【精华系列】跟着Token学习数据挖掘-1

Hello,大家好!这里是Token的博客,欢迎您的到来
今天整理的笔记时数据挖掘方向的基础入门,了解数据分析使用的一些基础的Python库,为后面的数据处理做好准备

01-数据分析工具介绍

准备:Python的安装、平台搭建、使用、入门

python的基础使用:运行方式、基本命令、数据结构、库的导入与添加安装

1、数据分析工具介绍

Python本身的数据分析功能不强,需要安装一些第三方扩展库来增强它的能力。本次讲解用到的库有Numpy、Scipy、Matplotlib、Pandas、Scikit-Learn、Keras、Gensim等,下面将对这些库的安装和使用进行简单的介绍。

在这里插入图片描述

安装讲解

  • pip 安装
pip install 库名
  • 下载源码后python setup.py install安装

在这里插入图片描述

注:很多库有着依赖需求,在安装目标库之前可能需要安装一些依赖库,注意安装顺序。

1-1 Numpy

  • Python并没有提供数组功能。虽然列表可以完成基本的数组功能,但它不是真正的数组,而且在数据量较大时,使用列表的速度就会慢得难以接受。

  • 为此,Numpy提供了真正的数组功能,以及对数据进行快速处理的函数。Numpy还是很多更高级的扩展库的依赖库,我们后面介绍的Scipy、Matplotlib、Pandas等库都依赖于它。值得强调的是,Numpy内置函数处理数据的速度是C语言级别的,因此在编写程序的时候,应当尽量使用它们内置的函数,避免效率瓶颈的现象(尤其是涉及到循环的问题)。

代码演示:

import numpy as np # 一般以np作为Numpy库的别名
a = np.array([2,0,1,5]) # 创建数组
print(a) # 输出数组
print(a[:3])# 引用前三个数字(切片)
print(a.min())# 输出a的最小值
a.sort() # 将a的元素从大到小排序,此操作直接修改a,因此这时候a为[0,1,2,5] 
b = np.array([[1,2,3],[4,5,6]]) # 创建二维数组 
print(b*b) # 输出数组的平方阵,即[[1,4,9],[16,25,36]] 

1-2 Scipy

  • Numpy提供了多维数组功能,但它只是一般的数组,并不是矩阵,比如当两个数组相乘时,只是对应元素相乘,而不是矩阵乘法。Scipy提供了真正的矩阵,以及大量基于矩阵运算的对象与函数。

  • SciPy包含的功能有最优化、线性代数、积分、插值、拟合、特殊函数、快速傅里叶变换、信号处理和图像处理、常微分方程求解和其他科学与工程中常用的计算,显然,这些功能都是挖掘与建模必备的。

注:Scipy依赖于Numpy,因此安装它之前得先安装好Numpy。

代码:

import numpy as np
from scipy.optimize import fsolve
from scipy.integrate import quad# 定义一个包含非线性方程组的函数
def nonlinear_equations(x):# 方程组1:x^2 + y^2 - 1 = 0eq1 = x[0]**2 + x[1]**2 - 1# 方程组2:x^2 - 2*y = 0eq2 = x[0]**2 - 2*x[1]return [eq1, eq2]# 使用fsolve来解决非线性方程组
initial_guess = [1.0, 1.0]  # 初始猜测值
solution = fsolve(nonlinear_equations, initial_guess)print("非线性方程组的解:", solution)# 定义一个要积分的函数
def integrand(x):return x**2# 使用quad函数进行数值积分
integral_result, error = quad(integrand, 0, 1)print("数值积分结果:", integral_result)

1-3 Matplotlib

  • Matplotlib是最著名的绘图库,它主要用于二维绘图,当然它也可以进行简单的三维绘图。它不仅提供了一整套和Matlab相似但更为丰富的命令,让我们可以非常快捷地用Python可视化数据,而且允许输出达到出版质量的多种图像格式。

注意:Matplotlib的上级依赖库相对较多,手动安装的时候,需要逐一把这些依赖库都安装好。

在这里插入图片描述

上图是Matplotlib在编程中可能遇见的问题,中文标签无法显示、保存图像时负号无法显示

代码:

import matplotlib.pyplot as plt
import numpy as np# 生成一些示例数据
x = np.linspace(0, 2 * np.pi, 100)  # 生成从0到2π的100个数据点
y1 = np.sin(x)  # 计算正弦函数
y2 = np.cos(x)  # 计算余弦函数# 创建一个新的图形
plt.figure(figsize=(8, 4))  # 指定图形的大小# 绘制正弦函数
plt.plot(x, y1, label='sin(x)', color='blue', linestyle='-')# 绘制余弦函数
plt.plot(x, y2, label='cos(x)', color='red', linestyle='--')# 添加标题和标签
plt.title('Sin and Cos Functions')
plt.xlabel('x')
plt.ylabel('y')# 添加图例
plt.legend()# 显示网格线
plt.grid(True)# 显示图形
plt.show()

在这里插入图片描述

1-4 Pandas

  • Pandas是Python下最强大的数据分析和探索工具(貌似没有之一)。它包含高级的数据结构和精巧的工具,使得在Python中处理数据非常快速和简单。Pandas建造在NumPy之上,它使得以NumPy为中心的应用很容易使用。Pandas的名称来自于面板数据(panel data)和python数据分析(data analysis),它最初被作为金融数据分析工具而开发出来,由AQR Capital Management于2008年4月开发,并于2009年底开源出来。

  • Pandas的功能非常强大,支持类似SQL的数据增、删、查、改,并且带有丰富的数据处理函数;支持时间序列分析功能;支持灵活处理缺失数据;等等。

  • Pandas的安装相对来说比较容易一些,只要安装好Numpy之后,就可以直接安装了,

  • 由于我们频繁用到读取和写入Excel,但默认的Pandas还不能读写Excel文件,需要安装xlrd(读)和xlwt(写)库才能支持Excel的读写:

    pip install xlrd #为Python添加读取Excel的功能pip install xlwt #为Python添加写入Excel的功能
    

    pandas的使用,注意基本的数据格式,了解何为serries和dataframe,这两个数据结构在后面数据处理中经常遇见。

    在这里插入图片描述

    代码:

    import pandas as pd# 从CSV文件加载数据
    df = pd.read_csv('student_scores.csv')# 查看前5行数据
    print(df.head())# 查看数据的基本统计信息
    print(df.describe())# 筛选数学成绩大于等于70的学生
    math_pass = df[df['数学成绩'] >= 70]# 筛选英语成绩大于等于70的学生
    english_pass = df[df['英语成绩'] >= 70]# 查看数学和英语都及格的学生
    math_and_english_pass = pd.merge(math_pass, english_pass, on='姓名', how='inner')# 计算数学和英语都及格的学生人数
    num_math_and_english_pass = len(math_and_english_pass)print(f"数学和英语都及格的学生人数:{num_math_and_english_pass}")# 创建一个直方图来可视化数学成绩分布
    df['数学成绩'].plot(kind='hist', bins=10, edgecolor='k')
    plt.title('Math Score Distribution')
    plt.xlabel('Math Score')
    plt.ylabel('Frequency')
    plt.show()

1-5 StatsModels

  • Pandas着眼于数据的读取、处理和探索,而StatsModels则更加注重数据的统计建模分析,它使得Python有了R语言的味道。StatsModels支持与Pandas进行数据交互,因此,它与Pandas结合,成为了Python下强大的数据挖掘组合。

  • 安装StatsModels相当简单,既可以通过pip安装,又可以通过源码安装,对于Windows用户来说,官网上甚至已经有编译好的exe文件供下载。如果手动安装的话,需要自行解决好依赖问题,StatModel依赖于Pandas(当然也依赖于Pandas所依赖的),同时还依赖于pasty(一个描述统计的库)。

代码:

import pandas as pd
import numpy as np
import statsmodels.api as sm# 创建一个示例时间序列
np.random.seed(0)
data = np.random.randn(100)  # 随机生成一个长度为100的时间序列# 将时间序列转换为Pandas DataFrame
df = pd.DataFrame({'Data': data})# 进行ADF平稳性检验
result = sm.tsa.adfuller(df['Data'])# 提取ADF检验结果的关键信息
adf_statistic, p_value, used_lag, nobs, critical_values, icbest = result# 输出ADF检验的结果
print("ADF统计量:", adf_statistic)
print("P值:", p_value)
print("使用的滞后阶数:", used_lag)
print("观测样本数:", nobs)
print("关键值:")
for key, value in critical_values.items():print(f"   {key}: {value}")# 判断是否平稳
if p_value < 0.05:print("根据ADF检验,时间序列是平稳的")
else:print("根据ADF检验,时间序列不是平稳的")

1-6 scikit-learn

  • Scikit-Learn是Python下强大的机器学习工具包,它提供了完善的机器学习工具箱,包括数据预处理、分类、回归、聚类、预测、模型分析等。

  • Scikit-Learn依赖于NumPy、SciPy和 Matplotlib,因此,只需要提前安装好这几个库,然后安装Scikit-Learn就基本上没有什么问题了,要不就是pip install scikit-learn安装,要不就是下载源码自己安装。

代码:

import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error# 生成示例数据
np.random.seed(0)
X = 2 * np.random.rand(100, 1)  # 特征
y = 4 + 3 * X + np.random.randn(100, 1)  # 目标# 将数据分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 创建线性回归模型
model = LinearRegression()# 拟合模型
model.fit(X_train, y_train)# 预测
y_pred = model.predict(X_test)# 评估模型性能
mse = mean_squared_error(y_test, y_pred)
print("均方误差 (MSE):", mse)

上面示例代码中首先生成了一个简单的线性回归问题的示例数据。然后,使用train_test_split将数据分成训练集和测试集。接下来,创建了一个线性回归模型,使用训练数据拟合了模型,然后用测试数据进行了预测。最后,使用均方误差(MSE)来评估模型的性能。

1-7 Keras

  • 人工神经网络是功能相当强大的、但是原理又相当简单的模型,在语言处理、图像识别等领域都有重要的作用。近年来逐渐火起来的“深度学习”算法,本质上也就是一种神经网络

  • Keras并非简单的神经网络库,而是一个基于Theano的强大的深度学习库,利用它不仅仅可以搭建普通的神经网络,还可以搭建各种深度学习模型,如自编码器、循环神经网络、递归神经网络、卷积神经网络等等。由于它是基于Theano的,因此速度也相当快。

  • 安装Keras之前首先需要安装Numpy、Scipy、Theano。安装Theano首先需要准备一个C++编译器,这在Linux下是自带的。因此,在Linux下安装Theano和Keras都非常简单,只需要下载源代码,然后用python setup.py install安装就行了,具体可以参考官方文档。

注:一般而言是先安装MinGW(Windows下的GCC和G++),然后再安装Theano(提前装好Numpy等依赖库),最后安装Keras,如果要实现GPU加速,还需要安装和配置CUDA(天下没有免费的午餐,想要速度、易用两不误,那么就得花点心思)。值得一提的是,在Windows下的Keras速度会大打折扣,因此,想要在神经网络、深度学习做更深入研究的读者,请在Linux下搭建相应的环境。

  • 使用,还是比较简单的

在这里插入图片描述

在这里插入图片描述

代码:

import numpy as np
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
from sklearn.model_selection import train_test_split# 生成示例数据
np.random.seed(0)
X = np.random.rand(1000, 10)  # 10个特征
y = np.random.randint(2, size=1000)  # 二分类标签# 将数据分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 创建MLP模型
model = Sequential()# 添加输入层和隐藏层
model.add(Dense(units=64, input_dim=10, activation='relu'))# 添加输出层
model.add(Dense(units=1, activation='sigmoid'))# 编译模型
model.compile(loss='binary_crossentropy', optimizer=Adam(lr=0.001), metrics=['accuracy'])# 训练模型
model.fit(X_train, y_train, epochs=10, batch_size=32, validation_data=(X_test, y_test))# 评估模型性能
loss, accuracy = model.evaluate(X_test, y_test)
print(f"测试集上的损失:{loss}")
print(f"测试集上的准确率:{accuracy}")

首先生成了一个二分类任务的示例数据,然后使用train_test_split将数据分为训练集和测试集。接下来,创建了一个Sequential模型,该模型包含一个输入层、一个隐藏层和一个输出层。然后使用Dense层添加神经元,并指定激活函数。然后使用compile方法编译模型,指定损失函数和优化器。最后,使用fit方法来训练模型,并使用evaluate方法评估模型的性能。

1-8 Gensim

  • Gensim是用来处理语言方面的任务,如文本相似度计算、LDA、Word2Vec等,这些领域的任务往往需要比较多的背景知识。

  • 需要一提的是,Gensim把Google在2013年开源的著名的词向量构造工具Word2Vec编译好了,作为它的子库,因此需要用到Word2Vec的读者也可以直接用Gensim而无需自行编译了。据说Gensim的作者对Word2Vec的代码进行了优化,所以它在Gensim下的表现据说比原生的Word2Vec还要快。(为了实现加速,需要准备C++编译器环境,因此,建议用到Gensim的Word2Vec的读者在Linux下环境运行。)

代码:

from gensim.models import Word2Vec
from nltk.tokenize import word_tokenize
import nltk
nltk.download('punkt')# 示例文本数据
sentences = ["I like to learn Python programming.","Word2Vec is an interesting tool for NLP.","Gensim provides Word2Vec implementation.","Python is a popular programming language.","Natural Language Processing (NLP) is fun.",
]# 分词并构建训练数据
tokenized_sentences = [word_tokenize(sentence.lower()) for sentence in sentences]# 训练 Word2Vec 模型
model = Word2Vec(tokenized_sentences, vector_size=100, window=5, min_count=1, sg=0)# 保存模型
model.save("word2vec.model")# 加载模型
# model = Word2Vec.load("word2vec.model")# 获取词向量
vector = model.wv['python']# 找到与给定词最相似的词
similar_words = model.wv.most_similar('programming', topn=5)# 输出结果
print("词向量 'python':", vector)
print("与 'programming' 最相似的词:", similar_words)ec(tokenized_sentences, vector_size=100, window=5, min_count=1, sg=0)# 保存模型
model.save("word2vec.model")# 加载模型
# model = Word2Vec.load("word2vec.model")# 获取词向量
vector = model.wv['python']# 找到与给定词最相似的词
similar_words = model.wv.most_similar('programming', topn=5)# 输出结果
print("词向量 'python':", vector)
print("与 'programming' 最相似的词:", similar_words)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/164539.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【论文阅读】点云地图动态障碍物去除基准 A Dynamic Points Removal Benchmark in Point Cloud Maps

【论文阅读】点云地图动态障碍物去除基准 A Dynamic Points Removal Benchmark in Point Cloud Maps 终于一次轮到了讲自己的paper了 hahaha&#xff0c;写个中文的解读放在博客方便大家讨论 Title Picture Reference and prenotes paper: https://arxiv.org/abs/2307.07260 …

【python】文件和异常

文件和异常 实际开发中常常会遇到对数据进行持久化操作的场景&#xff0c;而实现数据持久化最直接简单的方式就是将数据保存到文件中。说到“文件”这个词&#xff0c;可能需要先科普一下关于文件系统的知识&#xff0c;但是这里我们并不浪费笔墨介绍这个概念&#xff0c;请大…

eltable el-tooltip__popper 换行、字体、颜色等调整

show-overflow-tooltip属性 element-ui表格 默认情况下若内容过多会折行显示&#xff0c;若需要单行显示可以使用show-overflow-tooltip属性&#xff0c;它接受一个Boolean&#xff0c;为true时多余的内容会在 hover 时以 tooltip 的形式显示出来。 默认情况 element-ui表格 sh…

为什么MySQL使用B+树索引,而不使用其他作为索引呢?

索引介绍 索引是一种用于快速查询和检索数据的数据结构&#xff0c;其本质可以看成一种排序号的数据结构。 索引的作用相当于书的目录。打个比方&#xff1a;在查字典的时候&#xff0c;如果没有目录&#xff0c;那我们就只能一页一页地去查&#xff0c;速度很慢。如果有目录…

从0到1,申请cos服务器并上传图片到cos文件服务器

目录 准备工作 Java代码编写 控制台打印 整理成工具类 编写接口 Postman测试 准备工作 1.进入网址腾讯云 产业智变云启未来 - 腾讯 (tencent.com) 2.搜索cos,点击立即使用&#xff0c;刚开始会免费赠送你 3.存储都是基于桶的&#xff0c;先创建桶&#xff0c;在桶里面创…

分类预测 | Matlab实现WOA-BiLSTM鲸鱼算法优化双向长短期记忆神经网络的数据多输入分类预测

分类预测 | Matlab实现WOA-BiLSTM鲸鱼算法优化双向长短期记忆神经网络的数据多输入分类预测 目录 分类预测 | Matlab实现WOA-BiLSTM鲸鱼算法优化双向长短期记忆神经网络的数据多输入分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matlab实现WOA-BiLSTM鲸鱼算法…

虚拟机如何联网【NAT】

查看VMWARE的IP地址 #进入root用户 su -#更改虚拟网卡设置界面 vi /etc/sysconfig/network-scripts/ifcfg-ens33 修改ONBOOT为yes BOOTPROTO为static IPADDR为前面的网段 192.168.211.xx (xx为自己设置的&#xff0c;可以随意设置&#xff0c;前面的为前面查看的IP地址的前…

【ROS 2 基础-常用工具】-6 Rviz基础使用

所有内容请查看&#xff1a;博客学习目录_Howe_xixi的博客-CSDN博客

Chrome 115之后的版本,安装和使用chromedriver

在Python中使用selenium 时报如下错误&#xff1a; 1. 老版本chrome对应的chromedriver 下载地址&#xff1a;CNPM Binaries Mirror 2. 新版本chrome对应的chromedriver 下载地址&#xff1a;Chrome for Testing availability

一百九十一、Flume——Flume配置文件各参数含义(持续完善中)

一、目的 在实际项目的开发过程中&#xff0c;不同Kafka主题的数据规模、数据频率&#xff0c;需要配置不同的Flume参数&#xff0c;而这一切的调试、配置工作&#xff0c;都要建立在对Flume配置文件各参数含义的基础上 二、Flume各参数及其含义 &#xff08;一&#xff09;…

js获取视频编码

一.背景 有些浏览器不支持某些视频的编码方式导致播放出现问题&#xff0c;这个时候要限制视频上传 二.插件 https://unpkg.com/mediainfo.js0.1.4/dist/mediainfo.min.js 三.完整html代码 <!DOCTYPE html> <html lang"en"> <head><meta ch…

memcpy内存拷贝函数

目录 一、memcpy内存拷贝函数 注意事项 二、memcpy与strcpy对比 三、模拟实现memcpy函数 四、memcpy函数不能进行两块存在内存重叠的空间的内存拷贝 五、改进my_memcpy函数 一、memcpy内存拷贝函数 头文件&#xff1a;string.h 函数原型&#xff1a;void* memcpy(void* …

Element Plus el-form表单自定义插槽如何使用

//正常无插槽表单<el-form :model"form" label-width"120px"><el-form-item label"Activity name"><el-input v-model"form.name" /></el-form-item></el-form>//带插槽表单//适用二次封装的form组件&l…

.npmrc 使用详解

配置.npmrc之后需要&#xff1a; 清理项目目录中的 node _modules 目录(package-lock.json,umi)。清理 node cache: npm cache clear --force&#xff1b;{ 此步骤必须&#xff0c;主要是大家的电脑经过多年使用后&#xff0c;npm 配置比较混乱&#xff0c;为了避免或者减少配…

代码随想录算法训练营第五十三天 | 309.最佳买卖股票时机含冷冻期、714.买卖股票的最佳时机含手续费

309.最佳买卖股票时机含冷冻期 视频讲解&#xff1a; https://programmercarl.com/0309.%E6%9C%80%E4%BD%B3%E4%B9%B0%E5%8D%96%E8%82%A1%E7%A5%A8%E6%97%B6%E6%9C%BA%E5%90%AB%E5%86%B7%E5%86%BB%E6%9C%9F.html &#xff08;1&#xff09;代码 714.买卖股票的最佳时机含手续费…

【微信小程序】无纸化会议OA系统之首页搭建

前言 中国政府意识到信息技术的重要性&#xff0c;并开始积极推动信息产业的发展。一系列政策和措施被制定和执行&#xff0c;以促进信息技术的采用和普及&#xff0c;从而推动数字化时代的到来。为了响应国家推行的数字化时代&#xff0c;本篇文章以会议OA系统为背景进行编写…

unity脚本_碰撞检测函数 c#

在项目创建一个脚本文件包新建脚本Cor 将以下代码复制 using UnityEngine; public class Cor : MonoBehaviour{ #region 碰撞检测函数 #endregion //至少一个刚体和两个碰撞器让两个游戏物体产生碰撞 //物理材质Phy Material让两个游戏物体之间表现不同效果 //…

性能测试基础知识及性能指标

前言&#xff1a;最近公司接了个项目&#xff0c;领导开会突然来了句&#xff0c;让我出一份性能测试方案&#xff0c;后面性能测试工作交给我&#xff01;我心里想之前面试没要求会这个啊&#xff08;最少得加钱才能做吧~&#xff0c;没办法既然下达了指令&#xff0c;那就只能…

代码随想录二刷 Day42

62.不同路径 简单题目自己就可以写出来&#xff0c;注意下创建二维vector的方法就可以&#xff0c; dp table如下 class Solution { public:int uniquePaths(int m, int n) {vector<vector<int>> dp(m,vector<int>(n,0));for (int i 0; i < n; i ) {dp[…

linux加密安全和时间同步

sudo实现授权 添加 vim /etc/sudoers luo ALL(root) /usr/bin/mount /deb/cdrom /mnt/ test ALL(root:ALL) ALL 在所有主机上 提权为root用户&#xff0c; 可以执行所有命令 户"test"被授权以"root"用户身份在任意主机上执行任意命令 切换luo用户使用 su…