15、深度学习-自学之路-反向传播程序展示、激活函数的应用,反向权重的更新、2层神经网络的应用,输入输出相关性的理解。

这个里面要学习和展示的内容会比较多,需要好好的认真思考

第一个要思考的就是:输入和输出相关性的理解,我们先拿一层的神经网络来说明一下,

输入有2个因素,对应有两个权重,输出有一个结果。

输入的两个因素,对应和两个权重乘积相加后,就是我们的预测值,这个过程大家应该是没有什么问题吧,那么我们发现一个问题,如果此时预测值和真实值的误差是一个负值,那么也就是说现在的输入的两个因素中的,权重较大的那个带来的误差比较大。

反过来说,如果输入的2个因素和权重乘积后相加的预测值和真实值之间的误差是一个真值,且误差很小,那么说明此时的在输入中的权重大的那个值和输出的相关性就高。

这个里面就引入了相关性的问题,因为我们在找误差最小值,更新权重的时候,其实就是在找每个输入的因素和输出因素的之间的相关性,也就是找到决定性的因素。就如同红绿灯一样,如果绿灯时亮(输入绿灯为1),那么现在就是可以行走(输出结果是1)。也就是是否可以行走和绿灯的亮灭是由关键作用的。相关性特别高。

第二个要思考的就是:如果一个人在处理输入数据的时候,他不知道输入和输出的相关性由多大。他给的数据很多,有的输入和输出有相关性,有的输入和输出没有相关性。没有相关性的输入就会把权重分走一部分,那么就导致强相关的不能强影响。导致我们识别的概率变小。或者我们也识别不出来。就如同红绿灯的问题,本来你只需看红绿灯就行,但是你不仅仅观察了红绿灯的亮灭,你又去观察了行人男人的数量,或者是汽车的数量,或者是马路的宽度,或者是别的很多的输入值。那么这样你就输入值由2个变成了很多。如果数量足够多的时候,你会发现,绿灯和是否行走的权重被拉低了很多,当绿灯的权重被拉低到0.5以下的时候,即使现在是绿灯,我们也不敢随便行走了。不知道大家是否明白,可以自己再想想。

第三个要思考的就是:基于上面的两个思考,于是我们想到了一个办法,一个可以增强和消弱权重的方法,就是引入2层神经网络,同时引入激活函数和反向传播。

为什么引入2层神经网络呢,是因为如果一层神经网络,输入和输出的值之间永远都是线性的,就是没有办法排查其他干扰项。

如果引入了2层神经网络,当输入和权重计算完成给第一层的输出时,如果此时第一层的输出值大于0的,那么说明你这个值会对第二层的预测值产生影响,那么我们就保留这个值,如果此时第一层的输出值小于0的,我们就认为对输出没有影响,或者由反的影响,那我们就把第一层输出的小于0的值让它归0,这样减少反向的影响。

同时在第二层输出到第一层输出的权重更新时,如果第一层的输出值是大于0的,那我们就把第一层的输出值变成1,反向增强这个层的值,在经过第一层输出层到输入层时,就是把输入层到第一层输出层的权重进行加强。

这样经过多轮训练以后,输入层和第一层输出层的权重大的,就是相关性强的,权重小的就是相关性弱的,这样就权重弱的可以分的相关性会少很多。保证了输入和输出的强相关性。

在这里的使用的就是relu激活函数。

具体的程序如下;

import numpy as npnp.random.seed(1)
def relu(x):return (x>0)*xdef relu2deriv(output):return output>0streetlights = np.array([[1,0,1],#红灯亮,绿灯灭,黄灯亮[0,1,1],#红灯灭,绿灯亮,黄灯亮[0,0,1],#红灯灭,绿灯灭,黄灯亮[1,1,1]#红灯亮,绿灯亮,黄灯亮
])#沃恩会发现单单用肉眼观察我们是不知道输入和输出的相关性的,但是经过处理之后,我们依然可以得到强相关的输入因素绿灯。从最后的测试中我们也知道了我们计算权重是对的。walk_vs_stop = np.array([0,1,0,1]).T
#print("walk_vs_stop"+str(walk_vs_stop))
alpha = 0.2hidden_size = 4
weights_0_1 = 2*np.random.random((3,hidden_size)) - 1
#print("weight_0_1"+str(weights_0_1))
weights_1_2 = 2*np.random.random((hidden_size,1)) - 1
#print("weight_1_2"+str(weights_1_2))for interation in range(60):layer_2_error = 0for i in range(len(streetlights)):layer_0 = streetlights[i:i+1]#print("streetlights[i:i+1]"+str(streetlights[i:i+1]))layer_1 = relu(np.dot(layer_0,weights_0_1))#print("layer_1"+str(layer_1))layer_2 = np.dot(layer_1,weights_1_2)#print("layer_2"+str(layer_2))layer_2_error +=np.sum((layer_2 - walk_vs_stop[i:i+1])**2)#print("layer_2_error"+str(layer_2_error))#print("walk_vs_stop[i:i+1]"+str(walk_vs_stop[i:i+1]))layer_2_delta = (layer_2 - walk_vs_stop[i:i+1])#print("layer_2_delta"+str(layer_2_delta))layer_1_delta = layer_2_delta.dot(weights_1_2.T)*relu2deriv(layer_1)#print("relu2deriv(layer_1)"+str(relu2deriv(layer_1)))#print("layer_1_delta"+str(layer_1_delta))weights_1_2 -= alpha*layer_1.T.dot(layer_2_delta)#print("weights_1_2"+str(weights_1_2))weights_0_1 -= alpha*layer_0.T.dot(layer_1_delta)#print("weights_0_1"+str(weights_0_1))if(interation%10==9):print("error"+str(layer_2_error))print("weights_0_1"+str(weights_0_1))print("weights_1_2"+str(weights_1_2))print()print()print()#代入数据测试使用,如程序
#激活函数不能变,延续使用激活函数可以得到最精确的数据,在数据量不够的情况下       
layer_text = [0,1,0]
layer_0 = layer_text
layer_1 = relu(np.dot(layer_0,weights_0_1))
print("text_layer_1"+str(layer_1))
layer_2 = np.dot(layer_1,weights_1_2)
print("text"+str(layer_2))

运行结果为:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/16068.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Mybatis源码02 - 初始化基本过程(引导层部分)

初始化基本过程(引导层部分) 文章目录 初始化基本过程(引导层部分)一:初始化的方式及引入二:初始化方式-XML配置文件1:MyBatis初始化基本过程2:创建Configuration对象的过程2.1&…

Baumer工业相机堡盟工业相机如何实现一次图像采集同时检测产品的5个面甚至多个面(C#)(NEOAPI SDK)

Baumer工业相机堡盟工业相机如何实现一次图像采集同时检测产品的5个面甚至多个面(C#)(NEOAPI SDK) Baumer工业相机光学棱镜反射图像的技术背景工业相机ROI功能的技术背景图像处理多线程功能的技术背景Baumer工业相机通过棱镜同时检…

ASP.NET Core 如何使用 C# 从端点发出 GET 请求

使用 C#,从 REST API 端点获取 JSON;如何从 REST API 接收 JSON 数据。 本文需要 ASP .NET Core,并兼容 .NET Core 3.1、.NET 6和.NET 8。 要将数据发布到端点,请参阅本文。 使用 . 从端点发布 GET 数据非常容易HttpClient&…

基于微信小程序的博物馆预约系统的设计与实现

hello hello~ ,这里是 code袁~💖💖 ,欢迎大家点赞🥳🥳关注💥💥收藏🌹🌹🌹 🦁作者简介:一名喜欢分享和记录学习的在校大学生…

Mybatis快速入门与核心知识总结

Mybatis 1. 实体类(Entity Class)1.1 实体类的定义1.2 简化编写1.2.1 Data1.2.2 AllArgsConstructor1.2.3 NoArgsConstructor 2. 创建 Mapper 接口2.1 Param2.2 #{} 占位符2.3 SQL 预编译 3. 配置 MyBatis XML 映射文件(可选)3.1 …

ios通过xib创建控件

之前写过ios动态创建控件及添加事件,纯手工代码写控件,虽然比较灵活,但是就是代码量比较多。这次我们通过xib来创建app下载列表项 AppView.xib。一个imageview,一个label,一个button构成 1.创建AppView.xib 2.再创建xib对应的mode&#xff0…

MybatisPlus常用增删改查

记录下MybatisPlus的简单的增删改查 接口概述 Service和Mapper区别 Mapper简化了单表的sql操作步骤(CRUD),而Serivce则是对Mapper的功能增强。 Service虽然加入了数据库的操作,但还是以业务功能为主,而更加复杂的SQL…

deepseek+kimi一键生成PPT

1、deepseek生成大纲内容 访问deepseek官方网站:https://www.deepseek.com/ 将你想要编写的PPT内容输入到对话框,点击【蓝色】发送按钮,让deepseek生成内容大纲,并以markdown形式输出。 等待deepseek生成内容完毕后&#xff0c…

1312:【例3.4】昆虫繁殖

1312:【例3.4】昆虫繁殖 时间限制: 1000 ms 内存限制: 65536 KB 提交数:60386 通过数: 29787 【题目描述】 科学家在热带森林中发现了一种特殊的昆虫,这种昆虫的繁殖能力很强。每对成虫过xx个月产yy对卵,每对卵要过两个月长成成虫…

【牛客】动态规划专题一:斐波那契数列

文章目录 DP1 斐波那契数列法1&#xff1a;递归法2&#xff1a;动态规划法3&#xff1a;优化空间复杂度 2.分割连接字符串3. 给定一个字符串s和一组单词dict&#xff0c;在s中添加空格将s变成一个句子 DP1 斐波那契数列 法1&#xff1a;递归 // 递归 #include <iostream>…

RDK新一代模型转换可视化工具!!!

作者&#xff1a;SkyXZ CSDN&#xff1a;SkyXZ&#xff5e;-CSDN博客 博客园&#xff1a;SkyXZ - 博客园 之前在使用的RDK X3的时候&#xff0c;吴诺老师wunuo发布了新一代量化转换工具链使用教程&#xff0c;这个工具真的非常的方便&#xff0c;能非常快速的完成X3上模型的量化…

2025.2.8——一、[护网杯 2018]easy_tornado tornado模板注入

题目来源&#xff1a;BUUCTF [护网杯 2018]easy_tornado 目录 一、打开靶机&#xff0c;整理信息 二、解题思路 step 1&#xff1a;分析已知信息 step 2&#xff1a;目标——找到cookie_secret step 3&#xff1a;构造payload 三、小结 一、打开靶机&#xff0c;整理信…

2. UVM的基本概念和架构

文章目录 前言1. UVM的基本概念1.1 UVM的核心组件1.2 UVM的基本架构1.3 UVM的工作流程 2. UVM的架构2.1 UVM的层次结构2.2 UVM的组件交互 3. 总结 前言 首先&#xff0c;得确定UVM的基本概念和架构包含哪些关键部分。我回忆起UVM的核心组件&#xff0c;比如uvm_component、uvm…

VMware Workstation创建虚拟机

目录 创建新的虚拟机 虚拟机快照功能 虚拟机添加空间 其他注意事项 创建新的虚拟机 打开VMware Workstation&#xff1a;启动软件后&#xff0c;点击“创建新的虚拟机”。 选择安装方式&#xff1a; 典型安装&#xff1a;适合大多数用户&#xff0c;会自动完成大部分配置…

食物过敏——来龙去脉

​ 春节假期期间&#xff0c;亲朋好友欢聚一堂&#xff0c;美食佳肴各种狂炫&#xff0c;然而当传统节日遭遇现代饮食文化&#xff0c;频繁的高脂高蛋白摄入、不规律的进食节奏&#xff0c;正不断冲击着肠道屏障的免疫调控网络&#xff0c;部分人群可能正被食物过敏困扰。 ​ 食…

解决VsCode的 Vetur 插件has no default export Vetur问题

文章目录 前言1.问题2. 原因3. 解决其他 前言 提示&#xff1a; 1.问题 Cannot find module ‘ant-design-vue’. Did you mean to set the ‘moduleResolution’ option to ‘node’, or to add aliases to the ‘paths’ option? Module ‘“/xxx/xxx/xxx/xxx/xxx/src/vie…

不小心删除服务[null]后,git bash出现错误

不小心删除服务[null]后&#xff0c;git bash出现错误&#xff0c;如何解决&#xff1f; 错误描述&#xff1a;打开 git bash、msys2都会出现错误「bash: /dev/null: No such device or address」 问题定位&#xff1a; 1.使用搜索引擎搜索「bash: /dev/null: No such device o…

第三届通信网络与机器学习国际学术会议(CNML 2025)

在线投稿&#xff1a; 学术会议-学术交流征稿-学术会议在线-艾思科蓝 通信网络机器学习 通信理论 通信工程 计算机网络和数据通信 信息分析和基础设施 通信建模理论与实践 无线传感器和通信网络 云计算与物联网 网络和数据安全 光电子学和光通信 无线/移动通信和技术 智能通信…

深入Linux系列之进程地址空间

深入Linux系列之进程地址空间 1.引入 那么在之前的学习中&#xff0c;我们知道我们创建一个子进程的话&#xff0c;我们可以在代码层面调用fork函数来创建我们的子进程&#xff0c;那么fork函数的返回值根据我们当前所处进程的上下文是返回不同的值&#xff0c;它在父进程中返…

JAVA-枚举的使用

目录 一、枚举的意义 二、enum类的使用 1.switch 2.常用方法 2.1 values() 和 ordinal() 2.1.1 Enum基本介绍 2.2 valueOf() 2.3 compareTo() 三、枚举的优点和缺点 四、枚举安全在什么地方 一、枚举的意义 public static final int RED 1; public static final int…