EfficientDet: Scalable and Efficient Object Detection

CVPR2020     V7  Mon, 27 Jul 2020          引用量:243        机构:Google


贡献:1>提出了多尺度融合网络BiFPN     2>对backbone、feature network、box/class prediction network and resolution进行复合放缩,有着不同的性能表现,以适应不同资源和应用。

views:1> 首先讨论BiFPN,作者只描写了直觉上这样子,整体的结构就是在PANet上进行了修改,或者说图2的c、d其实可以看作是图2(b)的模型剪枝。此外,图2(d)又加入了快捷连接(感觉可类似ResNet),采用了Attention对每个级别的feature map进行加权融合。(这个好像没那么亮眼)   2> 对backbone、feature network、box/class prediction network and resolution进行复合放缩,在介绍这里时,作者反复引用了[39],通过启发式算法(这个没介绍)将复合放缩融合到一起,提出了一系列模型,在2020初,霸榜各大榜单。

Ideas:能否借鉴多尺度融合方式进行模态数据的融合。

摘要:
      研究了用于目标检测的神经网络体系结构设计选择,首先,提出了一种加权双向特征金字塔网络(bi-directional feature pyramid network)(BiFPN),该网络可快速进行多尺度特征融合,其次,提出了
一种复合缩放方法(compound scaling method),可同时对all backbone、feature network and box/class prediction均匀地缩放分辨率、深度、宽度。基于此和更好的backbone,我们提出了efficientdet。EfficientDet-D7在coco上实现55.1AP,77M,410B FLOPs,尺寸缩小了4-9倍,FLOPs减少了13-42倍。

1.Introduction
      模型效率对于目标检测越来越重要,很多工作通过采用one-stage、anchor-free、compress model来实现,但会牺牲准确性。
     提出问题(问题导向型文章):是否有可能在广泛的资源约束中构建更高准确性和更高效率的可扩展检测体系结构?   基于一阶段检测器,检测backbone,feature fusion,class/box network,提出两点挑战:
     挑战1:有效的多尺度特征融合---FPN被广泛用于multi-scale feature fusion(neck部分),PANet和NAS-FPN为cross-scale feature fusion开发了更多的网络结构。不同的输入特征具有不同的分辨率,观测到它们通常不均等影响融合输出特征,故提出了BiFPN。BiFPN引入了可学习权重了解不同输入特征的重要性(起到了一种Attention机制作用),同时反复应用自上而下和自下而上的多尺度融合(作为一个基本层,反复应用,更好的融合多尺度)。
     挑战2:模型缩放---先前的工作主要依赖于较大的backbone或较大的input image size,以实现更高的准确性。我们观察到按比例缩放feature network和box/class prediction netwrok对于同时考虑精度和效率至关重要。
EfficientNet+BiFPN+compound scaling = EfficientDet。在COCO和VOC上达到SOTA性能。
 

2.Related Work
     One-Stage Detector: 根据它们是否具有interest proposal step
    l Multi-Scale Feature Representations: 目标检测的主要困难是有效地表现和处理多尺度特征。FPN提出一种自上而下的途径来组合多尺度特征。PANet提出一种额外的自下而上的路径聚合网络,STDL提出一个尺度转换模块来利用跨尺度特征。M2det提出了一个U形模块来融合多尺度特征,G-FRNet提出用于跨特征控制信息流门单元。尽管NAS-FPN有很好的性能,但耗费大量时间,生成的要素网络是不规则的,难以解释。本文旨在更直观,更原则的方式优化多尺度特征融合。
 Model Scaling:更大的backbone,或增加输入图像尺寸,最近,[39]通过共同扩大网络的宽度,深度和分辨率,证明了图像分类的卓越模型效率。

     其中,resize通常表示upsampling or downsampling用于分辨率匹配,Conv表示卷积操作。
3.2 Cross-Scale Connections
     自上而下的FPN受到单向信息流的限制。PANet添加了一个额外的自下而上的路径聚合网络,NAS-FPN使用neural architecture search搜索特定的网络拓扑结构,网络不规则,难以解释或修改(NAS感觉有点像大network进行神经元pruning ,没了解过)。
     提出BiFPN,根据直觉:1>如果一个节点只有一个输入边且没有特征融合,那么它对融合不同特征的网络有很少的贡献,简化双向网络(这感觉有点牵强) 2>原始输入和输出节点处于同一级别,添加一条额外的边(类shortcut)   3>将每个双向路径视为一个feature network layer,重复多次以获得high-level feature fusion。
3.3 Weighted Feature Fusion
     常见融合方法:调整为相同的分辨率,对其求和。
     提出添加额外的权重对于每个输入,考虑三种加权融合方法:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/159344.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Vmware Linux虚拟机安装教程(Centos版)

文章目录 1.Vmware-workstation安装软件2.双击下载的安装包开始安装3.打开VMware-workstation,输入密钥4.Centos7.6安装软件5.新建虚拟机6.为虚拟机配置映像文件7.开启虚拟机,配置环境7.1 Install Centos 77.2 选择简体中文字体7.3 软件选择7.4 安装位置…

Python 字典

目录 1 字典介绍2 字典的创建3 字典元素的访问4 字典元素添加、修改、删除5 序列解包6 表格数据使用字典和列表存储,并实现访问7 字典核心底层原理(重要)7.1 将一个键值对放进字典的底层过程7.2 扩容7.3 根据键查找“键值对”的底层过程7.4 用法总结: 声…

Linux 系统安装 Redis7 —— 超详细操作演示!

内存数据库 Redis7 一、Redis 概述1.1 Redis 简介1.2 Redis 的用途1.3 Redis 特性1.4 Redis 的IO模型 二、Redis 的安装与配置2.1 Redis 的安装2.2 连接前的配置2.3 Redis 客户端分类2.4 Redis 配置文件详解 三、Redis 命令四、Redis 持久化五、Redis 主从集群六、Redis 分布式…

【C++基础】10. 指针

文章目录 【 1. 指针的定义 】【 2. 指针的调用 】【 3. NULL 空指针 】【 4. 指针的算术运算 】4.1 指针的递加4.2 指针的递减4.3 指针的比较 【 5. 指针与数组 】5.1 通过指针操作数组5.2 指针数组、数组指针 【 6. 指向指针的指针(多级间接寻址)】【 7. 传递指针给函数 】【…

B树、B+树详解

B树 前言   首先,为什么要总结B树、B树的知识呢?最近在学习数据库索引调优相关知识,数据库系统普遍采用B-/Tree作为索引结构(例如mysql的InnoDB引擎使用的B树),理解不透彻B树,则无法理解数据…

Ubuntu 23.10 Beta 镜像开放下载

导读Canonical放出了 Ubuntu 23.10 Beta 镜像,此外 Edubuntu、Kubuntu、Lubuntu、Ubuntu Budgie、Ubuntu Cinnamon、Ubuntu Kylin、Ubuntu MATE、Ubuntu Studio、Ubuntu Unity 和 Xubuntu 等风味版本也同步放出镜像。 近日消息,Canonical 放出了 Ubuntu …

LoRA 是如何工作的?

概述 纯笔记 LoRA的原理 LoRA其实是对稳定扩散模型最关键的部分进行了微小的改变。 这个关键的部分叫:cross-attention layers – 交叉注意力层。 研究人员发现,对这关键部分进行微调就足以实现良好的训练。 上面黄色部分,QKV 部分就是&a…

K8S:Rancher管理 Kubernetes 集群

文章目录 一.Rancher 简介1.Rancher概念2.Rancher 和 k8s 的区别 二.Rancher 安装及配置1.安装 rancher2.登录 Rancher 平台3.Rancher 管理已存在的 k8s 集群4.Rancher 部署监控系统5.使用 Rancher 仪表盘管理 k8s 集群 三.拓展1.Rancher和kubesphere相比较2.K3S和K8S相比较 一…

Opencv——颜色模型+通道分离与合并

视频加载/摄像头调用 VideoCapture允许一开始定义一个空的对象 VideoCapture video VideoCapture(const String &filename,int apiPreferenceCAP_ANY) filename:读取的视频文件或者图像序列名称 apiPreference:读取数据时设置的属性,例如编码格式、是否调用Op…

转化限制+分析变量变化引起的答案变化:Gym - 104065D

https://vjudge.net/contest/587311#problem/H 先转化一波条件: p i ≥ 1 X p_i\ge \frac 1 X pi​≥X1​ p i ≤ 1 1 − Y p_i\le \frac 1 {1-Y} pi​≤1−Y1​ 所以我们按 p p p 排序, s u m x sum_x sumx​ 必然是后缀, s u m y sum_y …

线性回归原理

1、 线性回归的原理 1.1 线性回归应用场景 房价预测 销售额度预测 金融:贷款额度预测、利用线性回归以及系数分析因子1.2 什么是线性回归 1.2.1定义与公式 线性回归(Linear regression)是利用回归方程(函数)对一个或多个自变量(特征值)和因变量(目标值)之间关系进行建模的…

VMware和Debian下载

文章目录 ⭐️写在前面的话⭐️一、VMware二、Debain三、建立虚拟机🚀 先看后赞,养成习惯!🚀🚀 先看后赞,养成习惯!🚀 ⭐️写在前面的话⭐️ CSDN主页:程序员好冰 目前在…

模型UV纹理设置工具

1、什么是模型UV纹理? 模型的UV纹理是将二维纹理图映射到三维模型表面的过程。UV纹理可以为模型赋予颜色、纹理、细节和其他效果,使其看起来更加逼真。 2、UV纹理的原理 下面是模型UV纹理的详细原理介绍: UV坐标系统:UV坐标系统…

乐器经营商城小程序的作用是什么

乐器产品覆盖的人群非常广,小学生、老年人都有不小需求,也因此市场中的从业商家相对较多,产品丰富可供消费者选购,然而在实际经营中,线上线下面临痛点不少。 通过【雨科】平台搭建乐器小程序商城,将所有产品…

DarkGate恶意软件通过消息服务传播

导语 近日,一种名为DarkGate的恶意软件通过消息服务平台如Skype和Microsoft Teams进行传播。它冒充PDF文件,利用用户的好奇心诱使其打开,进而下载并执行恶意代码。这种攻击手段使用了Visual Basic for Applications(VBA&#xff0…

JavaSE学习值之--认识异常

💕"有效知识的前提是承认知识边界,承认我们对边界那边的一切无可奉告。"💕 作者:Mylvzi 文章主要内容:JavaSE学习值之--认识异常 一.什么是异常? 异常就是程序在运行的时候产生的不正常的行为 …

多机器人三角形编队的实现

文章目录 前言一、机器人编队前的准备二、配置仿真环境2.编写机器人编队.cpp文件 三、三角形编队测试 前言 前阵子一直想要实现多机器人编队,找到了很多开源的编队代码,经过好几天的思索,终于实现了在gazebo环境中的TB3三角形机器人编队。 一…

SQL Server远程登录失败

SQL Server远程登录失败 检查SQL SERVER 是否允许远程访问. 具体步骤: 1)在远端SQL Server主机上,打开SSMS并连接数据库 2)在相应”数据库”上单击右键,选择”属性” 3)选择”连接”选项卡,检查”远程服务器连接”下,RPC服务是否选择. 设置SQL Server相关TCP连接 1.打开SQL Se…

Netty 入门 — 亘古不变的Hello World

这篇文章我们正式开始学习 Netty,在入门之前我们还是需要了解什么是 Netty。 什么是 Netty 为什么很多人都推崇 Java boy 去研究 Netty?Netty 这么高大上,它到底是何方神圣? 用官方的话说:Netty 是一款异步的、基于事…

KMP 算法 + 详细笔记

给两个字符串,T"AAAAAAAAB",P"AAAAB"; 可以暴力匹配,但是太费时和效率不太好。于是KMP问世,我们一起来探究一下吧!!! (一)最长公共前后缀 D[i] p[…