【大数据】Kafka 入门简介

Kafka 入门简介

  • 1.什么是 Kafka
  • 2.Kafka 的基本概念
  • 3.Kafka 分布式架构
  • 4.配置单机版 Kafka
    • 4.1 下载并解压包
    • 4.2 启动 Kafka
    • 4.3 创建 Topic
    • 4.4 向 Topic 中发送消息
    • 4.5 从 Topic 中消费消息
  • 5.实验
    • 5.1 实验一:Python 实现生产者消费者
    • 5.2 实验二:消费组实现容错性机制
    • 5.3 实验三:Offset 管理
  • 6.总结

1.什么是 Kafka

Kafka 是一个分布式流处理系统,流处理系统使它可以像消息队列一样 publish 或者 subscribe 消息,分布式提供了容错性,并发处理消息的机制。

2.Kafka 的基本概念

Kafka 运行在集群上,集群包含一个或多个服务器。Kafka 把消息存在 Topic 中,每一条消息包含键值(Key),值(Value)和时间戳(Timestamp)。

Kafka 有以下一些基本概念:

  • Producer:消息生产者,就是向 Kafka Broker 发消息的客户端。
  • Consumer:消息消费者,是消息的使用方,负责消费 Kafka 服务器上的消息。
  • Topic:主题,由用户定义并配置在 Kafka 服务器,用于建立 Producer 和 Consumer 之间的订阅关系。生产者发送消息到指定的 Topic 下,消息者从这个 Topic 下消费消息。
  • Partition:消息分区,一个 Topic 可以分为多个 Partition,每个 Partition 是一个有序的队列。Partition 中的每条消息都会被分配一个有序的 id(Offset)。
  • Broker:一台 Kafka 服务器就是一个 Broker。一个集群由多个 Broker 组成。一个 Broker 可以容纳多个 Topic。
  • Consumer Group:消费者分组,用于归组同类消费者。每个 Consumer 属于一个特定的 Consumer Group,多个消费者可以共同消费一个Topic下的消息,每个消费者消费其中的部分消息,这些消费者就组成了一个分组,拥有同一个分组名称,通常也被称为消费者集群。
  • Offset:消息在 Partition 中的偏移量。每一条消息在 Partition 都有唯一的偏移量,消费者可以指定偏移量来指定要消费的消息。

3.Kafka 分布式架构

在这里插入图片描述
如上图所示,Kafka 将 Topic 中的消息存在不同的 Partition中。如果存在键值(Key),消息按照键值做分类存在不同的 Partition 中,如果不存在键值,消息按照轮询(Round Robin)机制存在不同的 Partition 中。默认情况下,键值决定了一条消息会被存在哪个 Partition 中。

在这里插入图片描述
Partition 中的消息序列是有序的消息序列。Kafka 在 Partition 使用偏移量(Offset)来指定消息的位置。一个 Topic 的一个 Partition 只能被一个 Consumer Group 中的一个 Consumer 消费,同组的多个 Consumer 消费同一个 Partition 中的数据是不允许的;但是一个 Consumer 可以消费多个 Partition 中的数据。

Kafka 将 Partition 的数据复制到不同的 Broker,提供了 Partition 数据的备份。每一个 Partition 都有一个 Broker 作为 Leader,若干个 Broker 作为 Follower。所有的数据读写都通过 Leader 所在的服务器进行,并且 Leader 在不同 Broker 之间复制数据。

在这里插入图片描述
上图中,对于 Partition 0,Broker 1 是它的 Leader,Broker 2 和 Broker 3 是 Follower。对于 Partition 1,Broker 2 是它的 Leader,Broker 1 和 Broker 3 是 Follower。

在这里插入图片描述
在上图中,当有 Client(也就是 Producer)要写入数据到 Partition 0 时,会写入到 Leader Broker 1,Broker 1 再将数据复制到 Follower Broker 2 和 Broker 3。

在这里插入图片描述
在上图中,Client 向 Partition 1 中写入数据时,会写入到 Broker 2,因为 Broker 2 是 Partition 1 的 Leader,然后 Broker 2 再将数据复制到 Follower Broker 1 和 Broker 3 中。

上图中的 Topic 一共有 3 个 Partition,对每个 Partition 的读写都由不同的 Broker 处理,因此总的吞吐量得到了提升。

4.配置单机版 Kafka

这里我们使用 Kafka 0.10.0.0 0.10.0.0 0.10.0.0 版本。

4.1 下载并解压包

$ wget https://archive.apache.org/dist/kafka/0.10.0.0/kafka_2.11-0.10.0.0.tgz
$ tar -xzf kafka_2.11-0.10.0.0.tgz
$ cd kafka_2.11-0.10.0.0

4.2 启动 Kafka

Kafka 需要用到 Zookeeper,所以需要先启动 Zookeeper。我们这里使用下载包里自带的单机版 Zookeeper。

$ bin/zookeeper-server-start.sh config/zookeeper.properties
[2013-04-22 15:01:37,495] INFO Reading configuration from: config/zookeeper.properties (org.apache.zookeeper.server.quorum.QuorumPeerConfig)
...

然后启动 Kafka

$ bin/kafka-server-start.sh config/server.properties
[2013-04-22 15:01:47,028] INFO Verifying properties (kafka.utils.VerifiableProperties)
[2013-04-22 15:01:47,051] INFO Property socket.send.buffer.bytes is overridden to 1048576 (kafka.utils.VerifiableProperties)
...

4.3 创建 Topic

$ bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic test

查看创建的 Topic

$ bin/kafka-topics.sh --list --zookeeper localhost:2181
test

4.4 向 Topic 中发送消息

$ bin/kafka-console-producer.sh --broker-list localhost:9092 --topic test
This is a message
This is another message

4.5 从 Topic 中消费消息

$ bin/kafka-console-consumer.sh --zookeeper localhost:2181 --topic test --from-beginning
This is a message
This is another message

5.实验

5.1 实验一:Python 实现生产者消费者

kafka-python 是一个 Python 的 Kafka 客户端,可以用来向 Kafka 的 Topic 发送消息、消费消息。

这个实验会实现一个 Producer 和一个 Consumer。roducer 向 Kafka 发送消息,Consumer 从 Topic 中消费消息。结构如下图:
在这里插入图片描述

# producer.py
import time
from kafka import KafkaProducerproducer = KafkaProducer(bootstrap_servers="localhost:9092")
i = 0
while True:ts = int(time.time() * 1000)producer.send(topic="test", value=str(i), key=str(i), timestamp_ms=ts)producer.flush()print ii += 1time.sleep(1)
# consumer.py
from kafka import KafkaConsumerconsumer = KafkaConsumer("test", bootstrap_servers=["localhost:9092"])
for message in consumer:print message

接下来创建一个 Topic,名为 test

$ bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic test
Created topic "test".

打开两个窗口中,我们在 window-1 中运行 producer.py,如下:

# window-1
$ python producer.py
0
1
2
3
4
5
...

window-2 中运行 consumer.py,如下:

# window-2
$ python consumer.py
ConsumerRecord(topic=u'test', partition=0, offset=128, timestamp=1512554839806, timestamp_type=0, key='128', value='128', checksum=-1439508774, serialized_key_size=3, serialized_value_size=3)
ConsumerRecord(topic=u'test', partition=0, offset=129, timestamp=1512554840827, timestamp_type=0, key='129', value='129', checksum=1515993224, serialized_key_size=3, serialized_value_size=3)
ConsumerRecord(topic=u'test', partition=0, offset=130, timestamp=1512554841834, timestamp_type=0, key='130', value='130', checksum=453490213, serialized_key_size=3, serialized_value_size=3)
ConsumerRecord(topic=u'test', partition=0, offset=131, timestamp=1512554842841, timestamp_type=0, key='131', value='131', checksum=-632119731, serialized_key_size=3, serialized_value_size=3)
...

可以看到 window-2 中的 Consumer 成功的读到了 Producer 写入的数据。

5.2 实验二:消费组实现容错性机制

这个实验将展示消费组的容错性的特点。这个实验中将创建一个有 2 个 Partition 的 Topic,和 2 个 Consumer,这 2 个 Consumer 共同消费同一个 Topic 中的数据。结构如下所示:
在这里插入图片描述
Producer 部分代码和实验一相同,这里不再重复。Consumer 需要指定所属的 Consumer Group,代码如下:

# consumer.py
from kafka import KafkaConsumerconsumer = KafkaConsumer("test", bootstrap_servers=["localhost:9092"], group_id="testgroup")
for message in consumer:print message

接下来我们创建一个 Topic,名为 Test,设置 Partition 数量为 2。

$ bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 2 --topic test
Created topic "test".

打开三个窗口,一个窗口运行 Producer,还有两个窗口运行 Consumer。

运行 Consumer 的两个窗口的输出如下:

# window-1
$ python consumer.py
ConsumerRecord(topic=u'test', partition=0, offset=11, timestamp=1512556619298, timestamp_type=0, key='15', value='15', checksum=-1492440752, serialized_key_size=2, serialized_value_size=2)
ConsumerRecord(topic=u'test', partition=0, offset=12, timestamp=1512556621308, timestamp_type=0, key='17', value='17', checksum=-1029407634, serialized_key_size=2, serialized_value_size=2)
ConsumerRecord(topic=u'test', partition=0, offset=13, timestamp=1512556622316, timestamp_type=0, key='18', value='18', checksum=1544755853, serialized_key_size=2, serialized_value_size=2)
ConsumerRecord(topic=u'test', partition=0, offset=14, timestamp=1512556624326, timestamp_type=0, key='20', value='20', checksum=2130557725, serialized_key_size=2, serialized_value_size=2)
...# window-2
$ python consumer.py
ConsumerRecord(topic=u'test', partition=1, offset=6, timestamp=1512556617287, timestamp_type=0, key='13', value='13', checksum=-1494513008, serialized_key_size=2, serialized_value_size=2)
ConsumerRecord(topic=u'test', partition=1, offset=7, timestamp=1512556618293, timestamp_type=0, key='14', value='14', checksum=-1499251221, serialized_key_size=2, serialized_value_size=2)
ConsumerRecord(topic=u'test', partition=1, offset=8, timestamp=1512556620303, timestamp_type=0, key='16', value='16', checksum=-783427375, serialized_key_size=2, serialized_value_size=2)
ConsumerRecord(topic=u'test', partition=1, offset=9, timestamp=1512556623321, timestamp_type=0, key='19', value='19', checksum=-1902514040, serialized_key_size=2, serialized_value_size=2)
ConsumerRecord(topic=u'test', partition=1, offset=10, timestamp=1512556626337, timestamp_type=0, key='22', value='22', checksum=782849423, serialized_key_size=2, serialized_value_size=2)
...

可以看到两个 Consumer 同时运行的情况下,它们分别消费不同 Partition 中的数据。window-1 中的 Consumer 消费 Partition 0 中的数据,window-2 中的 Consumer 消费 Parition 1 中的数据。

我们尝试关闭 window-1 中的 Consumer,可以看到如下结果:

# window-2ConsumerRecord(topic=u'test', partition=1, offset=105, timestamp=1512557514410,timestamp_type=0, key='46', value='46', checksum=-1821060627, serialized_key_size=2, serialized_value_size=2)
ConsumerRecord(topic=u'test', partition=1, offset=106, timestamp=1512557518428,timestamp_type=0, key='50', value='50', checksum=281004575, serialized_key_size=2, serialized_value_size=2)
ConsumerRecord(topic=u'test', partition=1, offset=107, timestamp=1512557521442,timestamp_type=0, key='53', value='53', checksum=1245067939, serialized_key_size=2, serialized_value_size=2)
ConsumerRecord(topic=u'test', partition=1, offset=108, timestamp=1512557525461,timestamp_type=0, key='57', value='57', checksum=-1003840299, serialized_key_size=2, serialized_value_size=2)
ConsumerRecord(topic=u'test', partition=0, offset=98, timestamp=1512557494325, timestamp_type=0, key='26', value='26', checksum=-1576244323, serialized_key_size=2, serialized_value_size=2)
ConsumerRecord(topic=u'test', partition=0, offset=99, timestamp=1512557495329, timestamp_type=0, key='27', value='27', checksum=510530536, serialized_key_size=2, serialized_value_size=2)
ConsumerRecord(topic=u'test', partition=0, offset=100, timestamp=1512557502360,timestamp_type=0, key='34', value='34', checksum=1781705793, serialized_key_size=2, serialized_value_size=2)
ConsumerRecord(topic=u'test', partition=0, offset=101, timestamp=1512557504368,timestamp_type=0, key='36', value='36', checksum=2142677730, serialized_key_size=2, serialized_value_size=2)
ConsumerRecord(topic=u'test', partition=0, offset=102, timestamp=1512557505372,timestamp_type=0, key='37', value='37', checksum=-1376259357, serialized_key_size=2, serialized_value_size=2)
...

刚开始 window-2 中的 Consumer 只消费 Partition 1 中的数据,当 window-1 中的 Consumer 退出后,window-2 中的 Consumer 中也开始消费 Partition 0 中的数据了。

5.3 实验三:Offset 管理

Kafka 允许 Consumer 将当前消费的消息的 Offset 提交到 Kafka中,这样如果 Consumer 因异常退出后,下次启动仍然可以从上次记录的 Offset 开始向后继续消费消息。

这个实验的结构和实验一的结构是一样的,使用一个 Producer,一个 Consumer,主题 test 的 Partition 数量设为 1。

Producer 的代码和实验一中的一样,这里不再重复。Consumer 的代码稍作修改,这里 Consumer 中打印出下一个要被消费的消息的 Offset。Consumer 代码如下:

from kafka import KafkaConsumer, TopicPartitiontp = TopicPartition("test", 0)
consumer = KafkaConsumer(bootstrap_servers=["localhost:9092"], group_id="testgroup", auto_offset_reset="earliest", enable_auto_commit=False)
consumer.assign([tp])
print "start offset is", consumer.position(tp)
for message in consumer:print message

在一个窗口中启动 Producer,在另一个窗口并且启动 Consumer。Consumer 的输出如下:

$ python consumer.py
start offset is 98
ConsumerRecord(topic=u'test', partition=0, offset=98, timestamp=1512558902904, timestamp_type=0, key='98', value='98', checksum=-588818519, serialized_key_size=2, serialized_value_size=2)
ConsumerRecord(topic=u'test', partition=0, offset=99, timestamp=1512558903909, timestamp_type=0, key='99', value='99', checksum=1042712647, serialized_key_size=2, serialized_value_size=2)
ConsumerRecord(topic=u'test', partition=0, offset=100, timestamp=1512558904915, timestamp_type=0, key='100', value='100', checksum=-838622723, serialized_key_size=3, serialized_value_size=3)
ConsumerRecord(topic=u'test', partition=0, offset=101, timestamp=1512558905920, timestamp_type=0, key='101', value='101', checksum=-2020362485, serialized_key_size=3, serialized_value_size=3)
ConsumerRecord(topic=u'test', partition=0, offset=102, timestamp=1512558906926, timestamp_type=0, key='102', value='102', checksum=-345378749, serialized_key_size=3, serialized_value_size=3)
...

可以尝试退出 Consumer,再启动 Consumer。每一次重新启动,Consumer 都是从 offset=98 的消息开始消费的。

修改 Consumer 的代码如下,在 Consumer 消费每一条消息后将 offset 提交回 Kafka。

from kafka import KafkaConsumer, TopicPartition, OffsetAndMetadatatp = TopicPartition("test2", 0)
consumer = KafkaConsumer(bootstrap_servers=["localhost:9092"], group_id="testgroup", auto_offset_reset="earliest", enable_auto_commit=False)
consumer.assign([tp])
print "start offset is ", consumer.position(tp)
for message in consumer:print messageconsumer.commit(message.offset + 1)

启动 Consumer

$ python consumer.py
start offset is 98
ConsumerRecord(topic=u'test', partition=0, offset=98, timestamp=1512559632153, timestamp_type=0, key='824', value='824', checksum=828849435, serialized_key_size=3, serialized_value_size=3)
...
ConsumerRecord(topic=u'test', partition=0, offset=827, timestamp=1512559635164, timestamp_type=0, key='827', value='827', checksum=442222330, serialized_key_size=3, serialized_value_size=3)
ConsumerRecord(topic=u'test', partition=0, offset=828, timestamp=1512559636169, timestamp_type=0, key='828', value='828', checksum=-267344764, serialized_key_size=3, serialized_value_size=3)
ConsumerRecord(topic=u'test', partition=0, offset=829, timestamp=1512559637173, timestamp_type=0, key='829', value='829', checksum=1225853586, serialized_key_size=3, serialized_value_size=3)

可以看到 Consumer 从 offset=98 的消息开始消费,到 offset=829 时,我们 Ctrl+C 退出 Consumer。

我们再次启动 Consumer

$ python consumer.py
start offset is 830
ConsumerRecord(topic=u'test', partition=0, offset=830, timestamp=1512559638177, timestamp_type=0, key='830', value='830', checksum=1003305652, serialized_key_size=3, serialized_value_size=3)
ConsumerRecord(topic=u'test', partition=0, offset=831, timestamp=1512559639181, timestamp_type=0, key='831', value='831', checksum=-361607666, serialized_key_size=3, serialized_value_size=3)
ConsumerRecord(topic=u'test', partition=0, offset=832, timestamp=1512559640185, timestamp_type=0, key='832', value='832', checksum=-345891932, serialized_key_size=3, serialized_value_size=3)
...

可以看到重新启动后,Consumer 从上一次记录的 offset 开始继续消费消息。之后每一次 Consumer 重新启动,Consumer 都会从上一次停止的地方继续开始消费。

6.总结

本文主要介绍了一下 Kafka 的基本概念,并结合一些实验帮助理解 Kafka 中的一些难点,如多个 Consumer 的容错性机制,Offset 管理。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/163082.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

光伏电站绝缘阻抗异常排查方法

安科瑞 崔丽洁 概述 01 光伏发电是依托电力电子技术,利用太阳光照将太阳能转化为电能的系统。光伏发电不需要使用化石燃料,减少了发电时产生的污染,并且减少了能源消耗。光伏发电依托政策扶持,快速在国内普及。光伏发电与传统火电发电原理不同…

模糊测试面面观 | 车联网场景模糊测试解决方案

随着国际国内汽车信息安全标准的出台、用户安全意识的不断提高以及针对智能网联汽车安全攻击的不断规模化复杂化和深入,智能网联汽车系统及车联网安全形势严峻。 然而大部分车型在信息安全防护方面水平偏低,车内相关的联网部件及控制部件防护可靠性不高&…

Python接口自动化 —— token登录(详解)

简介 为了验证用户登录情况以及减轻服务器的压力,减少频繁的查询数据库,使服务器更加健壮。有些登录不是用 cookie 来验证的,是用 token 参数来判断是否登录。token 传参有两种一种是放在请求头里,本质上是跟 cookie 是一样的&am…

实时精准 自我防护 | 开源网安RASP平台能力获客户认可!

近日,开源网安收到了一封来自华润数科的感谢信,表达了对开源网安团队在网络安全工作中给予大力支持的衷心感谢。开源网安十分注重客户的需求和信任,客户的满意和认可是开源网安最大的追求。 在助力华润数科网络安全工作开展过程中&#xff0c…

1数据结构的分类,算法效率的度量

一,数据结构的定义和分类 数据结构:数据之间的关系即数据的逻辑结构,因为要存储到计算机里,所以视为将这个数据的逻辑结构映射到存储器里。即数据因为自身的和其他的数据的关系而在计算机内存储的方式。我们就归类了一些类型。 二…

【数据结构】栈(C语言实现)

📙 作者简介 :RO-BERRY 📗 学习方向:致力于C、C、数据结构、TCP/IP、数据库等等一系列知识 📒 日后方向 : 偏向于CPP开发以及大数据方向,欢迎各位关注,谢谢各位的支持 栈 1.栈1.1栈的概念及结构…

2023年中国商业版服务器操作系统市场发展规模分析:未来将保持稳定增长[图]

服务器操作系统一般指的是安装在大型计算机上的操作系统,比如Web服务器、应用服务器和数据库服务器等,是企业IT系统的基础架构平台,也是按应用领域划分的三类操作系统之一。同时服务器操作系统也可以安装在个人电脑上。 服务器操作系统分类 …

荧光EEM平滑教程(去除散射)

说明:本文为drEEM工具箱官网教程《Smoothing EEMs》的笔记。 瑞利散射是一种弹性散射。来自激发源的光子遇到溶液中的分子之后,反弹到各个方向。 最重要的是,瑞利散射(的发射波长)总是与激发波长完全相等。 因此&…

深入研究Java线程Dump分析:掌握发现和解决多线程问题的关键技巧

1 Thread Dump介绍 1.1 什么是Thread Dump Thread Dump是非常有用的诊断Java应用问题的工具。每一个Java虚拟机都有及时生成所有线程在某一点状态的thread-dump的能力,虽然各个 Java虚拟机打印的thread dump略有不同,但是大多都提供了当前活动线程的快…

关于python环境下的语音转文本,whisper或funASR

因为前阵子,有需求要将语音转为文本再进行下一步操作。感觉这个技术也不算是什么新需求,但是一搜,都是大厂的api,或者是什么什么软件,由于想要免费的,同时也要嵌入在代码中,所以这些都不能用。、…

一个三年女软件测试的成长之路

如果你恰好刚刚进入一家新公司,领导一上来就让你开展自动化测试,作为一名初出茅庐的测试新人,除了手足无措,你只能默默慨叹自己能力尚欠,眼前只会出现一个又一个无从下手的问题: 作为手工测试,…

55 零钱兑换

零钱兑换 题解1 DP另一种解法(更好记) 题解2 递归 给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。 计算并返回可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回…

1024程序员节特辑 | ELK+ 用户画像构建个性化推荐引擎,智能实现“千人千面”

专栏集锦,赶紧收藏以备不时之需 Spring Cloud实战专栏:https://blog.csdn.net/superdangbo/category_9270827.html Python 实战专栏:https://blog.csdn.net/superdangbo/category_9271194.html Logback 详解专栏:https://blog.…

《Operating Systems:Three Easy Pieces》 操作系统导论【二】 虚拟化内存

【Operating Systems:Three Easy Pieces 操作系统导论 】 (九) 抽象:地址空间 早期系统 操作系统曾经是一组函数(实际上是一个库),在内存中(在本例中,从物理地址0开始),然后有一…

程序员各阶段应该掌握的技术与能力

人人都是产品经理 | 产品经理、产品爱好者学习交流平台 (woshipm.com)

华为云云耀云服务器L实例评测|使用clickhouse-benchmark工具对ClickHouse的性能测试

目录 引言 1 ClickHouse简介 2 利用docker安装ClickHouse 2.1 安装Docker 2.2 下载ClickHouse Docker镜像 2.3 创建ClickHouse容器 2.4 访问ClickHouse 3 创建测试表 4 运行 clickhouse-benchmark 5 分析结果 结语 引言 利用华为云的云耀云服务器L实例&#xff0c…

lunux查找占用内存前10的进程

1、使用Top命令查询进程 输入 top 命令,然后按下大写M按照内存MEM排序,按下大写P按照CPU排序。 2、查询占用CPU最高的前10个进程 ps aux|head -1;ps aux|grep -v PID|sort -rn -k 3|head 3、查询占用内存最大的前10个进程 ps aux|head -1;ps aux|grep …

【ELK使用指南 2】常用的 Logstash filter 插件详解(附应用实例)

Logstash filter 一、logstash filter过滤插件的常用模块简介二、grok 正则捕获插件2.1 grok插件的作用2.2 内置正则表达式2.3 自定义正则表达式 三、mutate 数据修改插件3.1 mutate插件的作用3.2 常用的配置选项3.3 mutate插件应用实例 四、multiline 多行合并插件4.1 multili…

电容元件符号与工作原理:电子电路中的电荷储存利器 | 百能云芯

电容是电子电路中常见的元件之一,它具有储存电荷的能力。在电路图中,电容有一个特定的元件符号,用于表示其存在和连接方式。接下来,云芯带您深入了解电容的元件符号以及它的工作原理。 电容的元件符号通常由两个平行的线段组成&am…

世界粮食日:宏工科技有对策,赋能食品生产高效可持续发展

10月16日是世界粮食日。随着全球人口的增长,人们对高品质食品的需求也越来越大,如何实现“更好生产、更好营养”成为了食品生产与供应的重要话题。15年来,宏工科技专注物料处理自动化领域,提供食品物料处理一站式解决方案以提高生…