基于LSTM的天气预测 - 时间序列预测 计算机竞赛

0 前言

🔥 优质竞赛项目系列,今天要分享的是

机器学习大数据分析项目

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate


1 数据集介绍


df = pd.read_csv(‘/home/kesci/input/jena1246/jena_climate_2009_2016.csv’)
df.head()

在这里插入图片描述

如上所示,每10分钟记录一次观测值,一个小时内有6个观测值,一天有144(6x24)个观测值。

给定一个特定的时间,假设要预测未来6小时的温度。为了做出此预测,选择使用5天的观察时间。因此,创建一个包含最后720(5x144)个观测值的窗口以训练模型。

下面的函数返回上述时间窗以供模型训练。参数 history_size 是过去信息的滑动窗口大小。target_size
是模型需要学习预测的未来时间步,也作为需要被预测的标签。

下面使用数据的前300,000行当做训练数据集,其余的作为验证数据集。总计约2100天的训练数据。


def univariate_data(dataset, start_index, end_index, history_size, target_size):
data = []
labels = []

    start_index = start_index + history_sizeif end_index is None:end_index = len(dataset) - target_sizefor i in range(start_index, end_index):indices = range(i-history_size, i)# Reshape data from (history`1_size,) to (history_size, 1)data.append(np.reshape(dataset[indices], (history_size, 1)))labels.append(dataset[i+target_size])return np.array(data), np.array(labels)

2 开始分析

2.1 单变量分析

首先,使用一个特征(温度)训练模型,并在使用该模型做预测。

2.1.1 温度变量

从数据集中提取温度


uni_data = df[‘T (degC)’]
uni_data.index = df[‘Date Time’]
uni_data.head()

观察数据随时间变化的情况

在这里插入图片描述
进行标准化


#标准化
uni_train_mean = uni_data[:TRAIN_SPLIT].mean()
uni_train_std = uni_data[:TRAIN_SPLIT].std()

uni_data = (uni_data-uni_train_mean)/uni_train_std
#写函数来划分特征和标签
univariate_past_history = 20
univariate_future_target = 0
x_train_uni, y_train_uni = univariate_data(uni_data, 0, TRAIN_SPLIT, # 起止区间univariate_past_history,univariate_future_target)
x_val_uni, y_val_uni = univariate_data(uni_data, TRAIN_SPLIT, None,univariate_past_history,univariate_future_target)

可见第一个样本的特征为前20个时间点的温度,其标签为第21个时间点的温度。根据同样的规律,第二个样本的特征为第2个时间点的温度值到第21个时间点的温度值,其标签为第22个时间点的温度……

在这里插入图片描述

在这里插入图片描述

2.2 将特征和标签切片


BATCH_SIZE = 256
BUFFER_SIZE = 10000

train_univariate = tf.data.Dataset.from_tensor_slices((x_train_uni, y_train_uni))
train_univariate = train_univariate.cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE).repeat()val_univariate = tf.data.Dataset.from_tensor_slices((x_val_uni, y_val_uni))
val_univariate = val_univariate.batch(BATCH_SIZE).repeat()

2.3 建模


simple_lstm_model = tf.keras.models.Sequential([
tf.keras.layers.LSTM(8, input_shape=x_train_uni.shape[-2:]), # input_shape=(20,1) 不包含批处理维度
tf.keras.layers.Dense(1)
])

simple_lstm_model.compile(optimizer='adam', loss='mae')

2.4 训练模型


EVALUATION_INTERVAL = 200
EPOCHS = 10

simple_lstm_model.fit(train_univariate, epochs=EPOCHS,steps_per_epoch=EVALUATION_INTERVAL,validation_data=val_univariate, validation_steps=50)

训练过程

在这里插入图片描述

训练结果 - 温度预测结果
在这里插入图片描述

2.5 多变量分析

在这里,我们用过去的一些压强信息、温度信息以及密度信息来预测未来的一个时间点的温度。也就是说,数据集中应该包括压强信息、温度信息以及密度信息。

2.5.1 压强、温度、密度随时间变化绘图

在这里插入图片描述

2.5.2 将数据集转换为数组类型并标准化


dataset = features.values
data_mean = dataset[:TRAIN_SPLIT].mean(axis=0)
data_std = dataset[:TRAIN_SPLIT].std(axis=0)

dataset = (dataset-data_mean)/data_stddef multivariate_data(dataset, target, start_index, end_index, history_size,target_size, step, single_step=False):data = []labels = []start_index = start_index + history_sizeif end_index is None:end_index = len(dataset) - target_sizefor i in range(start_index, end_index):indices = range(i-history_size, i, step) # step表示滑动步长data.append(dataset[indices])if single_step:labels.append(target[i+target_size])else:labels.append(target[i:i+target_size])return np.array(data), np.array(labels)

2.5.3 多变量建模训练训练

single_step_model = tf.keras.models.Sequential()single_step_model.add(tf.keras.layers.LSTM(32,input_shape=x_train_single.shape[-2:]))single_step_model.add(tf.keras.layers.Dense(1))single_step_model.compile(optimizer=tf.keras.optimizers.RMSprop(), loss='mae')single_step_history = single_step_model.fit(train_data_single, epochs=EPOCHS,steps_per_epoch=EVALUATION_INTERVAL,validation_data=val_data_single,validation_steps=50)def plot_train_history(history, title):loss = history.history['loss']val_loss = history.history['val_loss']epochs = range(len(loss))plt.figure()plt.plot(epochs, loss, 'b', label='Training loss')plt.plot(epochs, val_loss, 'r', label='Validation loss')plt.title(title)plt.legend()plt.show()plot_train_history(single_step_history,'Single Step Training and validation loss')

在这里插入图片描述
在这里插入图片描述

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/164286.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

React函数式写法和类式写法的区别(以一个计数器功能为例子)

函数式写法更加简洁和函数式编程思维导向,适用于无状态、UI纯粹的组件,且可以使用Hooks处理副作用。而类式写法适用于有内部状态、生命周期方法和复杂交互逻辑的组件,提供了更多的灵活性和控制力。 文章目录 一、计数器功能演示 1.函数式写法…

uniapp(uncloud) 使用生态开发接口详情5(云公共模块)

1.uniCloud官网 云对象中云公共模块: 网站: https://uniapp.dcloud.net.cn/uniCloud/cf-common.html // 官网介绍 cloudfunctions├─common // 云函数公用模块目录| └─hello-common // 云函数公用模块| ├─package.json| └─index.js // 公用模块代码&#xff0…

R语言处理数量很大(千万级及以上)的数据时的拆分策略-案例一

主要是用R中的groupb_by和 summarise分组查询和统计数据量

vlookup函数踩坑(wps)

使用wps的朋友看过来 vlookup函数踩坑,vlookup(查找值,查找范围,返回值的索引,精确查找or模糊查找) 我们要查找的数据的那一列,必须是查找范围的第一列! 案例,看下面的…

Jmeter用于接口测试中,关联如何实现

Jmeter用于接口测试时,后一个接口经常需要用到前一次接口返回的结果,应该如何获取前一次请求的结果值,应用于后一个接口呢,拿一个登录的例子来说明如何获取。 1、打开jmeter, 使用的3.3的版本,新建一个测试计划&#…

【MyBatis】mvc模式以及Mapper文件中的namespace以及ORM思想

目录 什么是MVC三层架构,初步了解? namespace的作用是什么? Mapper文件中的namespace? ORM思想(对象关系映射思想) 其中提供了一套映射规则和API 什么是MVC三层架构,初步了解? 三…

以哈战争或推动美国「屠杀」比特币

摘要:加密货币公司急于在国会对以色列被袭引发的审查之前采取行动。 作者:JASPER GOODMAN 来源:POLITICO 编译:WEEX Exchange 原文标题:How Elizabeth Warren is making Hamas crypto’s latest Washington woe 编者按…

TODO Vue typescript forEach的bug,需要再核實

forEach 一個string[],只有最後一個匹配條件有效,其它條件無效。 所以,只能替換成普通的for循環。 console.log(taskList)// for (const _task of taskList.value) {// if (_task invoiceSendEmail) {// form.value.invoiceSendEmail…

RESR开发

REST简介 REST(Representation State Transfer),表现形式状态转换 优点 隐藏资源的访问行为,无法通过地址得知对方资源是何种操作书写简化 按照REST风格访问资源时使用行为动作区分对资源进行了何种操作。 根据REST风格对资源进行访问是RESTFUL REST风格 Restfu…

java如何导入导出excel

在Java中,可以使用多种方式导入和导出Excel文件。下面将详细介绍几种常见的方法及其实现步骤: 1. Apache POI库: Apache POI是一个开源的Java库,提供了许多类和方法用于处理Microsoft Office格式的文档,包括Excel文件…

图像处理软件Photoshop 2023 mac新增功能 ps 2023中文版

​Photoshop 2023 mac是一款功能强大、易用且灵活的图像编辑软件,旨在满足专业设计师和摄影师的需求。无论您是处理照片、制作图形还是进行艺术创作,Photoshop 2023 都能为您提供丰富的工具和效果,帮助您实现创意想法。Photoshop还支持多种文…

Protocols/面向协议编程, DependencyInjection/依赖式注入 的使用

1. Protocols 定义实现协议,面向协议编码 1.1 创建面向协议实例 ProtocolsBootcamp.swift import SwiftUI/// 颜色样式协议 protocol ColorThemeProtocol {var primary: Color { get }var secondary: Color { get }var tertiary: Color { get } }struct DefaultCol…

Springboot结合Mockito写单元测试实践和原理

文章目录 前言一、使用最佳实践使用场景SpyBean失效场景解决Mock失效的问题避免FactoryBean的实现方式使用MockBean,但是要指定name 个人推荐 二、原理1. MockBean2.SpyBean方法调用 总结 前言 相信看我博客的都是javaer,工作中一般都是使用Springboot框…

已经有多人中招,不要被AI换脸技术骗了!

您好,我是码农飞哥(wei158556),感谢您阅读本文,欢迎一键三连哦。 💪🏻 1. Python基础专栏,基础知识一网打尽,9.9元买不了吃亏,买不了上当。 Python从入门到精…

汽车辅助系统

目录 一,项目描述 二,项目 功能 三,代码实现 (1)倒车雷达 (2)AD(对 雨滴与光敏电阻传感器进行AD采集) (3)雨刷 (4)灯光 最后总结&#xf…

vue 树状结构数据渲染 (java 处理 list ->树状)

树状结构 Element ui https://element.eleme.cn/#/zh-CN/component/tree <el-tree :data"data" :props"defaultProps" node-click"handleNodeClick"></el-tree><script>export default {data() {return {data: [{label: 一级…

功能集成,不占空间,同为科技TOWE嵌入式桌面PDU超级插座

随着现代社会人们生活水平的不断提高&#xff0c;消费者对生活质量有着越来越高的期望。生活中&#xff0c;各式各样的电气设备为我们的生活带来了便利&#xff0c;在安装使用这些用电器时&#xff0c;需要考虑电源插排插座的选择。传统的插排插座设计多暴露于空间之中&#xf…

pdf转二维码怎么做?pdf二维码制作简单技巧

pdf是一种很常见的文件储存格式&#xff0c;一般通知、发票、简历都会保存为这种格式来使用&#xff0c;那么需要将pdf格式文件做成二维码&#xff0c;该用什么方式来制作呢&#xff1f;下面给大家分享一个pdf转二维码的在线工具&#xff0c;可以通过上传文件一键生成二维码&am…

优思学院|六西格玛的发展历程是怎样的?

在商业世界的星空中&#xff0c;有一颗璀璨的星星&#xff0c;它的名字叫做六西格玛。这颗星星不是一夜之间闪耀登场的&#xff0c;而是在商界的无尽深夜中&#xff0c;逐渐积累了耀眼的光芒。今天&#xff0c;我就来为大家介绍一下六西格玛的发展历程吧。 西格玛是啥&#xff…

设备健康管理系统PreMaint如何帮助制药企业符合GMP认证要求

在制药行业&#xff0c;确保药品的质量、安全性和有效性是至关重要的。为了满足这一需求&#xff0c;药品生产质量管理规范&#xff08;GMP&#xff09;被广泛采用作为制药企业达到国际质量标准的基础。然而&#xff0c;制药企业在追求GMP认证标准时面临着不少挑战。本文将探讨…