55)
np.random.seed(55)

创建设备对象,检测设备

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

数据集

本次实验是对运动鞋图片进行分类任务,共579张图片,是一个二分类任务,标签为adidas、nike,两种类别的图片分别存放在不同的文件夹中。

展示图片函数

def plotsample(data):fig, axs = plt.subplots(1, 5, figsize=(10, 10)) #建立子图for i in range(5):num = random.randint(0, len(data) - 1) #首先选取随机数,随机选取五次#抽取数据中对应的图像对象,make_grid函数可将任意格式的图像的通道数升为3,而不改变图像原始的数据#而展示图像用的imshow函数最常见的输入格式也是3通道npimg = torchvision.utils.make_grid(data[num][0]).numpy()nplabel = data[num][1] #提取标签 #将图像由(3, weight, height)转化为(weight, height, 3),并放入imshow函数中读取axs[i].imshow(np.transpose(npimg, (1, 2, 0))) axs[i].set_title(nplabel) #给每个子图加上标签axs[i].axis("off") #消除每个子图的坐标轴

查看classNames

import pathlib
data_dir = './data/snk/train'
data_dir = pathlib.Path(data_dir) # 转成pathlib.Path对象data_paths = list(data_dir.glob('*')) # [PosixPath('data/snk/train/adidas'), PosixPath('data/snk/train/nike')]
classNames = [str(path).split("/")[3] for path in data_paths]
classNames # 二分类问题 ['adidas', 'nike']

使用transforms来预处理原始数据,统一尺寸、转换为张量、标准化

train_transforms = transforms.Compose([transforms.Resize([224, 224]),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # 标准化
])test_transforms = transforms.Compose([transforms.Resize([224, 224]),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # 标准化
])# 根据文件名设置标签
train_dataset = datasets.ImageFolder("./data/snk/train/", transform=train_transforms)
test_dataset = datasets.ImageFolder("./data/snk/test/", transform=train_transforms)

随机查看5张图片

plotsample(train_dataset)

在这里插入图片描述
使用DataLoader划分数据集,batch_size = 32

batch_size = 32
train_dl = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True,)
test_dl = torch.utils.data.DataLoader(test_dataset,batch_size=batch_size,shuffle=True,)len(train_dl.dataset), len(test_dl.dataset) # 503 76

模型选择

本次还是选择简单的卷积神经网络,这次写法使用Sequential,表示这一块是一个单独的模块。

class Model(nn.Module):def __init__(self):super().__init__()self.conv1 = nn.Sequential(nn.Conv2d(3, 12, kernel_size=5), # 220nn.BatchNorm2d(12),nn.ReLU())self.conv2 = nn.Sequential(nn.Conv2d(12, 12, kernel_size=5), # 216nn.BatchNorm2d(12),nn.ReLU())self.pool3 = nn.Sequential(nn.MaxPool2d(2)             # 108)self.conv4 = nn.Sequential(nn.Conv2d(12, 24, kernel_size=5),  # 104nn.BatchNorm2d(24),nn.ReLU())self.conv5 = nn.Sequential(nn.Conv2d(24, 24, kernel_size=5),  # 100nn.BatchNorm2d(24),nn.ReLU())self.pool6 = nn.Sequential(nn.MaxPool2d(2))self.dropout = nn.Sequential(nn.Dropout(0.2))self.fc = nn.Sequential(nn.Linear(50 * 50 * 24, len(classNames)))def forward(self, x):x = self.conv1(x)x = self.conv2(x)x = self.pool3(x)x = self.conv4(x)x = self.conv5(x)x = self.pool6(x)x = self.dropout(x)x = x.view(-1, 50 * 50 * 24)x = self.fc(x)return x

模型初始化

from torchsummary import summary
# 将模型转移到GPU中
model = Model().to(device)
summary(model, input_size=(3, 224, 224))

在这里插入图片描述
定义训练函数

def train(dataloader, model, loss_fn, opt):size = len(dataloader.dataset)num_batches = len(dataloader)train_acc, train_loss = 0, 0for X, y in dataloader:X, y = X.to(device), y.to(device)pred = model(X)loss = loss_fn(pred, y)opt.zero_grad()loss.backward()opt.step()train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc /= sizetrain_loss /= num_batchesreturn train_acc, train_loss

定义测试函数

def test(dataloader, model, loss_fn):size = len(dataloader.dataset)num_batches = len(dataloader)test_acc, test_loss = 0, 0with torch.no_grad():for X, y in dataloader:X, y = X.to(device), y.to(device)pred = model(X)loss = loss_fn(pred, y)test_acc += (pred.argmax(1) == y).type(torch.float).sum().item()test_loss += loss.item()test_acc /= sizetest_loss /= num_batchesreturn test_acc, test_loss

定义一些超参数

loss_fn = nn.CrossEntropyLoss()
learn_rate = 0.0001
opt = torch.optim.SGD(model.parameters(), lr=learn_rate)

定义学习率衰减函数,大概意思是随着epoch的增加,学习率会持续变小,使得模型更容易收敛

def adjust_rate(opt, epoch, start_lr):lr = start_lr * (0.92 ** (epoch // 2))for param_group in opt.param_groups:param_group['lr'] = lr

开始训练

import time
epochs = 30
train_loss = []
train_acc = []
test_loss = []
test_acc = []T1 = time.time()best_acc = 0
PATH = './my_model.pth'for epoch in range(epochs):adjust_rate(opt, epoch, learn_rate)model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)model.eval() # 确保模型不会进行训练操作epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)if epoch_test_acc > best_acc:best_acc = epoch_test_acctorch.save(model.state_dict(), PATH)print("model save")train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)print("epoch:%d, train_acc:%.1f%%, train_loss:%.3f, test_acc:%.1f%%, test_loss:%.3f"% (epoch + 1, epoch_train_acc * 100, epoch_train_loss, epoch_test_acc * 100, epoch_test_loss))
print("Done")
T2 = time.time()
print('程序运行时间:%s毫秒' % ((T2 - T1)*1000))

但是效果好像不是很好,模型训练的时候卡在某个极小值不动了
在这里插入图片描述
经过实验,将学习率改为0.001,效果是最好的。

import time
epochs = 30
train_loss = []
train_acc = []
test_loss = []
test_acc = []T1 = time.time()best_acc = 0
PATH = './my_model.pth'for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)model.eval() # 确保模型不会进行训练操作epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)if epoch_test_acc > best_acc:best_acc = epoch_test_acctorch.save(model.state_dict(), PATH)print("model save")train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)print("epoch:%d, train_acc:%.1f%%, train_loss:%.3f, test_acc:%.1f%%, test_loss:%.3f"% (epoch + 1, epoch_train_acc * 100, epoch_train_loss, epoch_test_acc * 100, epoch_test_loss))
print("Done")
T2 = time.time()
print('程序运行时间:%s毫秒' % ((T2 - T1)*1000))

在训练集上已经达到百分百准确率了,在测试集上的表现也很好。
在这里插入图片描述

数据可视化

import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

模型预测

from PIL import Image classes = list(train_dataset.class_to_idx)def predict_one_image(image_path, model, transform, classes):test_img = Image.open(image_path).convert('RGB')plt.imshow(test_img)  # 展示预测的图片test_img = transform(test_img)img = test_img.to(device).unsqueeze(0) # 增加维度model.eval()output = model(img)_,pred = torch.max(output,1)pred_class = classes[pred]print(f'预测结果是:{pred_class}')

使用2.jpg开始预测

predict_one_image(image_path='./data/snk/test/adidas/2.jpg', model=model, transform=train_transforms, classes=classes)

预测结果是:adidas

在这里插入图片描述

总结

学习率衰减是一个很有用的东西,但有的时候,使用学习率衰减好像还不如不使用学习率衰减,感觉容易提前收敛。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/158368.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

加持智慧医疗,美格智能5G数传+智能模组让就医触手可及

智慧医疗将云计算、物联网、大数据、AI等新兴技术融合赋能医疗健康领域,是提高医疗健康服务的资源利用效率,创造高质量健康医疗的新途径。《健康中国2030规划纲要》把医疗健康提升到了国家战略层面,之后《“十四五”全面医疗保障规划》等一系…

如何导出带有材质的GLB模型?

1、为什么要使用 GLB 模型? GLB格式(GLTF Binary)是一种用于存储和传输3D模型及相关数据的文件格式,具有以下优点和作用: 统一性:GLB是一种开放标准的3D文件格式,由Khronos Group制定和维护。它融合了GL…

【C++入门】命名空间详解(从零开始,冲击蓝桥杯)

C入门 命名空间 南喵小鸡汤程序员可以让步,却不可以退缩,可以羞涩,却不可以软弱,总之,程序员必须是勇敢的。一 . 命名空间的介绍二.命名空间的实际应用1.为什么要有命名空间我们在使用变量时,通常会为他定义一个名字,在…

基于R和gephi做宏基因组与代谢组等多组学联合network相关性网络图

写在前面 拿到多组学的数据后一直在找合适的方法将二者进行关联,比如我这里是三种体液的代谢组与一种体液的宏基因组。需求是对多组学进行关联分析,直到最近看到不少文章里利用Gephi将相关性表格进行可视化的图,效果还不错,于是写…

vscode用密钥文件连接ssh:如果一直要输密码怎么办

commandshiftP:打开ssh配置文件 加上这么一段,host就是你给主机起的名字 对IdentityFile进行更改,改成相应的密钥文件 然后commandshiftP链接到主机就可以了 但是有时候它会让输入密码 这是由于你给这个IdentityFile的权限太多了&#xf…

【深度学习】DDPM,Diffusion,概率扩散去噪生成模型,原理解读

看过来看过去,唯有此up主,非常牛: Video Explaination(Chinese) 1. DDPM Introduction q q q - 一个固定(或预定义)的正向扩散过程,逐渐向图像添加高斯噪声,直到最终得到纯噪声。 p θ p_θ p…

Redis的Java客户端-Jedis

目录 一、Jedis基本用法二、Jedis连接池 一、Jedis基本用法 二、Jedis连接池

晨控CK-GW06系列网关与汇川可编程控制器MOSBUSTCP通讯手册

晨控CK-GW06系列网关与汇川可编程控制器MOSBUSTCP通讯手册 晨控CK-GW06系列是支持标准工业通讯协议 MODBUSTCP 的网关控制器,方便用户集成到PLC等控制系统中。本控制器提供了网络 POE 供电和直流电源供电两种方式,确保用户在使用无 POE 供电功能的交换机时可采用外…

Kopler.gl笔记:可视化功能总览

1 添加数据 2 添加图层 打开“数据层”菜单,开始可视化。 层(Layers)简单来说就是可以相互叠加的数据可视化。 3 添加过滤器 在地图上添加过滤器以限制显示的数据。过滤器必须基于数据集中的列。要创建新的过滤器,打开“过滤器…

手机拍摄的视频噪点很多怎么办,视频怎么做降噪处理?

现如今,智能手机已经成为了我们生活中必不可少的存在。而随着智能手机越来越强大,很多人已经开始使用手机来拍摄各种类型的视频。但是由于手机的限制,很多人会发现自己拍摄的视频存在着很多的噪点。那么,我们该怎样来解决拍摄视频…

BuyVM 挂载存储块

发布于 2023-07-13 on https://chenhaotian.top/linux/buyvm-mount-block-storage/ BuyVM 挂载存储块 参考: https://zhujitips.com/2653https://www.pigji.com/898.html 1 控制台操作 存储块购买完毕后,进入后台管理界面,进入对应 VPS …

发货100虚拟商品自动发货系统存在SQL注入

漏洞描述 该系统存在SQL注入漏洞,可获取敏感信息及账号密码。 漏洞复现 构造SQL注入延时payload: M_id11%20AND%20(SELECT%208965%20FROM%20(SELECT(SLEEP(5)))sdhh)&typeproduct漏洞证明: 文笔生疏,措辞浅薄,…

pycharm连接gitlab

1、下载安装gitlab 下载地址:Git - Downloading Package 下载后傻瓜式安装,注意勾选配置环境变量 未配置自己配置,电脑-属性-高级系统配置-环境变量 系统变量path:添加git安装目录下bin目录 2、检验安装完成 桌面右键git-open…

G1 GC详解及设置

一、概述 G1 GC,全称Garbage-First Garbage Collector,在JDK1.7中引入了G1 GC,从JAVA 9开始,G1 GC是默认的GC算法。通过-XX:UseG1GC参数来启用。G1收集器是工作在堆内不同分区上的收集器,分区既可以是年轻代也可以是老…

蓝桥杯(七段码,C++)

思路&#xff1a; 1、把灯管的连接转为图结构&#xff0c;相邻的灯管即认为有边。 2、用深度搜索&#xff0c;去计算有多少种不同字符。 3、因为有每种字符都会重复算两遍&#xff0c;最后的结果需要数以2。 #include <iostream> using namespace std;int graph[7][7…

R语言手动绘制NHANSE数据基线表并聊聊NHANSE数据制作亚组交互效应表的问题(P for interaction)

美国国家健康与营养调查&#xff08; NHANES, National Health and Nutrition Examination Survey&#xff09;是一项基于人群的横断面调查&#xff0c;旨在收集有关美国家庭人口健康和营养的信息。 地址为&#xff1a;https://wwwn.cdc.gov/nchs/nhanes/Default.aspx 在既往的…

课题学习(八)----卡尔曼滤波动态求解倾角、方位角

一、 卡尔曼滤波 卡尔曼滤波的应用要求系统和底层过程的测量模型都是线性的。离散时间线性状态空间系统的描述为: x k Φ k , k − 1 x k − 1 G k − 1 w k − 1 x_k\Phi_{k,k-1}x_{k-1}G_{k-1}w_{k-1} xk​Φk,k−1​xk−1​Gk−1​wk−1​    式中 Φ k , k − 1 \Phi_{…

计算机毕业设计选什么题目好?springboot 旅游网站

✍✍计算机编程指导师 ⭐⭐个人介绍&#xff1a;自己非常喜欢研究技术问题&#xff01;专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目&#xff1a;有源码或者技术上的问题欢迎在评论区一起讨论交流&#xff01; ⚡⚡ Java实战 |…

Qt之submodule编译

工作中会遇到这样一种情况&#xff1a;qt应用程序在运行时提示找不到某个qt的动态库。我遇到的是缺少libQt5Websocket.so&#xff0c;因为应用程序是在x86平台银河麒麟v10上开发&#xff0c;能够正常编译运行&#xff0c;然后移植到rk3588&#xff08;aarch64架构&#xff09;上…

C++入门篇11 模板进阶

一、非类型模板参数 模板参数分为类型形参和非类型形参 类型形参&#xff1a;出现在模板参数列表里&#xff0c;跟在class/typename之后的参数类型名称非类型参数&#xff1a;就是用一个常量作为类(函数)模板的一个参数&#xff0c;在类(函数)模板中可将参数当作常量来使用 …