基于侏儒猫鼬优化的BP神经网络(分类应用) - 附代码

基于侏儒猫鼬优化的BP神经网络(分类应用) - 附代码

文章目录

  • 基于侏儒猫鼬优化的BP神经网络(分类应用) - 附代码
    • 1.鸢尾花iris数据介绍
    • 2.数据集整理
    • 3.侏儒猫鼬优化BP神经网络
      • 3.1 BP神经网络参数设置
      • 3.2 侏儒猫鼬算法应用
    • 4.测试结果:
    • 5.Matlab代码

摘要:本文主要介绍如何用侏儒猫鼬算法优化BP神经网络,利用鸢尾花数据,做一个简单的讲解。

1.鸢尾花iris数据介绍

本案例利用matlab公用的iris鸢尾花数据,作为测试数据,iris数据是特征为4维,类别为3个类别。数据格式如下:

特征1特征2特征3类别
单组iris数据5.32.11.21

3种类别用1,2,3表示。

2.数据集整理

iris数据总共包含150组数据,将其分为训练集105组,测试集45组。如下表所示:

训练集(组)测试集(组)总数据(组)
10545150

类别数据处理:原始数据类别用1,2,3表示为了方便神经网络训练,类别1,2,3分别用1,0,0;0,1,0;0,0,1表示。

当进行数据训练对所有输入特征数据均进行归一化处理。

3.侏儒猫鼬优化BP神经网络

3.1 BP神经网络参数设置

通常而言,利用智能算法一般优化BP神经网络的初始权值和阈值来改善BP神经网络的性能。本案例基于iris数据,由于iris数据维度不高,采用简单的BP神经网络。神经网络参数如下:

神经网络结构

图1.神经网络结构

神经网络参数如下:

%创建神经网络
inputnum = 4;     %inputnum  输入层节点数 4维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 3;     %outputnum  隐含层节点数
net = newff( minmax(input) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'traingdx' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;

3.2 侏儒猫鼬算法应用

侏儒猫鼬算法原理请参考:https://blog.csdn.net/u011835903/article/details/127455123

侏儒猫鼬算法的参数设置为:

popsize = 10;%种群数量Max_iteration = 15;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:4*10 = 40; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:3*10 = 30;即hiddenum * outputnum;

第二层权值数量为:3;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 83;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( T r a i n D a t a E r r o r R a t e + T e s t D a t a E r r o r R a t e ) fitness = argmin(TrainDataErrorRate + TestDataErrorRate) fitness=argmin(TrainDataErrorRate+TestDataErrorRate)
其中TrainDataErrorRate,TestDataErrorRate分别为训练集和测试集的错误分类率。适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从侏儒猫鼬算法的收敛曲线可以看到,整体误差是不断下降的,说明侏儒猫鼬算法起到了优化的作用:
在这里插入图片描述
在这里插入图片描述

5.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/165233.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

嵌入式养成计划-42----QT 创建项目--窗口界面--常用类及组件

一百零五、如何创建 QT 项目 创建工程 New Project / 文件–>新建。。 /ctrl N 选择一个模板–>Application -->Qt Widgets Application 选择创建的路径,以及设置文件名 下一步 输入类名,选择基类为 QWidget 下一步 选择这个玩意&a…

2020年亚太杯APMCM数学建模大赛A题激光标记舱口轮廓生成求解全过程文档及程序

2020年亚太杯APMCM数学建模大赛 A题 激光标记舱口轮廓生成 原题再现: 激光是20中的一项重要发明世纪,它被称为“最锋利的刀”、“最精确的尺子”和“最不寻常的光”。 激光已越来越多地应用于工业加工, 其中可以是就业在各种加工业务例如作…

凉鞋的 Godot 笔记 203. 变量的常用类型

203. 变量的常用类型 在上一篇,我们对变量进行了概述和简介,知识地图如下: 我们已经接触了,变量的字符串类型,以及一些功能。 在这一篇,我们尝试多接触一些变量的类型。 首先是整数类型。 整数类型 整…

Vue解决 npm -v 报错(一)

报错内容: npm WARN config global --global, --local are deprecated. Use --locationglobal instead. 解决方案: 代码: prefix -g 替换为: prefix --locationglobal 原创作者:吴小糖 创作时间:2023.1…

redis部署与管理

一、关系数据库与非关系型数据库: 1. 关系型数据库: 关系型数据库是一个结构化的数据库,创建在关系模型(二维表格模型)基础上,一般面向于记录。 SQL 语句(标准数据查询语言)就是一种…

【异步爬虫】requests和aiohttp中代理IP的使用

前言 在进行爬虫开发时,我们常常需要使用代理IP来隐藏自己的真实IP地址,以避免被一些网站限制或封禁。requests和aiohttp是两个非常常用的工具,本文将分别介绍如何在它们中使用代理IP,希望可以帮助大家更好地进行异步爬虫开发。 …

天鹰340亿(AquilaChat2-34B-16K)本地部署的解决方案

大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法…

51单片机仿真软件 Proteus 8 Pro 安装步骤

51单片机仿真软件 Proteus 8 Pro 安装步骤 学习 51 单片机的时候,如果手头没有开发板,可以使用仿真软件 Proteus。Proteus 可以仿真 51 单片机及周边元器件(例: LED) 的运行情况。 可以简单认为:Proteus …

Windows Server服务器下的Linux子系统

Windows、Linux看似死敌一对,但其实微软对于开源实业还是相当支持的,Windows 10系统内就首次内置了一个Linux子系统(Windows Subsystem for Linux/WSL),允许开发者模拟Linux环境,而且有需要的可以直接从Windows应用商店下载SUSE、…

《数据结构、算法与应用C++语言描述》使用C++语言实现数组双端队列

《数据结构、算法与应用C语言描述》使用C语言实现数组双端队列 定义 队列的定义 队列(queue)是一个线性表,其插入和删除操作分别在表的不同端进行。插入元素的那一端称为队尾(back或rear),删除元素的那一…

web前端面试-- 手写原生Javascript方法(new、Object.create)

web面试题 本人是一个web前端开发工程师,主要是vue框架,整理了一些面试题,今后也会一直更新,有好题目的同学欢迎评论区分享 ;-) web面试题专栏:点击此处 手动实现Object.create 通过Object.create&#…

C/C++面试常见问题——指针和引用的区别

首先想要理解指针和引用的区别,我们要明确什么是指针,什么是引用 一,指针和引用的基本概念及特性 指针是一个特殊变量,其中存储着所指向变量的地址 指针主要有以下特性: 1. 在使用时需要*解引用 2. sizeof(指针)的…

STM32MP135和STM32MP157的区别

本文介绍了STMicroelectronics公司推出的两款多核处理器STM32MP135和STM32MP157之间的区别,包括主频、集成硬件模块数量、内存大小和电压调节模块等方面。 STMicroelectronics是一家领先的半导体解决方案提供商,在嵌入式系统领域有着丰富的经验。他们…

程序连接oracle查询数据的环境配置

连接oracle 数据库真麻烦,还是MySQL方便 Oracle Instant Client 这个东西的版本跟oracle的版本是有讲究的,引用文档的说明 Oracle 标准的客户端-服务器网络互操作性允许不同版本的 Oracle 客户端和 Oracle 数据库之间的连接。有关经过认证的配置&#…

JUC并发编程——各种锁的理解(基于狂神说的学习笔记)

各种锁的理解 公平锁与非公平锁 公平锁:非常公平,不能够插队,先来后到 非公平锁:可以插队,比较灵活(默认都是非公平,如:synchronized,lock) // Lock lock new Reent…

学习c#桌面应用编程 --- 我的第一个游戏

场景 我需要做一个c#桌面窗口软件,但是我曾经都是专职于java开发,但是java对windows并不是特别友好(awt除外),于是必须需要掌握c#桌面编程,所以我需要手动做一个小游戏,来学习c#的一些基本桌面应用的知识。 开始 这…

Leetcode 剑指 Offer II 049. 求根节点到叶节点数字之和

题目难度: 中等 原题链接 今天继续更新 Leetcode 的剑指 Offer(专项突击版)系列, 大家在公众号 算法精选 里回复 剑指offer2 就能看到该系列当前连载的所有文章了, 记得关注哦~ 题目描述 给定一个二叉树的根节点 root ,树中每个节点都存放有…

vue3后台管理系统之路由守卫

下载进度条 pnpm install nprogress //路由鉴权:鉴权,项目当中路由能不能被的权限的设置(某一个路由什么条件下可以访问、什么条件下不可以访问) import router from /router import setting from ./setting // eslint-disable-next-line typescript-eslint/ban-ts-comment /…

FreeRTOS入门教程(事件组概念和函数使用)

文章目录 前言一、事件组概念二、事件组和信号量,队列的区别三、事件组相关函数三、事件组应用示例1.等待多个事件2.任务同步 总结 前言 本篇文章将带大家学习什么是事件组以及如何使用事件组。 一、事件组概念 事件组通常是由一组位(bits&#xff09…

Linux下的命令行参数和环境变量

命令行参数 什么是命令行参数 命令行参数是指在执行命令行程序时&#xff0c;给程序传递的额外参数。在Linux终端中&#xff0c;命令行参数通常通过在命令后面添加空格分隔的参数来传递。 Linux下以main函数举例说明 #include<stdio.h>int main(int argc char* argv[])…