消息队列学习分享

消息队列学习

  1. 消息队列来解决问题

(1)异步处理

消息通知、日志管理、更新统计数据等步骤

(2)流量控制

如何避免过多的请求压垮我们的系统?

比如一个秒杀系统,网关在收到请求后,将请求放入请求消息队列;后端服务从请求消息队列中获取 APP 请求,完成后续秒杀处理过程,然后返回结果。

当短时间内大量的秒杀请求到达网关时,不会直接冲击到后端的秒杀服务,而是先堆积在消息队列中,后端服务按照自己的最大处理能力,从消息队列中消费请求进行处理。

这种设计的优点是:能根据下游的处理能力自动调节流量,达到“削峰填谷”的作用。但这样做同样是有代价的:增加了系统调用链环节,导致总体的响应时延变长。上下游系统都要将同步调用改为异步消息,增加了系统的复杂度。

(3)服务解耦

所有的电商都选择用消息队列来解决类似的系统耦合过于紧密的问题。引入消息队列后,订单服务在订单变化时发送一条消息到消息队列的一个主题 Order 中,所有下游系统都订阅主题 Order,这样每个下游系统都可以获得一份实时完整的订单数据。无论增加、减少下游系统或是下游系统需求如何变化,订单服务都无需做任何更改,实现了订单服务与下游服务的解耦。

(4)缺点

引入消息队列带来的延迟问题;增加了系统的复杂度;可能产生数据不一致的问题。

  1. 如何选择消息队列

(1)基本标准

首先,必须是开源的产品,这个非常重要。开源意味着,如果有一天你使用的消息队列遇到了一个影响你系统业务的 Bug,你至少还有机会通过修改源代码来迅速修复或规避这个 Bug,解决你的系统火烧眉毛的问题,而不是束手无策地等待开发者不一定什么时候发布的下一个版本来解决。其次,这个产品必须是近年来比较流行并且有一定社区活跃度的产品。还有一个优势就是,流行的产品与周边生态系统会有一个比较好的集成和兼容,比如,Kafka 和 Flink 就有比较好的兼容性,Flink 内置了 Kafka 的 Data Source,使用 Kafka 就很容易作为 Flink 的数据源开发流计算应用,如果你用一个比较小众的消息队列产品,在进行流计算的时候,你就不得不自己开发一个 Flink 的 Data Source。

消息的可靠传递:确保不丢消息;

Cluster:支持集群,确保不会因为某个节点宕机导致服务不可用,当然也不能丢消息;

性能:具备足够好的性能,能满足绝大多数场景的性能要求。

(2)可选择消息队列产品
RabbitMQ

RabbitMQ 就像它的名字中的兔子一样:轻量级、迅捷,它的 Slogan,也就是宣传口号,也很明确地表明了 RabbitMQ 的特点:Messaging that just works,“开箱即用的消息队列”。也就是说,RabbitMQ 是一个相当轻量级的消息队列,非常容易部署和使用。

RocketMQ

RocketMQ 对在线业务的响应时延做了很多的优化,大多数情况下可以做到毫秒级的响应,如果你的应用场景很在意响应时延,那应该选择使用 RocketMQ。RocketMQ 的性能比 RabbitMQ 要高一个数量级,每秒钟大概能处理几十万条消息。RocketMQ 的一个劣势是,作为国产的消息队列,相比国外的比较流行的同类产品,在国际上还没有那么流行,与周边生态系统的集成和兼容程度要略逊一筹。

Kafka

Kafka 与周边生态系统的兼容性是最好的没有之一,尤其在大数据和流计算领域,几乎所有的相关开源软件系统都会优先支持 Kafka。Kafka 的性能,尤其是异步收发的性能,是三者中最好的,但与 RocketMQ 并没有量级上的差异,大约每秒钟可以处理几十万条消息。但是 Kafka 这种异步批量的设计带来的问题是,它的同步收发消息的响应时延比较高,因为当客户端发送一条消息的时候,Kafka 并不会立即发送出去,而是要等一会儿攒一批再发送,在它的 Broker 中,很多地方都会使用这种“先攒一波再一起处理”的设计。当你的业务场景中,每秒钟消息数量没有那么多的时候,Kafka 的时延反而会比较高。所以,Kafka 不太适合在线业务场景

(3)总结

如果你的系统使用消息队列主要场景是处理在线业务,比如在交易系统中用消息队列传递订单,那 RocketMQ 的低延迟和金融级的稳定性是你需要的。

如果你需要处理海量的消息,像收集日志、监控信息或是前端的埋点这类数据,或是你的应用场景大量使用了大数据、流计算相关的开源产品,那 Kafka 是最适合你的消息队列。

3.主题和队列有什么区别

早期的消息队列,就是按照“队列”的数据结构来设计的。我们一起看下这个图,生产者(Producer)发消息就是入队操作,消费者(Consumer)收消息就是出队也就是删除操作,服务端存放消息的容器自然就称为“队列”。

如果需要将一份消息数据分发给多个消费者,要求每个消费者都能收到全量的消息,例如,对于一份订单数据,风控系统、分析系统、支付系统等都需要接收消息。这个时候,单个队列就满足不了需求,一个可行的解决方式是,为每个消费者创建一个单独的队列,让生产者发送多份。

在发布 - 订阅模型中,消息的发送方称为发布者(Publisher),消息的接收方称为订阅者(Subscriber),服务端存放消息的容器称为主题(Topic)。发布者将消息发送到主题中,订阅者在接收消息之前需要先“订阅主题”。“订阅”在这里既是一个动作,同时还可以认为是主题在消费时的一个逻辑副本,每份订阅中,订阅者都可以接收到主题的所有消息。在消息领域的历史上很长的一段时间,队列模式和发布 - 订阅模式是并存的,有些消息队列同时支持这两种消息模型,比如 ActiveMQ。我们仔细对比一下这两种模型,生产者就是发布者,消费者就是订阅者,队列就是主题,并没有本质的区别。它们最大的区别其实就是,一份消息数据能不能被消费多次的问题。

RabbitMQ 的消息模型

几乎所有的消息队列产品都使用一种非常朴素的“请求 - 确认”机制,确保消息不会在传递过程中由于网络或服务器故障丢失。具体的做法也非常简单。在生产端,生产者先将消息发送给服务端,也就是 Broker,服务端在收到消息并将消息写入主题或者队列中后,会给生产者发送确认的响应。

如果生产者没有收到服务端的确认或者收到失败的响应,则会重新发送消息;在消费端,消费者在收到消息并完成自己的消费业务逻辑(比如,将数据保存到数据库中)后,也会给服务端发送消费成功的确认,服务端只有收到消费确认后,才认为一条消息被成功消费,否则它会给消费者重新发送这条消息,直到收到对应的消费成功确认。

这个确认机制很好地保证了消息传递过程中的可靠性,但是,引入这个机制在消费端带来了一个不小的问题。什么问题呢?为了确保消息的有序性,在某一条消息被成功消费之前,下一条消息是不能被消费的,否则就会出现消息空洞,违背了有序性这个原则。也就是说,每个主题在任意时刻,至多只能有一个消费者实例在进行消费,那就没法通过水平扩展消费者的数量来提升消费端总体的消费性能。为了解决这个问题,RocketMQ 在主题下面增加了队列的概念。

每个主题包含多个队列,通过多个队列来实现多实例并行生产和消费。需要注意的是,RocketMQ 只在队列上保证消息的有序性,主题层面是无法保证消息的严格顺序的。RocketMQ 中,订阅者的概念是通过消费组(Consumer Group)来体现的。每个消费组都消费主题中一份完整的消息,不同消费组之间消费进度彼此不受影响,也就是说,一条消息被 Consumer Group1 消费过,也会再给 Consumer Group2 消费。

在 Topic 的消费过程中,由于消息需要被不同的组进行多次消费,所以消费完的消息并不会立即被删除,这就需要 RocketMQ 为每个消费组在每个队列上维护一个消费位置(Consumer Offset),这个位置之前的消息都被消费过,之后的消息都没有被消费过,每成功消费一条消息,消费位置就加一。这个消费位置是非常重要的概念,我们在使用消息队列的时候,丢消息的原因大多是由于消费位置处理不当导致的。

Kafka 的消息模型

我们再来看看另一种常见的消息队列 Kafka,Kafka 的消息模型和 RocketMQ 是完全一样的,我刚刚讲的所有 RocketMQ 中对应的概念,和生产消费过程中的确认机制,都完全适用于 Kafka。唯一的区别是,在 Kafka 中,队列这个概念的名称不一样,Kafka 中对应的名称是“分区(Partition)”,含义和功能是没有任何区别的。

4.如何利用事务消息实现分布式事务?

消息队列中的“事务”,主要解决的是消息生产者和消息消费者的数据一致性问题。

(1)什么是分布式事务?

那什么是事务呢?如果我们需要对若干数据进行更新操作,为了保证这些数据的完整性和一致性,我们希望这些更新操作要么都成功,要么都失败。大部分传统的单体关系型数据库都完整的实现了 ACID,但是,对于分布式系统来说,严格的实现 ACID 这四个特性几乎是不可能的,或者说实现的代价太大,大到我们无法接受。在实际应用中,比较常见的分布式事务实现有 2PC(Two-phase Commit,也叫二阶段提交https://segmentfault.com/a/1190000012534071)、TCC(Try-Confirm-Cancel) 和事务消息。每一种实现都有其特定的使用场景,也有各自的问题,都不是完美的解决方案。事务消息适用的场景主要是那些需要异步更新数据,并且对数据实时性要求不太高的场景。比如我们在开始时提到的那个例子,在创建订单后,如果出现短暂的几秒,购物车里的商品没有被及时清空,也不是完全不可接受的,只要最终购物车的数据和订单数据保持一致就可以了。

(2)消息队列是如何实现分布式事务的?

事务消息需要消息队列提供相应的功能才能实现,Kafka 和 RocketMQ 都提供了事务相关功能。回到订单和购物车这个例子,我们一起来看下如何用消息队列来实现分布式事务。

首先,订单系统在消息队列上开启一个事务。然后订单系统给消息服务器发送一个“半消息”,这个半消息不是说消息内容不完整,它包含的内容就是完整的消息内容,半消息和普通消息的唯一区别是,在事务提交之前,对于消费者来说,这个消息是不可见的。半消息发送成功后,订单系统就可以执行本地事务了,在订单库中创建一条订单记录,并提交订单库的数据库事务。然后根据本地事务的执行结果决定提交或者回滚事务消息。如果订单创建成功,那就提交事务消息,购物车系统就可以消费到这条消息继续后续的流程。如果订单创建失败,那就回滚事务消息,购物车系统就不会收到这条消息。这样就基本实现了“要么都成功,要么都失败”的一致性要求。

(3)RocketMQ 中的分布式事务实现

在 RocketMQ 中的事务实现中,增加了事务反查的机制来解决事务消息提交失败的问题。如果 Producer 也就是订单系统,在提交或者回滚事务消息时发生网络异常,RocketMQ 的 Broker 没有收到提交或者回滚的请求,Broker 会定期去 Producer 上反查这个事务对应的本地事务的状态,然后根据反查结果决定提交或者回滚这个事务。综合上面讲的通用事务消息的实现和 RocketMQ 的事务反查机制,使用 RocketMQ 事务消息功能实现分布式事务的流程如下图:

5.如何确保消息不会丢失?

整个消息从生产到消费的过程中,哪些地方可能会导致丢消息,以及应该如何避免消息丢失。你可以看下这个图,一条消息从生产到消费完成这个过程,可以划分三个阶段,为了方便描述,我给每个阶段分别起了个名字。

(1)生产阶段:

在这个阶段,从消息在 Producer 创建出来,经过网络传输发送到 Broker 端。

在生产阶段,消息队列通过最常用的请求确认机制,来保证消息的可靠传递:当你的代码调用发消息方法时,消息队列的客户端会把消息发送到 Broker,Broker 收到消息后,会给客户端返回一个确认响应,表明消息已经收到了。客户端收到响应后,完成了一次正常消息的发送。只要 Producer 收到了 Broker 的确认响应,就可以保证消息在生产阶段不会丢失。有些消息队列在长时间没收到发送确认响应后,会自动重试,如果重试再失败,就会以返回值或者异常的方式告知用户。正确处理返回值或者捕获异常,就可以保证这个阶段的消息不会丢失。

(2)存储阶段

在这个阶段,消息在 Broker 端存储,如果是集群,消息会在这个阶段被复制到其他的副本上。在存储阶段正常情况下,只要 Broker 在正常运行,就不会出现丢失消息的问题,但是如果 Broker 出现了故障,比如进程死掉了或者服务器宕机了,还是可能会丢失消息的。如果对消息的可靠性要求非常高,可以通过配置 Broker 参数来避免因为宕机丢消息。对于单个节点的 Broker,需要配置 Broker 参数,在收到消息后,将消息写入磁盘后再给 Producer 返回确认响应,这样即使发生宕机,由于消息已经被写入磁盘,就不会丢失消息,恢复后还可以继续消费。

例如,在 RocketMQ 中,需要将刷盘方式 flushDiskType 配置为 SYNC_FLUSH 同步刷盘。如果是 Broker 是由多个节点组成的集群,需要将 Broker 集群配置成:至少将消息发送到 2 个以上的节点,再给客户端回复发送确认响应。这样当某个 Broker 宕机时,其他的 Broker 可以替代宕机的 Broker,也不会发生消息丢失。

(3)消费阶段

在这个阶段,Consumer 从 Broker 上拉取消息,经过网络传输发送到 Consumer 上。

消费阶段采用和生产阶段类似的确认机制来保证消息的可靠传递,客户端从 Broker 拉取消息后,执行用户的消费业务逻辑,成功后,才会给 Broker 发送消费确认响应。如果 Broker 没有收到消费确认响应,下次拉消息的时候还会返回同一条消息,确保消息不会在网络传输过程中丢失,也不会因为客户端在执行消费逻辑中出错导致丢失。你在编写消费代码时需要注意的是,不要在收到消息后就立即发送消费确认,而是应该在执行完所有消费业务逻辑之后,再发送消费确认。

6.如何处理消费过程中的重复消息?

(1)消息重复的情况必然存在

在 MQTT 协议中,给出了三种传递消息时能够提供的服务质量标准,这三种服务质量从低到高依次是:At most once:

至多一次。消息在传递时,最多会被送达一次。换一个说法就是,没什么消息可靠性保证,允许丢消息。

At least once:

至少一次。消息在传递时,至少会被送达一次。也就是说,不允许丢消息,但是允许有少量重复消息出现。

Exactly once

恰好一次。消息在传递时,只会被送达一次,不允许丢失也不允许重复,这个是最高的等级。

(2)幂等操作

用幂等性解决重复消息问题一般解决重复消息的办法是,在消费端,让我们消费消息的操作具备幂等性。一个幂等操作的特点是,其任意多次执行所产生的影响均与一次执行的影响相同

那么如何实现幂等操作呢?最好的方式就是,从业务逻辑设计上入手,将消费的业务逻辑设计成具备幂等性的操作。但是,不是所有的业务都能设计成天然幂等的,这里就需要一些方法和技巧来实现幂等。

1. 利用数据库的唯一约束实现幂等

只要是支持类似“INSERT IF NOT EXIST”语义的存储类系统都可以用于实现幂等,比如,你可以用 Redis 的 SETNX 命令来替代数据库中的唯一约束,来实现幂等消费。

2.为更新的数据设置前置条件

每次更数据前,比较当前数据的版本号是否和消息中的版本号一致,如果不一致就拒绝更新数据,更新数据的同时将版本号 +1,一样可以实现幂等更新。

3. 记录并检查操作

在发送消息时,给每条消息指定一个全局唯一的 ID,消费时,先根据这个 ID 检查这条消息是否有被消费过,如果没有消费过,才更新数据,然后将消费状态置为已消费。

7.消息积压了该如何处理?

我们都知道,消息积压的直接原因,一定是系统中的某个部分出现了性能问题,来不及处理上游发送的消息,才会导致消息积压。所以,我们先来分析下,在使用消息队列时,如何来优化代码的性能,避免出现消息积压。然后再来看看,如果你的线上系统出现了消息积压,该如何进行紧急处理,最大程度地避免消息积压对业务的影响。

(1)优化性能来避免消息积压

在使用消息队列的系统中,对于性能的优化,主要体现在生产者和消费者这一收一发两部分的业务逻辑中。对于消息队列本身的性能,你作为使用者,不需要太关注。为什么这么说呢?主要原因是,对于绝大多数使用消息队列的业务来说,消息队列本身的处理能力要远大于业务系统的处理能力。主流消息队列的单个节点,消息收发的性能可以达到每秒钟处理几万至几十万条消息的水平,还可以通过水平扩展 Broker 的实例数成倍地提升处理能力。而一般的业务系统需要处理的业务逻辑远比消息队列要复杂,单个节点每秒钟可以处理几百到几千次请求,已经可以算是性能非常好的了。所以,对于消息队列的性能优化,我们更关注的是,在消息的收发两端,我们的业务代码怎么和消息队列配合,达到一个最佳的性能。

(2)发送端性能优化

如果说,你的代码发送消息的性能上不去,你需要优先检查一下,是不是发消息之前的业务逻辑耗时太多导致的,对于发送消息的业务逻辑,只需要注意设置合适的并发和批量大小,就可以达到很好的发送性能。无论是增加每次发送消息的批量大小,还是增加并发,都能成倍地提升发送性能。至于到底是选择批量发送还是增加并发,主要取决于发送端程序的业务性质。简单来说,只要能够满足你的性能要求,怎么实现方便就怎么实现。

比如说,你的消息发送端是一个微服务,主要接受 RPC 请求处理在线业务。很自然的,微服务在处理每次请求的时候,就在当前线程直接发送消息就可以了,因为所有 RPC 框架都是多线程支持多并发的,自然也就实现了并行发送消息。并且在线业务比较在意的是请求响应时延,选择批量发送必然会影响 RPC 服务的时延。这种情况,比较明智的方式就是通过并发来提升发送性能。

如果你的系统是一个离线分析系统,离线系统在性能上的需求是什么呢?它不关心时延,更注重整个系统的吞吐量。发送端的数据都是来自于数据库,这种情况就更适合批量发送,你可以批量从数据库读取数据,然后批量来发送消息,同样用少量的并发就可以获得非常高的吞吐量。

(3)消费端性能优化

使用消息队列的时候,大部分的性能问题都出现在消费端,如果消费的速度跟不上发送端生产消息的速度,就会造成消息积压。如果这种性能倒挂的问题只是暂时的,那问题不大,只要消费端的性能恢复之后,超过发送端的性能,那积压的消息是可以逐渐被消化掉的。要是消费速度一直比生产速度慢,时间长了,整个系统就会出现问题,要么,消息队列的存储被填满无法提供服务,要么消息丢失,这对于整个系统来说都是严重故障。所以,我们在设计系统的时候,一定要保证消费端的消费性能要高于生产端的发送性能,这样的系统才能健康的持续运行。

消费端的性能优化除了优化消费业务逻辑以外,也可以通过水平扩容,增加消费端的并发数来提升总体的消费性能。特别需要注意的一点是,在扩容 Consumer 的实例数量的同时,必须同步扩容主题中的分区(也叫队列)数量,确保 Consumer 的实例数和分区数量是相等的。如果 Consumer 的实例数量超过分区数量,这样的扩容实际上是没有效果的。原因我们之前讲过,因为对于消费者来说,在每个分区上实际上只能支持单线程消费。

它收消息处理的业务逻辑可能比较慢,也很难再优化了,为了避免消息积压,在收到消息的 OnMessage 方法中,不处理任何业务逻辑,把这个消息放到一个内存队列里面就返回了。然后它可以启动很多的业务线程,这些业务线程里面是真正处理消息的业务逻辑,这些线程从内存队列里取消息处理,这样它就解决了单个 Consumer 不能并行消费的问题。这个方法是不是很完美地实现了并发消费?请注意,这是一个非常常见的错误方法! 为什么错误?因为会丢消息。如果收消息的节点发生宕机,在内存队列中还没来及处理的这些消息就会丢失。

(4)消息积压了该如何处理?

能导致积压突然增加,最粗粒度的原因,只有两种:要么是发送变快了,要么是消费变慢了

大部分消息队列都内置了监控的功能,只要通过监控数据,很容易确定是哪种原因。如果是单位时间发送的消息增多,比如说是赶上大促或者抢购,短时间内不太可能优化消费端的代码来提升消费性能,唯一的方法是通过扩容消费端的实例数来提升总体的消费能力。如果短时间内没有足够的服务器资源进行扩容,没办法的办法是,将系统降级,通过关闭一些不重要的业务,减少发送方发送的数据量,最低限度让系统还能正常运转,服务一些重要业务

8.详解 RocketMQ 和 Kafka 的消息模型

假设有一个主题 MyTopic,我们为主题创建 5 个队列,分布到 2 个 Broker 中。先说消息生产这一端,假设我们有 3 个生产者实例:Produer0,Produer1 和 Producer2。这 3 个生产者是如何对应到 2 个 Broker 的,又是如何对应到 5 个队列的呢?这个很简单,不用对应,随便发。每个生产者可以在 5 个队列中轮询发送,也可以随机选一个队列发送,或者只往某个队列发送,这些都可以。

比如 Producer0 要发 5 条消息,可以都发到队列 Q0 里面,也可以 5 个队列每个队列发一条。然后说消费端,很多人没有搞清楚消费组、消费者和队列这几个概念的对应关系。

每个消费组就是一份订阅,它要消费主题 MyTopic 下,所有队列的全部消息。注意,队列里的消息并不是消费掉就没有了,这里的“消费”,只是去队列里面读了消息,并没有删除,消费完这条消息还是在队列里面。

多个消费组在消费同一个主题时,消费组之间是互不影响的。比如我们有 2 个消费组:G0 和 G1。G0 消费了哪些消息,G1 是不知道的,也不用知道。G0 消费过的消息,G1 还可以消费。即使 G0 积压了很多消息,对 G1 来说也没有任何影响。然后我们再说消费组的内部,一个消费组中可以包含多个消费者的实例。比如说消费组 G1,包含了 2 个消费者 C0 和 C1,那这 2 个消费者又是怎么和主题 MyTopic 的 5 个队列对应的呢?由于消费确认机制的限制,这里面有一个原则是,在同一个消费组里面,每个队列只能被一个消费者实例占用。至于如何分配,这里面有很多策略,就不展开说了。

总之保证每个队列分配一个消费者就行了。比如,我们可以让消费者 C0 消费 Q0,Q1 和 Q2,C1 消费 Q3 和 Q4,如果 C0 宕机了,会触发重新分配,这时候 C1 同时消费全部 5 个队列。

再强调一下,队列占用只是针对消费组内部来说的,对于其他的消费组来说是没有影响的。比如队列 Q2 被消费组 G1 的消费者 C1 占用了,对于消费组 G2 来说,是完全没有影响的,G2 也可以分配它的消费者来占用和消费队列 Q2。最后说一下消费位置,每个消费组内部维护自己的一组消费位置,每个队列对应一个消费位置。消费位置在服务端保存,并且,消费位置和消费者是没有关系的。

(1)如何实现单个队列的并行消费?

比如说,队列中当前有 10 条消息,对应的编号是 0-9,当前的消费位置是 5。同时来了三个消费者来拉消息,把编号为 5、6、7 的消息分别给三个消费者,每人一条。过了一段时间,三个消费成功的响应都回来了,这时候就可以把消费位置更新为 8 了,这样就实现并行消费。这是理想的情况。还有可能编号为 6、7 的消息响应回来了,编号 5 的消息响应一直回不来,怎么办?这个位置 5 就是一个消息空洞。为了避免位置 5 把这个队列卡住,可以先把消费位置 5 这条消息,复制到一个特殊重试队列中,然后依然把消费位置更新为 8,继续消费。再有消费者来拉消息的时候,优先把重试队列中的那条消息给消费者就可以了。这是并行消费的一种实现方式。需要注意的是,并行消费开销还是很大的,不应该作为一个常规的,提升消费并发的手段,如果消费慢需要增加消费者的并发数,还是需要扩容队列数。

(2)如何保证消息的严格顺序?

主题层面是无法保证严格顺序的,只有在队列上才能保证消息的严格顺序。如果说,你的业务必须要求全局严格顺序,就只能把消息队列数配置成 1,生产者和消费者也只能是一个实例,这样才能保证全局严格顺序。

大部分情况下,我们并不需要全局严格顺序,只要保证局部有序就可以满足要求了。比如,在传递账户流水记录的时候,只要保证每个账户的流水有序就可以了,不同账户之间的流水记录是不需要保证顺序的。如果需要保证局部严格顺序,可以这样来实现。在发送端,我们使用账户 ID 作为 Key,采用一致性哈希算法计算出队列编号,指定队列来发送消息。一致性哈希算法可以保证,相同 Key 的消息总是发送到同一个队列上,这样可以保证相同 Key 的消息是严格有序的。如果不考虑队列扩容,也可以用队列数量取模的简单方法来计算队列编号。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/160926.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Kotlin中的数值类型

在Kotlin中,Byte、Short、Int、Long、Float和Double是基本数据类型,用于表示不同范围和精度的数值。 Byte(字节):Byte类型是8位有符号整数类型,取值范围为-128到127。在Kotlin中,可以使用字面值…

vscode工程屏蔽不使用的文件夹或文件的方法

一. 简介 vscode是一款 微软提供的免费的代码编辑软件。 对于 IMX6ULL-ALPHA开发板而言,NXP官方uboot一定会支持不止 IMX6ULL芯片的代码,也不止支持 一种架构,还支持其他芯片或架构的源码文件。 为了方便阅读代码,vscode软件可…

腾讯云我的世界mc服务器多少钱一年?

腾讯云我的世界mc服务器多少钱?95元一年2核2G3M轻量应用服务器、2核4G5M带宽优惠价218元一年、4核8G12M带宽轻量服务器446元一年,云服务器CVM标准型S5实例2核2G优惠价280元一年、2核4G配置服务器748元一年,腾讯云百科txybk.com分享腾讯云我的…

[LeetCode周赛复盘] 第 115 场双周赛20231014

[LeetCode周赛复盘] 第 115 场双周赛20231014 一、本周周赛总结100095. 上一个遍历的整数1. 题目描述2. 思路分析3. 代码实现 100078. 最长相邻不相等子序列 I1. 题目描述2. 思路分析3. 代码实现 100077. 最长相邻不相等子序列 II1. 题目描述2. 思路分析3. 代码实现 100029. 和…

【数据结构】排序--选择排序(堆排序)

目录 一 堆排序 二 直接选择排序 一 堆排序 堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。它是 通过堆来进行选择数据。 需要注意的是排升序要建大堆,排降序建小堆。 直接选择排…

HEIC转jpg

下载imagemagick,安装 https://imagemagick.org/archive/binaries/ImageMagick-7.1.1-20-Q16-HDRI-x64-dll.exe cmd D:\soft\ImageMagick-7.1.1-Q16-HDRI\magick.exe "C:\Users\Gamer\Downloads\iCloud 照片1\iCloud 照片\IMG_3889.HEIC" IMG_3889.jpg

WebSocket: 实时通信的新维度

介绍: 在现代Web应用程序中,实时通信对于提供即时更新和交互性至关重要。传统的HTTP协议虽然适合请求-响应模式,但对于需要频繁数据交换的场景并不理想。而WebSocket技术的出现填补了这个空白,为Web开发者们带来了一种高效、实时的…

Elucidating the Design Space of Diffusion-Based Generative Models 阅读笔记

文章用一种新的设计框架统一diffusion-based model,并使用模块化(modular)的思想,分别从采样、训练、score network设计三个方面分析和改进diffusion-based model。 之前的工作1已经把diffusion-based model统一到SDE或者ODE框架…

10-k8s-身份认证与鉴权

文章目录 一、ServiceAccount介绍二、ServiceAccount相关的资源对象三、dashboard空间示例 一、ServiceAccount介绍 ServiceAccount(服务账户)概念介绍 1)ServiceAccount是Kubernetes集群中的一种资源对象,用于为Pod或其他资源提供…

JavaScript基础知识14——运算符:逻辑运算符,运算符优先级

哈喽,大家好,我是雷工! 一、逻辑运算符 1、概念:在程序中用来连接多个比较条件时候使用的符号。 2、应用场景:在程序中用来连接多个比较条件时候使用。 3、逻辑运算符符号: 4、代码演示逻辑运算符的使用…

手机流量卡经营商城小程序的作用是什么

流量卡成为很多用户的选择,同时市场中也出现了不少流量卡卖家,基于多种形式开展生意。然而虽然市场需求度高,但流量卡经营难题也不少。 流量卡客户具有高忠诚度,然而入驻线上第三方平台,客户属于平台,无法…

四川天蝶电子商务有限公司抖音电商服务引领行业标杆

随着电子商务的飞速发展,四川天蝶电子商务有限公司作为一家领先的抖音电商服务提供商,已经脱颖而出。本文将详细解析四川天蝶电子商务有限公司的抖音电商服务,让您一探究竟。 一、卓越的服务理念 四川天蝶电子商务有限公司始终坚持以客户为中…

多媒体应用设计师 第3章 多媒体信息传输技术

1.数据通信技术 1.1.多媒体通信的服务质量 多媒体服务质量(Qos)指网络服务的良好程度, 衡量QoS的常见指标为:吞吐量,差错率,端到端延迟,延迟抖动,带宽,丢包率,服务可用性等。 1.2.多媒体通信的服务质量类…

flask基础开发知识学习

之前做了一些LLM的demo,接口用flask写的,但是涉及到后端的一些业务就感觉逻辑写的很乱,代码变成屎山,于是借助官方文档和GPT迅速补了一些知识,总结一下一个很小的模板 于是决定边学边重构之前的代码… 文章目录 代码结…

【milkv】更新rndis驱动

问题 由于windows升级到了11,导致rndis驱动无法识别到。 解决 打开设备管理器,查看网络适配器,没有更新会显示黄色的图标。 右击选择更新驱动

网络安全必备常识:Web应用防火墙是什么?

如今,很多企业都将应用架设在Web平台上,为用户提供更为方便、快捷的服务支持,例如网上银行、网上购物等。与此同时,应用程序组合变得前所未有的复杂和多样化,这为攻击者发动攻击开辟了大量媒介,Web应用防火…

【QT】界面布局-登陆窗口

记录页面布局-登陆窗口的流程 (1)继承QWidget (2)设置标签 (3)单行文本编辑 (4)按钮 开始设置布局, 法1:使用Horizontal layout,但是不方便 法2…

探索数字时代的核心:服务器如何塑造未来并助你成就大业

🌷🍁 博主猫头虎 带您 Go to New World.✨🍁 🦄 博客首页——猫头虎的博客🎐 🐳《面试题大全专栏》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺 &a…

关于python pytorch 与CUDA版本相关问题

首先在终端中输入python进入python交互式环境 import torch print(torch.__version__) #注意是双下划线官网:https://pytorch.org/get-started/previous-versions/ CUDA Toolkit版本及可用PyTorch对应关系总结(参考官网) cuda版本确定后&a…

Godot C# 扩展方法持续更新

前言 为了简化Godot 的编写&#xff0c;我会将我的扩展方法写在这里面。 更新日期(2023年10月15日) Nuget 包安装 扩展方法 public static class GD_Extension{/// <summary>/// 假数据生成&#xff0c;详情请看Bogus官方文档/// </summary>public static Faker…