竞赛 深度学习+python+opencv实现动物识别 - 图像识别

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 卷积神经网络
    • 3.1卷积层
    • 3.2 池化层
    • 3.3 激活函数:
    • 3.4 全连接层
    • 3.5 使用tensorflow中keras模块实现卷积神经网络
  • 4 inception_v3网络
  • 5 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习的动物识别算法 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

在这里插入图片描述

1 课题背景

利用深度学习对野生动物进行自动识别分类,可以大大提高野生动物监测效率,为野生动物保护策略的制定提供可靠的数据支持。但是目前野生动物的自动识别仍面临着监测图像背景信息复杂、质量低造成的识别准确率低的问题,影响了深度学习技术在野生动物保护领域的应用落地。为了实现高准确率的野生动物自动识别,本项目基于卷积神经网络实现图像动物识别。

2 实现效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3 卷积神经网络

受到人类大脑神经突触结构相互连接的模式启发,神经网络作为人工智能领域的重要组成部分,通过分布式的方法处理信息,可以解决复杂的非线性问题,从构造方面来看,主要包括输入层、隐藏层、输出层三大组成结构。每一个节点被称为一个神经元,存在着对应的权重参数,部分神经元存在偏置,当输入数据x进入后,对于经过的神经元都会进行类似于:y=w*x+b的线性函数的计算,其中w为该位置神经元的权值,b则为偏置函数。通过每一层神经元的逻辑运算,将结果输入至最后一层的激活函数,最后得到输出output。
在这里插入图片描述

3.1卷积层

卷积核相当于一个滑动窗口,示意图中3x3大小的卷积核依次划过6x6大小的输入数据中的对应区域,并与卷积核滑过区域做矩阵点乘,将所得结果依次填入对应位置即可得到右侧4x4尺寸的卷积特征图,例如划到右上角3x3所圈区域时,将进行0x0+1x1+2x1+1x1+0x0+1x1+1x0+2x0x1x1=6的计算操作,并将得到的数值填充到卷积特征的右上角。
在这里插入图片描述

3.2 池化层

池化操作又称为降采样,提取网络主要特征可以在达到空间不变性的效果同时,有效地减少网络参数,因而简化网络计算复杂度,防止过拟合现象的出现。在实际操作中经常使用最大池化或平均池化两种方式,如下图所示。虽然池化操作可以有效的降低参数数量,但过度池化也会导致一些图片细节的丢失,因此在搭建网络时要根据实际情况来调整池化操作。
在这里插入图片描述

3.3 激活函数:

激活函数大致分为两种,在卷积神经网络的发展前期,使用较为传统的饱和激活函数,主要包括sigmoid函数、tanh函数等;随着神经网络的发展,研宄者们发现了饱和激活函数的弱点,并针对其存在的潜在问题,研宄了非饱和激活函数,其主要含有ReLU函数及其函数变体

3.4 全连接层

在整个网络结构中起到“分类器”的作用,经过前面卷积层、池化层、激活函数层之后,网络己经对输入图片的原始数据进行特征提取,并将其映射到隐藏特征空间,全连接层将负责将学习到的特征从隐藏特征空间映射到样本标记空间,一般包括提取到的特征在图片上的位置信息以及特征所属类别概率等。将隐藏特征空间的信息具象化,也是图像处理当中的重要一环。

3.5 使用tensorflow中keras模块实现卷积神经网络

class CNN(tf.keras.Model):def __init__(self):super().__init__()self.conv1 = tf.keras.layers.Conv2D(filters=32,             # 卷积层神经元(卷积核)数目kernel_size=[5, 5],     # 感受野大小padding='same',         # padding策略(vaild 或 same)activation=tf.nn.relu   # 激活函数)self.pool1 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)self.conv2 = tf.keras.layers.Conv2D(filters=64,kernel_size=[5, 5],padding='same',activation=tf.nn.relu)self.pool2 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)self.flatten = tf.keras.layers.Reshape(target_shape=(7 * 7 * 64,))self.dense1 = tf.keras.layers.Dense(units=1024, activation=tf.nn.relu)self.dense2 = tf.keras.layers.Dense(units=10)def call(self, inputs):x = self.conv1(inputs)                  # [batch_size, 28, 28, 32]x = self.pool1(x)                       # [batch_size, 14, 14, 32]x = self.conv2(x)                       # [batch_size, 14, 14, 64]x = self.pool2(x)                       # [batch_size, 7, 7, 64]x = self.flatten(x)                     # [batch_size, 7 * 7 * 64]x = self.dense1(x)                      # [batch_size, 1024]x = self.dense2(x)                      # [batch_size, 10]output = tf.nn.softmax(x)return output

4 inception_v3网络

简介
如果 ResNet 是为了更深,那么 Inception 家族就是为了更宽。Inception
的作者对训练更大型网络的计算效率尤其感兴趣。换句话说:怎样在不增加计算成本的前提下扩展神经网络?

网路结构图
在这里插入图片描述
主要改动
在这里插入图片描述

  • 将7×7卷积分解为3个3×3的卷积。
  • 35×35的Inception模块采用图1所示结构,之后采用图5类似结构进行下采样
  • 17×17的Inception模块采用图2所示结构,也是采用图5类似结构下采样
  • 8×8的Inception模块采用图3所示结构,进行较大维度的提升。

Tensorflow实现代码

import osimport kerasimport numpy as npimport tensorflow as tffrom tensorflow.keras import layersfrom tensorflow.keras.models import Modelconfig = tf.compat.v1.ConfigProto()config.gpu_options.allow_growth = True      # TensorFlow按需分配显存config.gpu_options.per_process_gpu_memory_fraction = 0.5  # 指定显存分配比例inceptionV3_One={'1a':[64,48,64,96,96,32],'2a':[64,48,64,96,96,64],'3a':[64,48,64,96,96,64]}inceptionV3_Two={'1b':[192,128,128,192,128,128,128,128,192,192],'2b':[192,160,160,192,160,160,160,160,192,192],'3b':[192,160,160,192,160,160,160,160,192,192],'4b':[192,192,192,192,192,192,192,192,192,192]}keys_two=(list)(inceptionV3_Two.keys())inceptionV3_Three={'1c':[320,384,384,384,448,384,384,384,192],'2c':[320,384,384,384,448,384,384,384,192]}keys_three=(list)(inceptionV3_Three.keys())def InceptionV3(inceptionV3_One,inceptionV3_Two,inceptionV3_Three):keys_one=(list)(inceptionV3_One.keys())keys_two = (list)(inceptionV3_Two.keys())keys_three = (list)(inceptionV3_Three.keys())input=layers.Input(shape=[299,299,3])# 输入部分conv1_one = layers.Conv2D(32, kernel_size=[3, 3], strides=[2, 2], padding='valid')(input)conv1_batch=layers.BatchNormalization()(conv1_one)conv1relu=layers.Activation('relu')(conv1_batch)conv2_one = layers.Conv2D(32, kernel_size=[3, 3], strides=[1,1],padding='valid')(conv1relu)conv2_batch=layers.BatchNormalization()(conv2_one)conv2relu=layers.Activation('relu')(conv2_batch)conv3_padded = layers.Conv2D(64, kernel_size=[3, 3], strides=[1,1],padding='same')(conv2relu)conv3_batch=layers.BatchNormalization()(conv3_padded)con3relu=layers.Activation('relu')(conv3_batch)pool1_one = layers.MaxPool2D(pool_size=[3, 3], strides=[2, 2])(con3relu)conv4_one = layers.Conv2D(80, kernel_size=[3,3], strides=[1,1], padding='valid')(pool1_one)conv4_batch=layers.BatchNormalization()(conv4_one)conv4relu=layers.Activation('relu')(conv4_batch)conv5_one = layers.Conv2D(192, kernel_size=[3, 3], strides=[2,2], padding='valid')(conv4relu)conv5_batch = layers.BatchNormalization()(conv5_one)x=layers.Activation('relu')(conv5_batch)"""filter11:1x1的卷积核个数filter13:3x3卷积之前的1x1卷积核个数filter33:3x3卷积个数filter15:使用3x3卷积代替5x5卷积之前的1x1卷积核个数filter55:使用3x3卷积代替5x5卷积个数filtermax:最大池化之后的1x1卷积核个数"""for i in range(3):conv11 = layers.Conv2D((int)(inceptionV3_One[keys_one[i]][0]), kernel_size=[1, 1], strides=[1, 1], padding='same')(x)batchnormaliztion11 = layers.BatchNormalization()(conv11)conv11relu = layers.Activation('relu')(batchnormaliztion11)conv13 = layers.Conv2D((int)(inceptionV3_One[keys_one[i]][1]), kernel_size=[1, 1], strides=[1, 1], padding='same')(x)batchnormaliztion13 = layers.BatchNormalization()(conv13)conv13relu = layers.Activation('relu')(batchnormaliztion13)conv33 = layers.Conv2D((int)(inceptionV3_One[keys_one[i]][2]), kernel_size=[5, 5], strides=[1, 1], padding='same')(conv13relu)batchnormaliztion33 = layers.BatchNormalization()(conv33)conv33relu = layers.Activation('relu')(batchnormaliztion33)conv1533 = layers.Conv2D((int)(inceptionV3_One[keys_one[i]][3]), kernel_size=[1, 1], strides=[1, 1], padding='same')(x)batchnormaliztion1533 = layers.BatchNormalization()(conv1533)conv1522relu = layers.Activation('relu')(batchnormaliztion1533)conv5533first = layers.Conv2D((int)(inceptionV3_One[keys_one[i]][4]), kernel_size=[3, 3], strides=[1, 1], padding='same')(conv1522relu)batchnormaliztion5533first = layers.BatchNormalization()(conv5533first)conv5533firstrelu = layers.Activation('relu')(batchnormaliztion5533first)conv5533last = layers.Conv2D((int)(inceptionV3_One[keys_one[i]][4]), kernel_size=[3, 3], strides=[1, 1], padding='same')(conv5533firstrelu)batchnormaliztion5533last = layers.BatchNormalization()(conv5533last)conv5533lastrelu = layers.Activation('relu')(batchnormaliztion5533last)maxpool = layers.AveragePooling2D(pool_size=[3, 3], strides=[1, 1], padding='same')(x)maxconv11 = layers.Conv2D((int)(inceptionV3_One[keys_one[i]][5]), kernel_size=[1, 1], strides=[1, 1], padding='same')(maxpool)batchnormaliztionpool = layers.BatchNormalization()(maxconv11)convmaxrelu = layers.Activation('relu')(batchnormaliztionpool)x=tf.concat([conv11relu,conv33relu,conv5533lastrelu,convmaxrelu],axis=3)conv1_two = layers.Conv2D(384, kernel_size=[3, 3], strides=[2, 2], padding='valid')(x)conv1batch=layers.BatchNormalization()(conv1_two)conv1_tworelu=layers.Activation('relu')(conv1batch)conv2_two = layers.Conv2D(64, kernel_size=[1, 1], strides=[1, 1], padding='same')(x)conv2batch=layers.BatchNormalization()(conv2_two)conv2_tworelu=layers.Activation('relu')(conv2batch)conv3_two = layers.Conv2D( 96, kernel_size=[3, 3], strides=[1,1], padding='same')(conv2_tworelu)conv3batch=layers.BatchNormalization()(conv3_two)conv3_tworelu=layers.Activation('relu')(conv3batch)conv4_two = layers.Conv2D( 96, kernel_size=[3, 3], strides=[2, 2], padding='valid')(conv3_tworelu)conv4batch=layers.BatchNormalization()(conv4_two)conv4_tworelu=layers.Activation('relu')(conv4batch)maxpool = layers.MaxPool2D(pool_size=[3, 3], strides=[2, 2])(x)x=tf.concat([conv1_tworelu,conv4_tworelu,maxpool],axis=3)"""filter11:1x1的卷积核个数filter13:使用1x3,3x1卷积代替3x3卷积之前的1x1卷积核个数filter33:使用1x3,3x1卷积代替3x3卷积的个数filter15:使用1x3,3x1,1x3,3x1卷积卷积代替5x5卷积之前的1x1卷积核个数filter55:使用1x3,3x1,1x3,3x1卷积代替5x5卷积个数filtermax:最大池化之后的1x1卷积核个数"""for i in range(4):conv11 = layers.Conv2D((int)(inceptionV3_Two[keys_two[i]][0]), kernel_size=[1, 1], strides=[1, 1], padding='same')(x)batchnormaliztion11 = layers.BatchNormalization()(conv11)conv11relu=layers.Activation('relu')(batchnormaliztion11)conv13 = layers.Conv2D((int)(inceptionV3_Two[keys_two[i]][1]), kernel_size=[1, 1], strides=[1, 1], padding='same')(x)batchnormaliztion13 = layers.BatchNormalization()(conv13)conv13relu=layers.Activation('relu')(batchnormaliztion13)conv3313 = layers.Conv2D((int)(inceptionV3_Two[keys_two[i]][2]), kernel_size=[1, 7], strides=[1, 1], padding='same')(conv13relu)batchnormaliztion3313 = layers.BatchNormalization()(conv3313)conv3313relu=layers.Activation('relu')(batchnormaliztion3313)conv3331 = layers.Conv2D((int)(inceptionV3_Two[keys_two[i]][3]), kernel_size=[7, 1], strides=[1, 1], padding='same')(conv3313relu)batchnormaliztion3331 = layers.BatchNormalization()(conv3331)conv3331relu=layers.Activation('relu')(batchnormaliztion3331)conv15 = layers.Conv2D((int)(inceptionV3_Two[keys_two[i]][4]), kernel_size=[1, 1], strides=[1, 1], padding='same')(x)batchnormaliztion15 = layers.BatchNormalization()(conv15)conv15relu=layers.Activation('relu')(batchnormaliztion15)conv1513first = layers.Conv2D((int)(inceptionV3_Two[keys_two[i]][5]), kernel_size=[1, 7], strides=[1, 1], padding='same')(conv15relu)batchnormaliztion1513first = layers.BatchNormalization()(conv1513first)conv1513firstrelu=layers.Activation('relu')(batchnormaliztion1513first)conv1531second = layers.Conv2D((int)(inceptionV3_Two[keys_two[i]][6]), kernel_size=[7, 1], strides=[1, 1], padding='same')(conv1513firstrelu)batchnormaliztion1531second = layers.BatchNormalization()(conv1531second)conv1531second=layers.Activation('relu')(batchnormaliztion1531second)conv1513third = layers.Conv2D((int)(inceptionV3_Two[keys_two[i]][7]), kernel_size=[1, 7], strides=[1, 1], padding='same')(conv1531second)batchnormaliztion1513third = layers.BatchNormalization()(conv1513third)conv1513thirdrelu=layers.Activation('relu')(batchnormaliztion1513third)conv1531last = layers.Conv2D((int)(inceptionV3_Two[keys_two[i]][8]), kernel_size=[7, 1], strides=[1, 1], padding='same')(conv1513thirdrelu)batchnormaliztion1531last = layers.BatchNormalization()(conv1531last)conv1531lastrelu=layers.Activation('relu')(batchnormaliztion1531last)maxpool = layers.AveragePooling2D(pool_size=[3, 3], strides=[1, 1], padding='same')(x)maxconv11 = layers.Conv2D((int)(inceptionV3_Two[keys_two[i]][9]), kernel_size=[1, 1], strides=[1, 1], padding='same')(maxpool)maxconv11relu = layers.BatchNormalization()(maxconv11)maxconv11relu = layers.Activation('relu')(maxconv11relu)x=tf.concat([conv11relu,conv3331relu,conv1531lastrelu,maxconv11relu],axis=3)conv11_three=layers.Conv2D(192, kernel_size=[1, 1], strides=[1, 1], padding='same')(x)conv11batch=layers.BatchNormalization()(conv11_three)conv11relu=layers.Activation('relu')(conv11batch)conv33_three=layers.Conv2D(320, kernel_size=[3, 3], strides=[2, 2], padding='valid')(conv11relu)conv33batch=layers.BatchNormalization()(conv33_three)conv33relu=layers.Activation('relu')(conv33batch)conv7711_three=layers.Conv2D(192, kernel_size=[1, 1], strides=[1, 1], padding='same')(x)conv77batch=layers.BatchNormalization()(conv7711_three)conv77relu=layers.Activation('relu')(conv77batch)conv7717_three=layers.Conv2D(192, kernel_size=[1, 7], strides=[1, 1], padding='same')(conv77relu)conv7717batch=layers.BatchNormalization()(conv7717_three)conv7717relu=layers.Activation('relu')(conv7717batch)conv7771_three=layers.Conv2D(192, kernel_size=[7, 1], strides=[1, 1], padding='same')(conv7717relu)conv7771batch=layers.BatchNormalization()(conv7771_three)conv7771relu=layers.Activation('relu')(conv7771batch)conv33_three=layers.Conv2D(192, kernel_size=[3, 3], strides=[2, 2], padding='valid')(conv7771relu)conv3377batch=layers.BatchNormalization()(conv33_three)conv3377relu=layers.Activation('relu')(conv3377batch)convmax_three=layers.MaxPool2D(pool_size=[3, 3], strides=[2, 2])(x)x=tf.concat([conv33relu,conv3377relu,convmax_three],axis=3)"""filter11:1x1的卷积核个数filter13:使用1x3,3x1卷积代替3x3卷积之前的1x1卷积核个数filter33:使用1x3,3x1卷积代替3x3卷积的个数filter15:使用3x3卷积代替5x5卷积之前的1x1卷积核个数filter55:使用3x3卷积代替5x5卷积个数filtermax:最大池化之后的1x1卷积核个数"""for i in range(2):conv11 = layers.Conv2D((int)(inceptionV3_Three[keys_three[i]][0]), kernel_size=[1, 1], strides=[1, 1], padding='same')(x)batchnormaliztion11 = layers.BatchNormalization()(conv11)conv11relu=layers.Activation('relu')(batchnormaliztion11)conv13 = layers.Conv2D((int)(inceptionV3_Three[keys_three[i]][1]), kernel_size=[1, 1], strides=[1, 1], padding='same')(x)batchnormaliztion13 = layers.BatchNormalization()(conv13)conv13relu=layers.Activation('relu')(batchnormaliztion13)conv33left = layers.Conv2D((int)(inceptionV3_Three[keys_three[i]][2]), kernel_size=[1, 3], strides=[1, 1], padding='same')(conv13relu)batchnormaliztion33left = layers.BatchNormalization()(conv33left)conv33leftrelu=layers.Activation('relu')(batchnormaliztion33left)conv33right = layers.Conv2D((int)(inceptionV3_Three[keys_three[i]][3]), kernel_size=[3, 1], strides=[1, 1], padding='same')(conv33leftrelu)batchnormaliztion33right = layers.BatchNormalization()(conv33right)conv33rightrelu=layers.Activation('relu')(batchnormaliztion33right)conv33rightleft=tf.concat([conv33leftrelu,conv33rightrelu],axis=3)conv15 = layers.Conv2D((int)(inceptionV3_Three[keys_three[i]][4]), kernel_size=[1, 1], strides=[1, 1], padding='same')(x)batchnormaliztion15 = layers.BatchNormalization()(conv15)conv15relu=layers.Activation('relu')(batchnormaliztion15)conv1533 = layers.Conv2D((int)(inceptionV3_Three[keys_three[i]][5]), kernel_size=[3, 3], strides=[1, 1], padding='same')(conv15relu)batchnormaliztion1533 = layers.BatchNormalization()(conv1533)conv1533relu=layers.Activation('relu')(batchnormaliztion1533)conv1533left = layers.Conv2D((int)(inceptionV3_Three[keys_three[i]][6]), kernel_size=[1, 3], strides=[1, 1], padding='same')(conv1533relu)batchnormaliztion1533left = layers.BatchNormalization()(conv1533left)conv1533leftrelu=layers.Activation('relu')(batchnormaliztion1533left)conv1533right = layers.Conv2D((int)(inceptionV3_Three[keys_three[i]][6]), kernel_size=[3, 1], strides=[1, 1], padding='same')(conv1533leftrelu)batchnormaliztion1533right = layers.BatchNormalization()(conv1533right)conv1533rightrelu=layers.Activation('relu')(batchnormaliztion1533right)conv1533leftright=tf.concat([conv1533right,conv1533rightrelu],axis=3)maxpool = layers.AveragePooling2D(pool_size=[3, 3], strides=[1, 1],padding='same')(x)maxconv11 = layers.Conv2D((int)(inceptionV3_Three[keys_three[i]][8]), kernel_size=[1, 1], strides=[1, 1], padding='same')(maxpool)batchnormaliztionpool = layers.BatchNormalization()(maxconv11)maxrelu = layers.Activation('relu')(batchnormaliztionpool)x=tf.concat([conv11relu,conv33rightleft,conv1533leftright,maxrelu],axis=3)x=layers.GlobalAveragePooling2D()(x)x=layers.Dense(1000)(x)softmax=layers.Activation('softmax')(x)model_inceptionV3=Model(inputs=input,outputs=softmax,name='InceptionV3')return model_inceptionV3model_inceptionV3=InceptionV3(inceptionV3_One,inceptionV3_Two,inceptionV3_Three)model_inceptionV3.summary()

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/160846.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

DHorse v1.4.2 发布,基于 k8s 的发布平台

版本说明 优化特性 在集群列表增加集群版本;修改Jvm的GC指标名; 解决问题 解决shell脚本换行符的问题;解决部署历史列表页,环境名展示错误的问题;解决指标收集功能的异常; 升级指南 升级指南 DHorse…

零宽空格引发的问题

有人跟我反馈说有bug。 我说:啥bug? 对方说:刚申请的内部用户的账号登录不上去。 我说:还有这种事,报啥错? 登录的时候报了这个错: 我一看还好还好,跟上一次不一样的错&#xff…

“探寻服务器的无限潜能:从创意项目到在线社区,你会做什么?”

文章目录 每日一句正能量前言什么是服务器?服务器能做什么?服务器怎么用?部署创意项目,还是在线社区亦或做其他的?后记 每日一句正能量 未知的下一秒,千万不要轻言放弃。 前言 在数字化时代,服…

SpringBoot面试题7:SpringBoot支持什么前端模板?

该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点 面试官:SpringBoot支持什么前端模板? Spring Boot支持多种前端模板,其中包括以下几种常用的: Thymeleaf:Thymeleaf是一种服务器端Java模板引擎,能够…

基于马尔可夫随机场的图像去噪算法matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1、马尔可夫随机场的基本原理 4.2、基于马尔可夫随机场的图像去噪算法 5.算法完整程序工程 1.算法运行效果图预览 原图: 加入噪声的图像: 滤波后的图像 迭代过程…

2-k8s-控制器介绍

文章目录 一、控制器类型二、Deployment控制器三、SatefulSet控制器四、Daemonset控制器五、Job控制器六、CronJob 控制器 一、控制器类型 Deployment:适合无状态的服务部署StatefullSet:适合有状态的服务部署DaemonSet:一次部署&#xff0c…

关于ts的keyof

type props_type {name: string,age: number }const props: props_type {name: tjq,age: 18 }for (const key in props) { //props[key]出现红色波浪线const value props[key]; }why? 经过我查阅多方资料,在网上看到一个比较合适的例子 地址&#xf…

OpenRemote: Java 开源 IoT 物联网开发平台,匹配智慧城市、智能家居、能源管理

OpenRemote 是一个直观、用户友好的基于Java语言的开源 IoT 物联网设备管理平台,它包括从连接设备到构建应用程序和特定领域的智能应用程序的所有功能和特性。通过OpenRemote物联网平台,用户可以收集和处理来自不同设备的传感器数据,适用于智…

Gson反序列化原理

前言 序列化和反序列化是日常工作中经常使用的工具,一般用于对象的持久化保存或者对象的网络传输,一般有两种情况,一种是对象本身实现了Serializable接口,这种情况下可以利用jdk自带的功能或者Kryo等这种封装好的序列化反序列化工…

Elasticsearch:什么是大语言模型 (LLMs)?

假设你想参加流行的游戏节目 Jeopardy(这是一个美国电视游戏节目,参赛者将获得答案并必须猜测问题)。 要参加演出,你需要了解任何事情的一切。 所以你决定在接下来的三年里每天都花时间阅读互联网上的所有内容。 你很快就会意识到…

关于 Invalid bound statement (not found): 错误的解决

关于 Invalid bound statement not found: 错误的解决 前言错误原因解决方法1. 检查SQL映射文件2. 检查MyBatis配置3. 检查SQL语句4. 检查命名约定5. 清除缓存6. 启用日志记录 重点注意 结语 我是将军我一直都在,。! 前言 当开发Java Spring Boot应用程…

挚文集团:股票回购速度、收入指引均不及预期,令投资者失望

来源:猛兽财经 作者:猛兽财经 挚文集团未来将不再公布MAU数据 今年6月初,挚文集团(MOMO)在公布2023年第一季度业绩时透露,“陌陌应用的月活跃用户(MAU)”已经从去年3月的1.109亿下降到了今年3月的1.065亿,同比下降了-…

2023,简历石沉大海?软件测试岗位真的已经饱和了....

各大互联网公司的接连裁员,政策限制的行业接连消失,让今年的求职雪上加霜,想躺平却没有资本,还有人说软件测试岗位饱和了,对此很多求职者深信不疑,因为投出去的简历回复的越来越少了。 另一面企业招人真的…

执行事务合伙人和法人区别是什么

1. 定义不同: 执行事务合伙人指负责经营和管理合伙企业的人,对外代表合伙企业进行业务活动,对内负责合伙企业的日常管理。 法人则是企业的法定代表人,代表企业参与民事活动,是企业的行政领导,对企业经济活动…

MAT查找类(岔路口)-技巧

文章目录 前言一、现状二、使用步骤1.导出 hprof2.用MAT打开3.细节操作找大对象的线程名称查看线程的详情查找类的GC Roots柳暗花明检验真理 总结 前言 又是java 内存溢出 OOM JAVA MAT 分析工具大大的好。 高效查找问题根源,才是硬道理。 一、现状 mat 打开hprof…

CVE-2017-7529 Nginx越界读取内存漏洞

漏洞概述 当使用Nginx标准模块时,攻击者可以通过发送包含恶意构造range域的header请求,来获取响应中的缓存文件头部信息。在某些配置中,缓存文件头可能包含后端服务器的IP地址或其它敏感信息,从而导致信息泄露。 影响版本 Ngin…

vue3后台管理框架之技术栈

vue3全家桶技术 基础构建: vue3vite4TypeScript 代码格式 : eslintprettystylelint git生命周期钩子: husky css预处理器: sass ui库: element-plus 模拟数据: mock 网络请求: axios 路由: vue…

Three.js图案溶解shader

上图提供两种方式溶解显示 上面一排是根据现实的图案红色通道也就是r值进行溶解 下面一排提供额外的溶解纹理 可以通过简单更改呈现多种溶解图案 代码仓库 gitee b站账号:https://space.bilibili.com/374230437 interface IMapPath {map: string;dissolve?: string…

基于antd实现动态修改节点的Tree组件

前言 之前遇到一个需求,可对于任意节点添加或删除子节点。首先技术栈是基于reactant design,ant提供了Tree组件,但都是根据固定的数据渲染出树结构,如果需要新增或删除节点,官网并未提供。 实现过程 新增节点 首先…

910数据结构(2013年真题)

算法设计题 问题1 已知元素数据类型为整数的顺序表SL(a1,a2,…,am,b1,b2,…,bn),试设计算法将SL中元素的两部分互换为(b1,b2,…,bn,a1,a2,…,am)。要求:不能使用额外的数组空间。 (1&#xff…