竞赛 深度学习乳腺癌分类

文章目录

  • 1 前言
  • 2 前言
  • 3 数据集
    • 3.1 良性样本
    • 3.2 病变样本
  • 4 开发环境
  • 5 代码实现
    • 5.1 实现流程
    • 5.2 部分代码实现
      • 5.2.1 导入库
      • 5.2.2 图像加载
      • 5.2.3 标记
      • 5.2.4 分组
      • 5.2.5 构建模型训练
  • 6 分析指标
    • 6.1 精度,召回率和F1度量
    • 6.2 混淆矩阵
  • 7 结果和结论
  • 8 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习乳腺癌分类

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 前言

乳腺癌是全球第二常见的女性癌症。2012年,它占所有新癌症病例的12%,占所有女性癌症病例的25%。

当乳腺细胞生长失控时,乳腺癌就开始了。这些细胞通常形成一个肿瘤,通常可以在x光片上直接看到或感觉到有一个肿块。如果癌细胞能生长到周围组织或扩散到身体的其他地方,那么这个肿瘤就是恶性的。

以下是报告:

  • 大约八分之一的美国女性(约12%)将在其一生中患上浸润性乳腺癌。
  • 2019年,美国预计将有268,600例新的侵袭性乳腺癌病例,以及62,930例新的非侵袭性乳腺癌。
  • 大约85%的乳腺癌发生在没有乳腺癌家族史的女性身上。这些发生是由于基因突变,而不是遗传突变
  • 如果一名女性的一级亲属(母亲、姐妹、女儿)被诊断出患有乳腺癌,那么她患乳腺癌的风险几乎会增加一倍。在患乳腺癌的女性中,只有不到15%的人的家人被诊断出患有乳腺癌。

3 数据集

该数据集为学长实验室数据集。

搜先这是图像二分类问题。我把数据拆分如图所示


dataset train
benign
b1.jpg
b2.jpg
//
malignant
m1.jpg
m2.jpg
// validation
benign
b1.jpg
b2.jpg
//
malignant
m1.jpg
m2.jpg
//…

训练文件夹在每个类别中有1000个图像,而验证文件夹在每个类别中有250个图像。

3.1 良性样本

在这里插入图片描述
在这里插入图片描述

3.2 病变样本

在这里插入图片描述
在这里插入图片描述

4 开发环境

  • scikit-learn
  • keras
  • numpy
  • pandas
  • matplotlib
  • tensorflow

5 代码实现

5.1 实现流程

完整的图像分类流程可以形式化如下:

我们的输入是一个由N个图像组成的训练数据集,每个图像都有相应的标签。

然后,我们使用这个训练集来训练分类器,来学习每个类。

最后,我们通过让分类器预测一组从未见过的新图像的标签来评估分类器的质量。然后我们将这些图像的真实标签与分类器预测的标签进行比较。

5.2 部分代码实现

5.2.1 导入库

import json
import math
import os
import cv2
from PIL import Image
import numpy as np
from keras import layers
from keras.applications import DenseNet201
from keras.callbacks import Callback, ModelCheckpoint, ReduceLROnPlateau, TensorBoard
from keras.preprocessing.image import ImageDataGenerator
from keras.utils.np_utils import to_categorical
from keras.models import Sequential
from keras.optimizers import Adam
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import cohen_kappa_score, accuracy_score
import scipy
from tqdm import tqdm
import tensorflow as tf
from keras import backend as K
import gc
from functools import partial
from sklearn import metrics
from collections import Counter
import json
import itertools

5.2.2 图像加载

接下来,我将图像加载到相应的文件夹中。

def Dataset_loader(DIR, RESIZE, sigmaX=10):IMG = []read = lambda imname: np.asarray(Image.open(imname).convert("RGB"))for IMAGE_NAME in tqdm(os.listdir(DIR)):PATH = os.path.join(DIR,IMAGE_NAME)_, ftype = os.path.splitext(PATH)if ftype == ".png":img = read(PATH)img = cv2.resize(img, (RESIZE,RESIZE))IMG.append(np.array(img))return IMGbenign_train = np.array(Dataset_loader('data/train/benign',224))
malign_train = np.array(Dataset_loader('data/train/malignant',224))
benign_test = np.array(Dataset_loader('data/validation/benign',224))
malign_test = np.array(Dataset_loader('data/validation/malignant',224))

5.2.3 标记

之后,我创建了一个全0的numpy数组,用于标记良性图像,以及全1的numpy数组,用于标记恶性图像。我还重新整理了数据集,并将标签转换为分类格式。

benign_train_label = np.zeros(len(benign_train))
malign_train_label = np.ones(len(malign_train))
benign_test_label = np.zeros(len(benign_test))
malign_test_label = np.ones(len(malign_test))X_train = np.concatenate((benign_train, malign_train), axis = 0)
Y_train = np.concatenate((benign_train_label, malign_train_label), axis = 0)
X_test = np.concatenate((benign_test, malign_test), axis = 0)
Y_test = np.concatenate((benign_test_label, malign_test_label), axis = 0)s = np.arange(X_train.shape[0])
np.random.shuffle(s)
X_train = X_train[s]
Y_train = Y_train[s]s = np.arange(X_test.shape[0])
np.random.shuffle(s)
X_test = X_test[s]
Y_test = Y_test[s]Y_train = to_categorical(Y_train, num_classes= 2)
Y_test = to_categorical(Y_test, num_classes= 2)

5.2.4 分组

然后我将数据集分成两组,分别具有80%和20%图像的训练集和测试集。让我们看一些样本良性和恶性图像

x_train, x_val, y_train, y_val = train_test_split(X_train, Y_train, test_size=0.2, random_state=11
)w=60
h=40
fig=plt.figure(figsize=(15, 15))
columns = 4
rows = 3for i in range(1, columns*rows +1):ax = fig.add_subplot(rows, columns, i)if np.argmax(Y_train[i]) == 0:ax.title.set_text('Benign')else:ax.title.set_text('Malignant')plt.imshow(x_train[i], interpolation='nearest')
plt.show()

在这里插入图片描述

5.2.5 构建模型训练

我使用的batch值为16。batch是深度学习中最重要的超参数之一。我更喜欢使用更大的batch来训练我的模型,因为它允许从gpu的并行性中提高计算速度。但是,众所周知,batch太大会导致泛化效果不好。在一个极端下,使用一个等于整个数据集的batch将保证收敛到目标函数的全局最优。但是这是以收敛到最优值较慢为代价的。另一方面,使用更小的batch已被证明能够更快的收敛到好的结果。这可以直观地解释为,较小的batch允许模型在必须查看所有数据之前就开始学习。使用较小的batch的缺点是不能保证模型收敛到全局最优。因此,通常建议从小batch开始,通过训练慢慢增加batch大小来加快收敛速度。

我还做了一些数据扩充。数据扩充的实践是增加训练集规模的一种有效方式。训练实例的扩充使网络在训练过程中可以看到更加多样化,仍然具有代表性的数据点。

然后,我创建了一个数据生成器,自动从文件夹中获取数据。Keras为此提供了方便的python生成器函数。

BATCH_SIZE = 16train_generator = ImageDataGenerator(zoom_range=2,  # 设置范围为随机缩放rotation_range = 90,horizontal_flip=True,  # 随机翻转图片vertical_flip=True,  # 随机翻转图片)

下一步是构建模型。这可以通过以下3个步骤来描述:

  • 我使用DenseNet201作为训练前的权重,它已经在Imagenet比赛中训练过了。设置学习率为0.0001。

  • 在此基础上,我使用了globalaveragepooling层和50%的dropout来减少过拟合。

  • 我使用batch标准化和一个以softmax为激活函数的含有2个神经元的全连接层,用于2个输出类的良恶性。

  • 我使用Adam作为优化器,使用二元交叉熵作为损失函数。

    def build_model(backbone, lr=1e-4):model = Sequential()model.add(backbone)model.add(layers.GlobalAveragePooling2D())model.add(layers.Dropout(0.5))model.add(layers.BatchNormalization())model.add(layers.Dense(2, activation='softmax'))model.compile(loss='binary_crossentropy',optimizer=Adam(lr=lr),metrics=['accuracy'])return modelresnet = DenseNet201(weights='imagenet',include_top=False,input_shape=(224,224,3)
    )model = build_model(resnet ,lr = 1e-4)
    model.summary()
    

让我们看看每个层中的输出形状和参数。

在这里插入图片描述
在训练模型之前,定义一个或多个回调函数很有用。非常方便的是:ModelCheckpoint和ReduceLROnPlateau。

  • ModelCheckpoint:当训练通常需要多次迭代并且需要大量的时间来达到一个好的结果时,在这种情况下,ModelCheckpoint保存训练过程中的最佳模型。

  • ReduceLROnPlateau:当度量停止改进时,降低学习率。一旦学习停滞不前,模型通常会从将学习率降低2-10倍。这个回调函数会进行监视,如果在’patience’(耐心)次数下,模型没有任何优化的话,学习率就会降低。

在这里插入图片描述

该模型我训练了60个epoch。

learn_control = ReduceLROnPlateau(monitor='val_acc', patience=5,verbose=1,factor=0.2, min_lr=1e-7)filepath="weights.best.hdf5"
checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max')history = model.fit_generator(train_generator.flow(x_train, y_train, batch_size=BATCH_SIZE),steps_per_epoch=x_train.shape[0] / BATCH_SIZE,epochs=20,validation_data=(x_val, y_val),callbacks=[learn_control, checkpoint]
)

6 分析指标

评价模型性能最常用的指标是精度。然而,当您的数据集中只有2%属于一个类(恶性),98%属于其他类(良性)时,错误分类的分数就没有意义了。你可以有98%的准确率,但仍然没有发现恶性病例,即预测的时候全部打上良性的标签,这是一个不好的分类器。

history_df = pd.DataFrame(history.history)
history_df[['loss', 'val_loss']].plot()history_df = pd.DataFrame(history.history)
history_df[['acc', 'val_acc']].plot()

在这里插入图片描述

6.1 精度,召回率和F1度量

为了更好地理解错误分类,我们经常使用以下度量来更好地理解真正例(TP)、真负例(TN)、假正例(FP)和假负例(FN)。

精度反映了被分类器判定的正例中真正的正例样本的比重。

召回率反映了所有真正为正例的样本中被分类器判定出来为正例的比例。

F1度量是准确率和召回率的调和平均值。

在这里插入图片描述

6.2 混淆矩阵

混淆矩阵是分析误分类的一个重要指标。矩阵的每一行表示预测类中的实例,而每一列表示实际类中的实例。对角线表示已正确分类的类。这很有帮助,因为我们不仅知道哪些类被错误分类,还知道它们为什么被错误分类。

from sklearn.metrics import classification_report
classification_report( np.argmax(Y_test, axis=1), np.argmax(Y_pred_tta, axis=1))from sklearn.metrics import confusion_matrixdef plot_confusion_matrix(cm, classes,normalize=False,title='Confusion matrix',cmap=plt.cm.Blues):if normalize:cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]print("Normalized confusion matrix")else:print('Confusion matrix, without normalization')print(cm)plt.imshow(cm, interpolation='nearest', cmap=cmap)plt.title(title)plt.colorbar()tick_marks = np.arange(len(classes))plt.xticks(tick_marks, classes, rotation=55)plt.yticks(tick_marks, classes)fmt = '.2f' if normalize else 'd'thresh = cm.max() / 2.for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):plt.text(j, i, format(cm[i, j], fmt),horizontalalignment="center",color="white" if cm[i, j] > thresh else "black")plt.ylabel('True label')plt.xlabel('Predicted label')plt.tight_layout()cm = confusion_matrix(np.argmax(Y_test, axis=1), np.argmax(Y_pred, axis=1))cm_plot_label =['benign', 'malignant']
plot_confusion_matrix(cm, cm_plot_label, title ='Confusion Metrix for Skin Cancer')

在这里插入图片描述

7 结果和结论

在这里插入图片描述
在这个博客中,学长我演示了如何使用卷积神经网络和迁移学习从一组显微图像中对良性和恶性乳腺癌进行分类,希望对大家有所帮助。

8 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/163478.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

竞赛选题 深度学习YOLO抽烟行为检测 - python opencv

文章目录 1 前言1 课题背景2 实现效果3 Yolov5算法3.1 简介3.2 相关技术 4 数据集处理及实验5 部分核心代码6 最后 1 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 基于深度学习YOLO抽烟行为检测 该项目较为新颖,适合作为竞赛课…

简单测试一下 展锐的 UDX710 性能

最近在接触 联通5G CPE VN007 ,发现使用的是 展锐的Unisoc UDX710 CPU,正好简单的测试一下这颗CPU CPU信息 UDX710 是一颗 双核 ARM Cortex-A55 处理器,主频高达 1.35GHz processor : 0 BogoMIPS : 52.00 Features : fp…

Django中ORM框架的各个操作

我们会好奇,python这么简洁的语言,数据查询是如何做的呢?我将进一步详细和深入地介绍Django中ORM框架的各个方面,包括MySQL的增删改查和复杂查询。让我们分步骤进行。 ORM框架介绍 Django的ORM框架是一个用于与数据库进行交互的工…

Spring Boot项目中使用 TrueLicense 生成和验证License(附源码)

1、Linux 在客户linux上新建layman目录,导入license.sh文件, [rootlocalhost layman]# mkdir -p /laymanlicense.sh文件内容: #!/bin/bash # 1.获取要监控的本地服务器IP地址 IPifconfig | grep inet | grep -vE inet6|127.0.0.1 | awk {p…

【LeetCode】 412. Fizz Buzz

题目链接 文章目录 Python3 【O(n) O(1)】C.emplace_back() 【C 11 之后】 Python3 【O(n) O(1)】 初始版本 class Solution:def fizzBuzz(self, n: int) -> List[str]:ans []for i in range(1, n1):if i % 5 0 and i % 3 0:ans.append("FizzBuzz")elif i % …

07 创建型模式-单例模式

1.单例模式介绍 单例模式(Singleton Pattern)是 Java 中最简单的设计模式之一,此模式保证 某个类在运行期间,只有一个实例对外提供服务,而这个类被称为单例类。 2.使用单例模式要做的两件事 保证一个类只有一个实例…

【API篇】五、Flink分流合流API

文章目录 1、filter算子实现分流2、分流:使用侧输出流3、合流:union4、合流:connect5、connect案例 分流,很形象的一个词,就像一条大河,遇到岸边有分叉的,而形成了主流和测流。对于数据流也一样…

GitHub-使用 Git工具 创建密钥id_rsa.pub

快速导航 步骤1 打开Git Bash步骤2 输入指令【ssh-keygen】步骤3 打开创建的公钥文件步骤4 复制其中所有内容步骤5 打开GitHub中的Setting界面步骤6 添加SSH keys 步骤1 打开Git Bash 打开Git Bash 工具 步骤2 输入指令【ssh-keygen】 输入指令【ssh-keygen】,并…

【四:httpclient的使用】

目录 1、Demo案例2、请求一个带cookies的get请求3、请求一个带cookies的post请求案例一,案例二的properties的配置 1、Demo案例 public class MyHttpClient {Testpublic void test1() throws IOException {//用来存放我们的结果String result;HttpGet get new Htt…

安装VSCode,提升工作效率!iPad Pro生产力进阶之路

文章目录 前言1. 本地环境配置2. 内网穿透2.1 安装cpolar内网穿透(支持一键自动安装脚本)2.2 创建HTTP隧道 3. 测试远程访问4. 配置固定二级子域名4.1 保留二级子域名4.2 配置二级子域名 5. 测试使用固定二级子域名远程访问6. iPad通过软件远程vscode6.1 创建TCP隧道 7. ipad远…

模型量化笔记--KL散度量化

KL散度量化 前面介绍的非对称量化中,是将数据中的min值和max值直接映射到[-128, 127]。 同样的,前面介绍的对称量化是将数据的最大绝对值 ∣ m a x ∣ |max| ∣max∣直接映射到127。 上面两种直接映射的方法比较粗暴,而TensorRT中的int8量化…

openGauss学习笔记-102 openGauss 数据库管理-管理数据库安全-客户端接入之查看数据库连接数

文章目录 openGauss学习笔记-102 openGauss 数据库管理-管理数据库安全-客户端接入之查看数据库连接数102.1 背景信息102.2 操作步骤 openGauss学习笔记-102 openGauss 数据库管理-管理数据库安全-客户端接入之查看数据库连接数 102.1 背景信息 当用户连接数达到上限后&#…

小黑子—Maven基础

Maven基础 一 小黑子的Maven学习1. Mavn的介绍2. Maven基础概念2.1 仓库2.2 坐标2.3 仓库配置 3. 手动写一个maven项目3.1 Maven项目构建命令3.2 插件创建工程 4. IDEA下的maven项目5. 依赖管理5.1 依赖配置5.2 依赖传递5.3 可选依赖(不透明)5.4 排除依赖…

【一:实战开发testng的介绍】

目录 1、主要内容1.1、为啥要做接口测试1.2、接口自动化测试落地过程1.3、接口测试范围1.4、手工接口常用的工具1.5、自动化框架的设计 2、testng自动化测试框架基本测试1、基本注解2、忽略测试3、依赖测试4、超时测试5、异常测试6、通过xml文件参数测试7、通过data实现数据驱动…

UWB十个知识点

UWB是一直被基于厚望的高精度定位技术 1:定位技术及UWB特点 位置空间感知技术包括了GNSS、RFID、蓝牙和UWB,在室内和区域空间测量最具技术优势的技术是UWB。 GNSS是广域定位技术,室内以及建筑物旁边等场景,GNSS无法实现定位&am…

【微服务 SpringCloud】实用篇 · Ribbon负载均衡

微服务(4) 文章目录 微服务(4)1. 负载均衡原理2. 源码跟踪1)LoadBalancerIntercepor2)LoadBalancerClient3)负载均衡策略IRule4)总结 3. 负载均衡策略3.1 负载均衡策略3.2 自定义负载…

企业IT资产设备折旧残值如何计算

环境: 企业/公司 IT资产 问题描述: 企业IT设备折旧残值如何计算? 解决方案: 1.按三年折旧 净值原值-月折旧额折旧月份 , 月折旧额原值(1-3%)/36 折旧月份ROUND(E2*(1-3%)/36,2) 2.净值E2-F2*G2

vue使用pdf 导出当前页面,(jspdf, html2canvas )

需要安装两个插件 npm install html2canvas jspdfyarn add html2canvas jspdf<div class"app-container" id"pdfPage">我是内容 </div><el-button size"mini" click"onExportPdf">导出数据</el-button>onexp…

代码随想录算法训练营第23期day24|回溯算法理论基础、77. 组合

目录 一、回溯算法基础 回溯法模板 二、&#xff08;leetcode 77&#xff09;组合 剪枝 一、回溯算法基础 1.回溯的本质是穷举&#xff0c;穷举所有可能&#xff0c;然后选出想要的答案&#xff08;为了提升效率&#xff0c;最多再加一个剪枝&#xff09; 2.回溯法解决的…

凝聚技术力量 共建测试生态 ——集成电路测试技术交流日成功举办

10月18日下午&#xff0c;凝聚技术力量&#xff0c;共建测试生态 ——集成电路测试技术交流会在上海成功举办。来自全国各地知名专家学者、技术大咖及企业代表齐聚一堂&#xff0c;共同探讨封装测试技术的发展方向&#xff0c;共话产业未来&#xff0c;共促产业发展。 本次活动…