数据结构----算法--五大基本算法

数据结构----算法–五大基本算法

一.贪心算法

1.什么是贪心算法

在有多个选择的时候不考虑长远的情况,只考虑眼前的这一步,在眼前这一步选择当前的最好的方案

二.分治法

1.分治的概念

分治法:分而治之

将一个问题拆解成若干个解决方式完全相同的问题

满足分治的四个条件

1.问题难度随着数据规模缩小而降低

2.问题可拆分

3.子问题间相互独立

4.子问题的解可合并

2.典型的分治:二分查找(折半搜索) BinaryChop

前提:有序
时间复杂度O(log2的n次方)
1.循环实现二分查找
//循环
int BinaryChop1(int a[], int begin, int end ,int find) {if (a == nullptr || begin > end) return -1;while (begin<= end) {int mid = begin+(end- begin)/2 ;if (a[mid] == find) {cout << "找到了,返回在数组中的下标" << endl;return mid;}else if (a[mid] < find) {begin = mid + 1;}else if (a[mid] > find) {end = mid - 1;}}return -1;
}
2.递归实现二分查找
//递归
int BinaryChop2(int a[], int begin, int end, int find) {if (a == nullptr || begin > end) return -1;int mid = begin+(end- begin)/2;if (a[mid] == find) {cout << "找到了,返回数组下标" << endl;return mid;}else if (a[mid] < find) {begin = mid + 1;}else if (a[mid] > find) {end = mid - 1;}return BinaryChop2(a, begin, end, find);}

三.回溯法

1.回溯法解决的问题

1.求子集的问题

2.求排列的问题

3.求集合的问题

4.求棋盘的问题

2.回溯常见的写法

循环嵌套递归

3.用回溯法解决一道全排列的问题(此题的网址为https://leetcode.cn/problems/permutations/)

此题在之前的博客中具体分析过(博客的网址如下https://blog.csdn.net/m0_73483024/article/details/133589061?spm=1001.2014.3001.5502)

题目:

四.动态规划(Dynamic Programming)

1.动态规划可以解决的问题

动态规划可以用来求最优解(最大、最小、最多等)的问题

2.动态规划操作对象所要满足的性质

大问题可以拆解成解决方案完全相同的子问题,并且要满足以下两个性质

1.满足最优子结构性质(子问题的最优解构成当前问题的最优解)

2.无后效性(一旦某一状态被确定,那么过去这个状态如何求得的我们就再也不关注了)

3.动态规划的求解过程

1.拆分

2.定状态(子问题的最优解)

3.做决策

4.求状态转移方程

4.动态规划的实现手段

1.自顶向下带备忘的解法(大到小)

2.自底向上的解法(小到大)

注意:动态规划的空间消耗是用来换时间了

5.关于动态规划的问题

1.凑钱问题
题目:

有1元,3元,5元面额的钞票,想要凑到n元钱

解决方法:

创建一个f数组

f(n)表示想要凑到n元钱所需要的最小的钞票数

我们观察下面式子,找出规律

f(0)=0

f(1)=f(1-1)+1=1

f(2)=f(2-1)+1=2

f(3)=min{f(3-3)+1=1,f(3-1)+1=3}=1

f(4)=min{f(4-3)+1=2,f(4-1)+1=2}=2

f(5)=min{f(5-5)+1=1,f(5-3)+1=3,f(5-1)+1=3}=1

推导出动态转移方程得

f(i)=min{f(i-v[j])}+1(v[j]<=i)

这里v是一个存1元,3元,5元面额的钞票的数组,j是遍历v数组的变量

2.一维的动态划分问题:最长递增子序列(LIS)
题目:

有一个数组中有6、3、9、8、4、7、2、5、10、1这些元素,找到这个数组中的最长递增子序列

解决方法:
方法一

创建一个f数组

f(n)表示n下标与前序元素构成的LIS的长度

我们观察下面式子,找出规律

f(0)=1

f(1)=1

f(2)=max{9>3 f(1)+1=2

​ 9>6 f(0)+1=2

​ 1(只有自己本身,长度为1)

​ }=2

f(3)=max{8>3 f(1)+1=2

​ 8>6 f(0)+1=2

​ 1(只有自己本身,长度为1)

​ }=2

f(4)=max{4>3 f(1)+1=2

​ 1(只有自己本身,长度为1)

​ }=2

f(5)=max{7>4 f(4)+1=3

​ 7>3 f(1)+1=2

​ 7>6 f(0)+1=2

​ 1(只有自己本身,长度为1)

​ }=3

推导出动态转移方程得

f(i)=max(f(j)+1,1) (v[j]<v[i],0<=j<i)

这里v是数组,i和j是遍历v数组的变量

方法二(相较于方法一优化)

创建一个数组用来存等长LIS右边界的最小值(下标当作长度)

从左到右遍历数组,对创建的数组进行更新,最后数组的使用量就是最长递增子序列的长度

看下面进行理解

f(0)=1

在这里插入图片描述

f(1)=1

在这里插入图片描述

f(2)=2

在这里插入图片描述

f(3)=2

在这里插入图片描述

f(4)=2

在这里插入图片描述

f(5)=3

在这里插入图片描述

下面的过程就不再写了

方法三(在方法二的基础上,进行二分搜索,在进行数组的更新时使用二分搜索)
3.二维的动态规划问题:捡苹果
题目:

有一个m*n的格子,每个格子中有数量不一的苹果,一个小机器人(只能往右或者往下走)从左上角走到它不能再走了,求它最多能捡到多少个苹果

解决:

状态转移方程为 c[i] [j]=max{c[i-1] [j],c[i] [j-1]}+A[i] [j]

c数组存的是到每个位置所能捡到的最大苹果数量,A数组存的是每个位置的苹果数量

4.二维的动态规划问题且带附加条件的:最长公共子序列(LCS)
题目:

求X数组{A,B,B,D,C,B,C}与Y数组{B,C,D,B,A,C}的最长公共子序列

解决:

状态转移方程为 c[i] [j]={c[i-1] [j-1]+1 xi==yi

​ max{c[i-1] [j],c[i] [j-1]}} xi!=yi

​ }

c数组存的是x数组走到数组中的某个元素和y数组走到数组中的某个元素时,二者所构成的LCS的长度

c[i] [j]存的是x数组走到第i个元素,y数组走到第j个元素,二者所构成的LCS的长度

四.博弈树

1.博弈树(Game Tree)

棋类中用到的博弈树满足的条件

1.二者零和

2.全信息

3.非偶然

注意:博弈树要在时间消耗和结果准确度中做一个平衡

2.极大极小搜索树(是在原有博弈树的基础上实现的)

看下面这张图理解博弈树

甲是自己要选择尽量大的

乙是对手要使我们最小,所以乙选择尽量小的

在这里插入图片描述

3.α-β剪枝(对极大极小树的优化)

看下面图片(都是部分图,不是完整的)理解α-β剪枝

图片一

注意:这是一个深搜过程(图中数字表示处理的步骤)

在这里插入图片描述

当此图第4步得到的值小于第3步得到的值,那么第5步就不用处理了

图片二

在这里插入图片描述

注意:这是一个深搜过程(图中数字表示处理的步骤)

当此图第9步得到的值大于第7步得到的值,那么第11步和第12步就不用处理了

五.银行家算法

1.使用银行家算法要满足的条件

1.固定数量的进程共享固定数量的资源

2.进程最大请求资源数

3.单次申请的资源数不能超出可分配资源数

4.不是一次性全部申请,分批次进行

5.进程等待资源的时间是有限的(不会无休止等待)

6.当满足进程的最大资源需求,进程应该在有限时间内归还资源

2.银行家算法的操作步骤

A:总资产

B:所需的最大资源数

C:已经分配的资源数

D:仍然需要的资源数

E:每次请求的资源数

F:可分配的资源数

1.看E<=F是否满足

​ 如果不满足就等待

​ 如果满足就进行下一步

2.看E<=D是否满足

​ 如果不满足,失败

​ 如果满足就进行下一步

3.假装分配,更新各个值

​ C=C+E

​ D=D-E

​ F=F-E

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/161123.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

uni-app--》基于小程序开发的电商平台项目实战(六)

&#x1f3cd;️作者简介&#xff1a;大家好&#xff0c;我是亦世凡华、渴望知识储备自己的一名在校大学生 &#x1f6f5;个人主页&#xff1a;亦世凡华、 &#x1f6fa;系列专栏&#xff1a;uni-app &#x1f6b2;座右铭&#xff1a;人生亦可燃烧&#xff0c;亦可腐败&#xf…

docker入门加实战—docker常见命令

docker入门加实战—docker常见命令 在介绍命令之前&#xff0c;先用一副图形象的展示一下docker的命令&#xff1a; 常见命令 docker的常见命令和文档地址如下表&#xff1a; 命令说明文档地址docker pull拉取镜像docker pulldocker push推送镜像到DockerRegistrydocker pus…

EmoTalk: Speech-Driven Emotional Disentanglement for 3D Face Animation

问题:现存的方法经常忽略面部的情感或者不能将它们从语音内容中分离出来。 方法:本文提出了一种端到端神经网络来分解语音中的不同情绪,从而生成丰富的 3D 面部表情。 1.我们引入了情感分离编码器(EDE),通过交叉重构具有不同情感标签的语音信号来分离语音中的情感和内容。…

【广州华锐互动】塔吊多人安拆VR互动培训系统

塔吊多人安拆VR互动培训系统由广州华锐互动制作&#xff0c;是一种基于VR技术的模拟实训系统&#xff0c;专门用于培训塔吊驾驶员和操作员。 在现实生活中&#xff0c;塔吊操作具有一定的危险性&#xff0c;尤其是在培训过程中容易发生意外。而使用VR互动实训系统&#xff0c;学…

金融用户实践|分布式存储支持数据仓库业务系统性能验证

作者&#xff1a;深耕行业的 SmartX 金融团队 闫海涛 估值是指对资产或负债的价值进行评估的过程&#xff0c;这对于投资决策具有重要意义。每个金融公司资管业务人员都期望能够实现实时的业务估值&#xff0c;快速获取最新的数据和指标&#xff0c;从而做出更明智的投资决策。…

Java8实战-总结42

Java8实战-总结42 用Optional取代null应用 Optional 的几种模式默认行为及解引用 Optional 对象两个 Optional 对象的组合使用 filter 剔除特定的值 用Optional取代null 应用 Optional 的几种模式 默认行为及解引用 Optional 对象 采用orElse方法读取这个变量的值&#xff0…

uniapp订单循环列表倒计时

目录 效果图片插件uni-countdown代码最后 效果图片 插件uni-countdown 地址 代码 <template><view class""><!-- 下面循环两个列表 --><view class"item" v-for"(item, index) in listData" :key"index">&…

mybatis-plus自动填充

前言 这是我在这个网站整理的笔记&#xff0c;关注我&#xff0c;接下来还会持续更新。 作者&#xff1a;神的孩子都在歌唱 mybatis-plus自动填充 大家做设计数据表的时候&#xff0c;基本上都会有del_flag&#xff0c;create_time, update_time,这三个字段&#xff0c;这也是…

问题记录1 json解析问题

问题&#xff1a; json解析int类型不符合预期&#xff0c;使用json.NewDecoder解决。 示例如下&#xff1a; package mainimport ("bytes""encoding/json""fmt" )func main() {data1 : map[string]interface{}{}data1["id"] int64(4…

windows安装npm教程

在安装和使用NPM之前&#xff0c;我们需要先了解一下&#xff0c;NPM 是什么&#xff0c;能干啥&#xff1f; 一、NPM介绍 NPM&#xff08;Node Package Manager&#xff09;是一个用于管理和共享JavaScript代码包的工具。它是Node.js生态系统的一部分&#xff0c;广泛用于构…

浅谈变电站运维技术模式及应用-安科瑞黄安南

近年来&#xff0c;市场电子资源需求量的逐步上升&#xff0c;使变电系统建设逐步向复杂环境拓展。为保障变电系统运行稳定性及人员管理安全性&#xff0c;无人值班变电站技术运用势在必行&#xff0c;是解决复杂条件下变电设备运行不稳定及人员设备管理效益低下问题的重要核心…

O2O优惠券预测

O2O优惠券预测 赛题理解赛题类型解题思路 数据探索理论知识数据可视化分布 特征工程赛题特征工程思路 模型训练与验证 赛题理解 赛题类型 本赛题要求提交的结果是预测15 天内用券的概率&#xff0c;这是一个连续值&#xff0c;但是因为用券只有用与不用两种情况&#xff0c;而…

VMware 配置记录

VMware 配置笔记 CentOS 7.9 镜像下载 官网太慢&#xff0c;建议在阿里云镜像站去CentOS配置页找标准版下载。 选标准版即可&#xff0c;各版本区别&#xff1a; DVD&#xff1a;标准版&#xff0c;包含常用软件&#xff0c;体积为 4.4 G&#xff1b;Everything&#xff1a…

接口加密解决方案:Python的各种加密实现!

01、前言 在现代软件开发中&#xff0c;接口测试已经成为了不可或缺的一部分。随着互联网的普及&#xff0c;越来越多的应用程序都采用了接口作为数据传输的方式。接口测试的目的是确保接口的正确性、稳定性和安全性&#xff0c;从而保障系统的正常运行。 在接口测试中&…

JavaFx学习问题2--音频、视频播放失败情况

文章目录 一、路径注意事项&#xff1a;① 用相对路径的时候别忘了前面的斜杠② uri问题 二、播放不了的问题① 获取的媒体文件路径本身就是不对的② 必须是uri③ 特殊情况 额外收获: 一、路径注意事项&#xff1a; 完整代码如下: import javafx.application.Application; im…

分布式链路追踪如何跨线程

背景 我们希望实现全链路信息&#xff0c;但是代码中一般都会异步的线程处理。 解决思路 我们可以对以前的 Runable 和 Callable 进行增强。 可以使用 ali 已经存在的实现方式。 TransmittableThreadLocal (TTL) 解决异步执行时上下文传递的问题 核心的实现思路如下&#…

时间复杂度为 O(n^2) 的排序算法

大家好&#xff0c;我是 方圆。对于小规模数据&#xff0c;我们可以选用时间复杂度为 O(n2) 的排序算法&#xff0c;因为时间复杂度并不代表实际代码的执行时间&#xff0c;而且它也省去了低阶、系数和常数&#xff0c;仅代表的增长趋势&#xff0c;所以在小规模数据情况下&…

PyTorch 深度学习之循环神经网络(基础篇)Basic RNN(十一)

0.Revision: DNN dense 重义层 全连接 RNN处理带有序列的数据 1. What is RNNs? linear layer 1.1 What is RNN? tanh (-1, 1) 1.2 RNN Cell in PyTorch 1.3 How to use RNNCell *先把维度搞清楚 多了一个序列的维度 2. How to use RNN 2.1 How to use RNN - numLayers…

基于变电站自动化系统中的安全措施分析及应用

摘要&#xff1a;阐述变电运行中的问题&#xff0c;电气自动化系统与安全运行措施&#xff0c;包括自动控制设备的投入&#xff0c;电气自动 化与计算机技术相、设备数据的采集与处理、自动化系统的升级、人工智能技术的应用。 关键词&#xff1a;自动控制&#xff1b;数据采…

铜死亡+多组机器学习+WGCNA+分型

今天给同学们分享一篇铜死亡多组机器学习WGCNA分型的生信文章“Machine learning screening for Parkinsons disease-related cuproptosis-related typing development and validation and exploration of personalized drugs for cuproptosis genes”&#xff0c;这篇文章于20…