3、Kafka Broker

4.1 Kafka Broker 工作流程
4.1.1 Zookeeper 存储的 Kafka 信息
(1)启动 Zookeeper 客户端。

[hadoop102 zookeeper-3.5.7]$ bin/zkCli.sh

(2)通过 ls 命令可以查看 kafka 相关信息。

[zk: localhost:2181(CONNECTED) 2] ls /kafka

在这里插入图片描述
4.1.2 Kafka Broker 总体工作流程
在这里插入图片描述
1)模拟 Kafka 上下线,Zookeeper 中数据变化
(1)查看/kafka/brokers/ids 路径上的节点。

[zk: localhost:2181(CONNECTED) 2] ls /kafka/brokers/ids
[0, 1, 2]

(2)查看/kafka/controller 路径上的数据。

[zk: localhost:2181(CONNECTED) 15] get /kafka/controller
{"version":1,"brokerid":0,"timestamp":"1637292471777"}

(3)查看/kafka/brokers/topics/first/partitions/0/state 路径上的数据

[zk: localhost:2181(CONNECTED) 16] get 
/kafka/brokers/topics/first/partitions/0/state
{"controller_epoch":24,"leader":0,"version":1,"leader_epoch":18,"
isr":[0,1,2]}

(4)停止 hadoop104 上的 kafka。

[hadoop104 kafka]$ bin/kafka-server-stop.sh

(5)再次查看/kafka/brokers/ids 路径上的节点。

[zk: localhost:2181(CONNECTED) 3] ls /kafka/brokers/ids
[0, 1]

(6)再次查看/kafka/controller 路径上的数据。

[zk: localhost:2181(CONNECTED) 15] get /kafka/controller
{"version":1,"brokerid":0,"timestamp":"1637292471777"}

(7)再次查看/kafka/brokers/topics/first/partitions/0/state 路径上的数据。

[zk: localhost:2181(CONNECTED) 16] get 
/kafka/brokers/topics/first/partitions/0/state
{"controller_epoch":24,"leader":0,"version":1,"leader_epoch":18,"
isr":[0,1]}

(8)启动 hadoop104 上的 kafka。

[hadoop104 kafka]$ bin/kafka-server-start.sh -
daemon ./config/server.properties

(9)再次观察(1)、(2)、(3)步骤中的内容
4.1.3 Broker 重要参数
在这里插入图片描述
2. 节点服役和退役
2.1 服役新节点
1)新节点准备

(1)关闭 hadoop104,并右键执行克隆操作。
(2)开启 hadoop105,并修改 IP 地址。

[root@hadoop104 ~]# vim /etc/sysconfig/network-scripts/ifcfgens33
DEVICE=ens33
TYPE=Ethernet
ONBOOT=yes
BOOTPROTO=static
NAME="ens33"
IPADDR=192.168.10.105
PREFIX=24
GATEWAY=192.168.10.2
DNS1=192.168.10.2

(3)在 hadoop105 上,修改主机名称为 hadoop105。

[root@hadoop104 ~]# vim /etc/hostname
hadoop105

(4)重新启动 hadoop104、hadoop105。
(5)修改 haodoop105 中 kafka 的 broker.id 为 3。
(6)删除 hadoop105 中 kafka 下的 datas 和 logs。

[hadoop105 kafka]$ rm -rf datas/* logs/*

(7)启动 hadoop102、hadoop103、hadoop104 上的 kafka 集群。

[hadoop102 ~]$ zk.sh start
[hadoop102 ~]$ kf.sh start

(8)单独启动 hadoop105 中的 kafka。

[hadoop105 kafka]$ bin/kafka-server-start.sh -
daemon ./config/server.properties

2)执行负载均衡操作
(1)创建一个要均衡的主题。

[hadoop102 kafka]$ vim topics-to-move.json
{"topics": [{"topic": "first"}],"version": 1
}

(2)生成一个负载均衡的计划。

[hadoop102 kafka]$ bin/kafka-reassign-partitions.sh --
bootstrap-server hadoop102:9092 --topics-to-move-json-file 
topics-to-move.json --broker-list "0,1,2,3" --generate
Current partition replica assignment
{"version":1,"partitions":[{"topic":"first","partition":0,"replic
as":[0,2,1],"log_dirs":["any","any","any"]},{"topic":"first","par
tition":1,"replicas":[2,1,0],"log_dirs":["any","any","any"]},{"to
pic":"first","partition":2,"replicas":[1,0,2],"log_dirs":["any","
any","any"]}]}
Proposed partition reassignment configuration
{"version":1,"partitions":[{"topic":"first","partition":0,"replic
as":[2,3,0],"log_dirs":["any","any","any"]},{"topic":"first","par
tition":1,"replicas":[3,0,1],"log_dirs":["any","any","any"]},{"to
pic":"first","partition":2,"replicas":[0,1,2],"log_dirs":["any","
any","any"]}]}

(3)创建副本存储计划(所有副本存储在 broker0、broker1、broker2、broker3 中)。

[hadoop102 kafka]$ vim increase-replication-factor.json

输入如下内容:

{"version":1,"partitions":[{"topic":"first","partition":0,"replic
as":[2,3,0],"log_dirs":["any","any","any"]},{"topic":"first","par
tition":1,"replicas":[3,0,1],"log_dirs":["any","any","any"]},{"to
pic":"first","partition":2,"replicas":[0,1,2],"log_dirs":["any","
any","any"]}]}

(4)执行副本存储计划。
[atguigu@hadoop102 kafka]$ bin/kafka-reassign-partitions.sh –
bootstrap-server hadoop102:9092 --reassignment-json-file
increase-replication-factor.json --execute
(5)验证副本存储计划。

[hadoop102 kafka]$ bin/kafka-reassign-partitions.sh --
bootstrap-server hadoop102:9092 --reassignment-json-file 
increase-replication-factor.json --verify
Status of partition reassignment:
Reassignment of partition first-0 is complete.
Reassignment of partition first-1 is complete.
Reassignment of partition first-2 is complete.
Clearing broker-level throttles on brokers 0,1,2,3
Clearing topic-level throttles on topic first

4.2.2 退役旧节点
1)执行负载均衡操作
先按照退役一台节点,生成执行计划,然后按照服役时操作流程执行负载均衡。
(1)创建一个要均衡的主题。

[hadoop102 kafka]$ vim topics-to-move.json
{"topics": [{"topic": "first"}],"version": 1
}

(2)创建执行计划。

[hadoop102 kafka]$ bin/kafka-reassign-partitions.sh --
bootstrap-server hadoop102:9092 --topics-to-move-json-file 
topics-to-move.json --broker-list "0,1,2" --generate
Current partition replica assignment
{"version":1,"partitions":[{"topic":"first","partition":0,"replic
as":[2,0,1],"log_dirs":["any","any","any"]},{"topic":"first","par
tition":1,"replicas":[3,1,2],"log_dirs":["any","any","any"]},{"to
pic":"first","partition":2,"replicas":[0,2,3],"log_dirs":["any","
any","any"]}]}
Proposed partition reassignment configuration
{"version":1,"partitions":[{"topic":"first","partition":0,"replic
as":[2,0,1],"log_dirs":["any","any","any"]},{"topic":"first","par
tition":1,"replicas":[0,1,2],"log_dirs":["any","any","any"]},{"to
pic":"first","partition":2,"replicas":[1,2,0],"log_dirs":["any","
any","any"]}]}

(3)创建副本存储计划(所有副本存储在 broker0、broker1、broker2 中)。

[hadoop102 kafka]$ vim increase-replication-factor.json
{"version":1,"partitions":[{"topic":"first","partition":0,"replic
as":[2,0,1],"log_dirs":["any","any","any"]},{"topic":"first","par
tition":1,"replicas":[0,1,2],"log_dirs":["any","any","any"]},{"to
pic":"first","partition":2,"replicas":[1,2,0],"log_dirs":["any","
any","any"]}]}

(4)执行副本存储计划。

[hadoop102 kafka]$ bin/kafka-reassign-partitions.sh --
bootstrap-server hadoop102:9092 --reassignment-json-file 
increase-replication-factor.json --execute

(5)验证副本存储计划。

[hadoop102 kafka]$ bin/kafka-reassign-partitions.sh --
bootstrap-server hadoop102:9092 --reassignment-json-file 
increase-replication-factor.json --verify
Status of partition reassignment:
Reassignment of partition first-0 is complete.
Reassignment of partition first-1 is complete.
Reassignment of partition first-2 is complete.
Clearing broker-level throttles on brokers 0,1,2,3
Clearing topic-level throttles on topic first

2)执行停止命令
在 hadoop105 上执行停止命令即可。

[hadoop105 kafka]$ bin/kafka-server-stop.sh

4.3 Kafka 副本
4.3.1 副本基本信息
(1)Kafka 副本作用:提高数据可靠性。
(2)Kafka 默认副本 1 个,生产环境一般配置为 2 个,保证数据可靠性;太多副本会
增加磁盘存储空间,增加网络上数据传输,降低效率。
(3)Kafka 中副本分为:Leader 和 Follower。Kafka 生产者只会把数据发往 Leader,
然后 Follower 找 Leader 进行同步数据。
(4)Kafka 分区中的所有副本统称为 AR(Assigned Repllicas)。
AR = ISR + OSR
ISR,表示和 Leader 保持同步的 Follower 集合。如果 Follower 长时间未向 Leader 发送
通信请求或同步数据,则该 Follower 将被踢出 ISR。该时间阈值由 replica.lag.time.max.ms
参数设定,默认 30s。Leader 发生故障之后,就会从 ISR 中选举新的 Leader。
OSR,表示 Follower 与 Leader 副本同步时,延迟过多的副本。
4.3.2 Leader 选举流程
Kafka 集群中有一个 broker 的 Controller 会被选举为 Controller Leader,负责管理集群
broker 的上下线,所有 topic 的分区副本分配和 Leader 选举等工作。
Controller 的信息同步工作是依赖于 Zookeeper 的
在这里插入图片描述
(1)创建一个新的 topic,4 个分区,4 个副本

[hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server 
hadoop102:9092 --create --topic atguigu1 --partitions 4 --replication-factor 
4
Created topic atguigu1.

(2)查看 Leader 分布情况

[hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server hadoop102:9092 --describe 
--topic atguigu1
Topic: atguigu1 TopicId: awpgX_7WR-OX3Vl6HE8sVg PartitionCount: 4 ReplicationFactor: 4
Configs: segment.bytes=1073741824
Topic: atguigu1 Partition: 0 Leader: 3 Replicas: 3,0,2,1 Isr: 3,0,2,1
Topic: atguigu1 Partition: 1 Leader: 1 Replicas: 1,2,3,0 Isr: 1,2,3,0
Topic: atguigu1 Partition: 2 Leader: 0 Replicas: 0,3,1,2 Isr: 0,3,1,2
Topic: atguigu1 Partition: 3 Leader: 2 Replicas: 2,1,0,3 Isr: 2,1,0,3

(3)停止掉 hadoop105 的 kafka 进程,并查看 Leader 分区情况

[hadoop105 kafka]$ bin/kafka-server-stop.sh
[hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server hadoop102:9092 --describe 
--topic atguigu1
Topic: atguigu1 TopicId: awpgX_7WR-OX3Vl6HE8sVg PartitionCount: 4 ReplicationFactor: 4
Configs: segment.bytes=1073741824
Topic: atguigu1 Partition: 0 Leader: 0 Replicas: 3,0,2,1 Isr: 0,2,1
pic: atguigu1 Partition: 1 Leader: 1 Replicas: 1,2,3,0 Isr: 1,2,0
Topic: atguigu1 Partition: 2 Leader: 0 Replicas: 0,3,1,2 Isr: 0,1,2
Topic: atguigu1 Partition: 3 Leader: 2 Replicas: 2,1,0,3 Isr: 2,1,0

(4)停止掉 hadoop104 的 kafka 进程,并查看 Leader 分区情况

[hadoop104 kafka]$ bin/kafka-server-stop.sh
[hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server hadoop102:9092 --describe 
--topic atguigu1
Topic: atguigu1 TopicId: awpgX_7WR-OX3Vl6HE8sVg PartitionCount: 4 ReplicationFactor: 4
Configs: segment.bytes=1073741824
Topic: atguigu1 Partition: 0 Leader: 0 Replicas: 3,0,2,1 Isr: 0,1
Topic: atguigu1 Partition: 1 Leader: 1 Replicas: 1,2,3,0 Isr: 1,0
Topic: atguigu1 Partition: 2 Leader: 0 Replicas: 0,3,1,2 Isr: 0,1
Topic: atguigu1 Partition: 3 Leader: 1 Replicas: 2,1,0,3 Isr: 1,0

(5)启动 hadoop105 的 kafka 进程,并查看 Leader 分区情况

[hadoop105 kafka]$ bin/kafka-server-start.sh -daemon config/server.properties
[hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server hadoop102:9092 --describe 
--topic atguigu1
Topic: atguigu1 TopicId: awpgX_7WR-OX3Vl6HE8sVg PartitionCount: 4 ReplicationFactor: 4
Configs: segment.bytes=1073741824
Topic: atguigu1 Partition: 0 Leader: 0 Replicas: 3,0,2,1 Isr: 0,1,3
Topic: atguigu1 Partition: 1 Leader: 1 Replicas: 1,2,3,0 Isr: 1,0,3
Topic: atguigu1 Partition: 2 Leader: 0 Replicas: 0,3,1,2 Isr: 0,1,3
Topic: atguigu1 Partition: 3 Leader: 1 Replicas: 2,1,0,3 Isr: 1,0,3

(6)启动 hadoop104 的 kafka 进程,并查看 Leader 分区情况

[hadoop104 kafka]$ bin/kafka-server-start.sh -daemon config/server.properties
[hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server hadoop102:9092 --describe 
--topic atguigu1
Topic: atguigu1 TopicId: awpgX_7WR-OX3Vl6HE8sVg PartitionCount: 4 ReplicationFactor: 4
Configs: segment.bytes=1073741824
Topic: atguigu1 Partition: 0 Leader: 0 Replicas: 3,0,2,1 Isr: 0,1,3,2
Topic: atguigu1 Partition: 1 Leader: 1 Replicas: 1,2,3,0 Isr: 1,0,3,2
Topic: atguigu1 Partition: 2 Leader: 0 Replicas: 0,3,1,2 Isr: 0,1,3,2
Topic: atguigu1 Partition: 3 Leader: 1 Replicas: 2,1,0,3 Isr: 1,0,3,2

(7)停止掉 hadoop103 的 kafka 进程,并查看 Leader 分区情况

[hadoop103 kafka]$ bin/kafka-server-stop.sh
[hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server hadoop102:9092 --describe 
--topic atguigu1
Topic: atguigu1 TopicId: awpgX_7WR-OX3Vl6HE8sVg PartitionCount: 4 ReplicationFactor: 4
Configs: segment.bytes=1073741824
Topic: atguigu1 Partition: 0 Leader: 0 Replicas: 3,0,2,1 Isr: 0,3,2
Topic: atguigu1 Partition: 1 Leader: 2 Replicas: 1,2,3,0 Isr: 0,3,2
Topic: atguigu1 Partition: 2 Leader: 0 Replicas: 0,3,1,2 Isr: 0,3,2
Topic: atguigu1 Partition: 3 Leader: 2 Replicas: 2,1,0,3 Isr: 0,3,2

4.3.3 Leader 和 Follower 故障处理细节
在这里插入图片描述
在这里插入图片描述
4.3.4 分区副本分配
如果 kafka 服务器只有 4 个节点,那么设置 kafka 的分区数大于服务器台数,在 kafka
底层如何分配存储副本呢?
1)创建 16 分区,3 个副本
(1)创建一个新的 topic,名称为 second。

[hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server 
hadoop102:9092 --create --partitions 16 --replication-factor 3 --
topic second

(2)查看分区和副本情况。

[hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server 
hadoop102:9092 --describe --topic second
Topic: second4 Partition: 0 Leader: 0 Replicas: 0,1,2 Isr: 0,1,2
Topic: second4 Partition: 1 Leader: 1 Replicas: 1,2,3 Isr: 1,2,3
Topic: second4 Partition: 2 Leader: 2 Replicas: 2,3,0 Isr: 2,3,0
Topic: second4 Partition: 3 Leader: 3 Replicas: 3,0,1 Isr: 3,0,1
Topic: second4 Partition: 4 Leader: 0 Replicas: 0,2,3 Isr: 0,2,3
Topic: second4 Partition: 5 Leader: 1 Replicas: 1,3,0 Isr: 1,3,0
Topic: second4 Partition: 6 Leader: 2 Replicas: 2,0,1 Isr: 2,0,1
Topic: second4 Partition: 7 Leader: 3 Replicas: 3,1,2 Isr: 3,1,2
Topic: second4 Partition: 8 Leader: 0 Replicas: 0,3,1 Isr: 0,3,1
Topic: second4 Partition: 9 Leader: 1 Replicas: 1,0,2 Isr: 1,0,2
Topic: second4 Partition: 10 Leader: 2 Replicas: 2,1,3 Isr: 2,1,3
Topic: second4 Partition: 11 Leader: 3 Replicas: 3,2,0 Isr: 3,2,0
Topic: second4 Partition: 12 Leader: 0 Replicas: 0,1,2 Isr: 0,1,2
Topic: second4 Partition: 13 Leader: 1 Replicas: 1,2,3 Isr: 1,2,3
Topic: second4 Partition: 14 Leader: 2 Replicas: 2,3,0 Isr: 2,3,0
Topic: second4 Partition: 15 Leader: 3 Replicas: 3,0,1 Isr: 3,0,1

在这里插入图片描述
4.3.5 生产经验——手动调整分区副本存储
生产经验——手动调整分区副本存储
在生产环境中,每台服务器的配置和性能不一致,但是Kafka只会根据自己的代码规则创建对应的分区副
本,就会导致个别服务器存储压力较大。所有需要手动调整分区副本的存储。

需求:创建一个新的topic,4个分区,两个副本,名称为three。将 该topic的所有副本都存储到broker0和
broker1两台服务器上。
在这里插入图片描述
手动调整分区副本存储的步骤如下:
(1)创建一个新的 topic,名称为 three。

[hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server 
hadoop102:9092 --create --partitions 4 --replication-factor 2 --
topic three

(2)查看分区副本存储情况。

[hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server 
hadoop102:9092 --describe --topic three

(3)创建副本存储计划(所有副本都指定存储在 broker0、broker1 中)。

[hadoop102 kafka]$ vim increase-replication-factor.json

输入如下内容:

{
"version":1,
"partitions":[{"topic":"three","partition":0,"replicas":[0,1]},
{"topic":"three","partition":1,"replicas":[0,1]},
{"topic":"three","partition":2,"replicas":[1,0]},
{"topic":"three","partition":3,"replicas":[1,0]}]
}

(4)执行副本存储计划。

[hadoop102 kafka]$ bin/kafka-reassign-partitions.sh --
bootstrap-server hadoop102:9092 --reassignment-json-file 
increase-replication-factor.json --execute

(5)验证副本存储计划。

[hadoop102 kafka]$ bin/kafka-reassign-partitions.sh --
bootstrap-server hadoop102:9092 --reassignment-json-file 
increase-replication-factor.json --verify

(6)查看分区副本存储情况。

[hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server 
hadoop102:9092 --describe --topic three

4.3.6 生产经验——Leader Partition 负载平衡
在这里插入图片描述
在这里插入图片描述
4.3.7 生产经验——增加副本因子
在生产环境当中,由于某个主题的重要等级需要提升,我们考虑增加副本。副本数的
增加需要先制定计划,然后根据计划执行。
1)创建 topic

[hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server 
hadoop102:9092 --create --partitions 3 --replication-factor 1 --
topic four

2)手动增加副本存储
(1)创建副本存储计划(所有副本都指定存储在 broker0、broker1、broker2 中)。

[hadoop102 kafka]$ vim increase-replication-factor.json

输入如下内容:

{"version":1,"partitions":[{"topic":"four","partition":0,"replica
s":[0,1,2]},{"topic":"four","partition":1,"replicas":[0,1,2]},{"t
opic":"four","partition":2,"replicas":[0,1,2]}]}

(2)执行副本存储计划。

[hadoop102 kafka]$ bin/kafka-reassign-partitions.sh --
bootstrap-server hadoop102:9092 --reassignment-json-file 
increase-replication-factor.json --execute

4.4 文件存储
4.4.1 文件存储机制
1)Topic 数据的存储机制
在这里插入图片描述
2)思考:Topic 数据到底存储在什么位置?
(1)启动生产者,并发送消息。

[hadoop102 kafka]$ bin/kafka-console-producer.sh --
bootstrap-server hadoop102:9092 --topic first
>hello world

(2)查看 hadoop102(或者 hadoop103、hadoop104)的/opt/module/kafk
a/datas/first-1(first-0、first-2)路径上的文件。

[hadoop104 first-1]$ ls
00000000000000000092.index
00000000000000000092.log
00000000000000000092.snapshot
00000000000000000092.timeindex
leader-epoch-checkpoint
partition.metadata

(3)直接查看 log 日志,发现是乱码。

[hadoop104 first-1]$ cat 00000000000000000092.log 
\CYnF|©|©ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ"hello world

(4)通过工具查看 index 和 log 信息。

[hadoop104 first-1]$ kafka-run-class.sh kafka.tools.DumpLogSegments 
--files ./00000000000000000000.index 
Dumping ./00000000000000000000.index
offset: 3 position: 152
[atguigu@hadoop104 first-1]$ kafka-run-class.sh kafka.tools.DumpLogSegments 
--files ./00000000000000000000.log
Dumping datas/first-0/00000000000000000000.log
Starting offset: 0
baseOffset: 0 lastOffset: 1 count: 2 baseSequence: -1 lastSequence: -1 producerId: -1 
producerEpoch: -1 partitionLeaderEpoch: 0 isTransactional: false isControl: false position: 
0 CreateTime: 1636338440962 size: 75 magic: 2 compresscodec: none crc: 2745337109 isvalid: 
true
baseOffset: 2 lastOffset: 2 count: 1 baseSequence: -1 lastSequence: -1 producerId: -1 
producerEpoch: -1 partitionLeaderEpoch: 0 isTransactional: false isControl: false position: 
75 CreateTime: 1636351749089 size: 77 magic: 2 compresscodec: none crc: 273943004 isvalid: 
true
baseOffset: 3 lastOffset: 3 count: 1 baseSequence: -1 lastSequence: -1 producerId: -1 
producerEpoch: -1 partitionLeaderEpoch: 0 isTransactional: false isControl: false position: 
152 CreateTime: 1636351749119 size: 77 magic: 2 compresscodec: none crc: 106207379 isvalid: 
true
baseOffset: 4 lastOffset: 8 count: 5 baseSequence: -1 lastSequence: -1 producerId: -1 
producerEpoch: -1 partitionLeaderEpoch: 0 isTransactional: false isControl: false position: 
229 CreateTime: 1636353061435 size: 141 magic: 2 compresscodec: none crc: 157376877 isvalid: 
true
baseOffset: 9 lastOffset: 13 count: 5 baseSequence: -1 lastSequence: -1 producerId: -1 
producerEpoch: -1 partitionLeaderEpoch: 0 isTransactional: false isControl: false position: 
370 CreateTime: 1636353204051 size: 146 magic: 2 compresscodec: none crc: 4058582827 isvalid: 
true

3)index 文件和 log 文件详解
在这里插入图片描述
在这里插入图片描述
4.4.2 文件清理策略
Kafka 中默认的日志保存时间为 7 天,可以通过调整如下参数修改保存时间。
⚫ log.retention.hours,最低优先级小时,默认 7 天。
⚫ log.retention.minutes,分钟。
⚫ log.retention.ms,最高优先级毫秒。
⚫ log.retention.check.interval.ms,负责设置检查周期,默认 5 分钟。
那么日志一旦超过了设置的时间,怎么处理呢?
Kafka 中提供的日志清理策略有 delete 和 compact 两种。
1)delete 日志删除:将过期数据删除
⚫ log.cleanup.policy = delete 所有数据启用删除策略
(1)基于时间:默认打开。以 segment 中所有记录中的最大时间戳作为该文件时间戳。
(2)基于大小:默认关闭。超过设置的所有日志总大小,删除最早的 segment。
log.retention.bytes,默认等于-1,表示无穷大。
思考:如果一个 segment 中有一部分数据过期,一部分没有过期,怎么处理?
在这里插入图片描述
2)compact 日志压缩
在这里插入图片描述
4.5 高效读写数据
1)Kafka 本身是分布式集群,可以采用分区技术,并行度高
2)读数据采用稀疏索引,可以快速定位要消费的数据
3)顺序写磁盘
Kafka 的 producer 生产数据,要写入到 log 文件中,写的过程是一直追加到文件末端,
为顺序写。官网有数据表明,同样的磁盘,顺序写能到 600M/s,而随机写只有 100K/s。这
与磁盘的机械机构有关,顺序写之所以快,是因为其省去了大量磁头寻址的时间。
在这里插入图片描述

4)页缓存 + 零拷贝技术
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/166141.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

案例分析真题--架构师

案例分析真题--架构师 试题1 质量属性架构风格 软件架构设计 系统开发基础 数据库系统 其他嵌入式 试题1 质量属性架构风格

TCP/IP(十九)TCP 实战抓包分析(三)TCP 第一次握手 SYN 丢包

一 TCP 三次握手异常情况实战分析 说明: 本文是TCP 三次握手异常系列之一 ① 异常场景 接下里我用三个实验案例,带大家一起探究探究这三种异常关注: 如何刻意练习模拟上述场景 以及 wireshark现象 ② 实验环境 ③ 实验一:TCP 第一次握…

redis(其它操作、管道)、django中使用redis(通用方案、 第三方模块)、django缓存、celery介绍(celery的快速使用)

1 redis其它操作 2 redis管道 3 django中使用redis 3.1 通用方案 3.2 第三方模块 4 django缓存 5 celery介绍 5.1 celery的快速使用 1 redis其它操作 delete(*names) exists(name) keys(pattern*) expire(name ,time) rename(src, dst) move(name, db)) randomkey() type(na…

wireshark数据包内容查找功能详解

wireshark提供通过数据包特征值查找具体数据包的功能,具体查找功能如下, (1)选择查找目标区域(也就是在哪里去匹配特征值) 如下图,【分组列表】区域查找指的是在最上方的数据包列表区域查找&…

QT中窗口自绘制效果展示

项目中需要使用QT进行窗口自绘,前期先做一下技术探索,参考相关资料代码熟悉流程。本着代码是最好的老师原则,在此记录一下。 目录 1.运行效果 2.代码结构 3.具体代码 1.运行效果 2.代码结构 3.具体代码 myspeed.pro QT core gui…

vue视频直接播放rtsp流;vue视频延迟问题解决;webRTC占cpu太大卡死问题解决;解决webRTC播放卡花屏问题:

播放多个视频 <div class"video-box"><div class"video"><iframe style"width:100%;height:100%;" name"ddddd" id"iframes" scrolling"auto" :src"videoLeftUrl"></iframe>&l…

缓存失效方案

一、背景 WRITE &#xff1a; 数据写入Mysql 和 Redis缓存&#xff0c; READ&#xff1a;先从 Redis 缓存中取数据&#xff0c;拿不到再从Mysql中加载&#xff0c;更新到Redis 上图第三阶段&#xff0c;接收Mysql的binlog变更消息&#xff0c;可以参考阿里的 Canal&#xff0…

Ubuntu系统上传文件的多种方法-断网上传-安装包上传-物联网开发维护

一、背景 在全新的Ubuntu系统中&#xff0c;其实是无法执行ifconfig命令的&#xff0c;因为这需要net-tools才能执行。在某些无法连接到外网的情况下&#xff0c;我们常常通过将安装包上传或发送到Ubuntu系统中&#xff0c;解压并安装&#xff0c;以保证相关指令能够执行。 本文…

Python获取微信公众号文章数据

这是一个通过 Python mitmproxy 库 实现获取某个微信公众号下全部文章数据的解决方案。首先需要创建一个 Python 虚拟环境&#xff0c;并进入虚拟环境下&#xff1a; $ python -m venv venv $ venv/Scripts/activate我们需要使用 mitmproxy 库 来建立一个网络代理&#xff0c;…

LeetCode_并查集_DFS_中等_2316.统计无向图中无法互相到达点对数

目录 1.题目2.思路3.代码实现&#xff08;Java&#xff09; 1.题目 给你一个整数 n &#xff0c;表示一张 无向图 中有 n 个节点&#xff0c;编号为 0 到 n - 1 。同时给你一个二维整数数组 edges &#xff0c;其中 edges[i] [ai, bi] 表示节点 ai 和 bi 之间有一条无向边。请…

将语义分割的标注mask转为目标检测的bbox

1. 语义分割标签 1.1 labelme工具 语义分割的标签是利用labelme工具进行标注的,标注的样式如下: 1.2 语义分割的标签样式 2. 转换语义分割的标注到目标检测的bbox 实现步骤 (1) 利用标注的json文件生成mask图片(2) 在mask图片中找到目标的bbox矩形框的左上角点和右下角点(…

Redis 之 SessionCallback RedisCallback 使用

&#x1f4e2;&#x1f4e2;&#x1f4e2;&#x1f4e3;&#x1f4e3;&#x1f4e3; 哈喽&#xff01;大家好&#xff0c;我是「奇点」&#xff0c;江湖人称 singularity。刚工作几年&#xff0c;想和大家一同进步&#x1f91d;&#x1f91d; 一位上进心十足的【Java ToB端大厂…

备忘录模式-撤销功能的实现

在idea写代码的过程中&#xff0c;会经常用到一个快捷键——“crtl z”,即撤销功能。“备忘录模式”则为撤销功能提供了一个设计方案。 1 备忘录模式 备忘录模式提供一种状态恢复机制。在不破坏封装的前提下&#xff0c;捕获对象内部状态并在该对象之外保存这个状态。可以在…

Web自动化测试:测试用例断言!

运行测试用例时&#xff0c;需要判断用例是否执行成功&#xff0c;此时需要有一个我们期望的结果来进行验证。这里unittest中&#xff0c;如果一个case执行的过程中报错&#xff0c;或者我们判断结果不符合期望&#xff0c;就会判定此条用例执行失败&#xff0c;判断的条件主要…

【MySQL】数据库——表操作

文章目录 1. 创建表2. 查看表3. 修改表修改表名add ——增加modify——修改drop——删除修改列名称 4. 删除表 1. 创建表 语法&#xff1a; create table 表名字 ( 列名称 列类型 ) charset set 字符集 collate 校验规则 engine 存储引擎 ; charset set字符集 &#xff0c;若…

【C++代码】二叉搜索树的最近公共祖先,二叉搜索树中的插入操作,删除二叉搜索树中的节点--代码随想录

题目&#xff1a;二叉搜索树的最近公共祖先 给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。最近公共祖先的定义为&#xff1a;“对于有根树 T 的两个结点 p、q&#xff0c;最近公共祖先表示为一个结点 x&#xff0c;满足 x 是 p、q 的祖先且 x 的深度尽可能大&a…

小程序中如何使用自定义组件应用及搭建个人中心布局

一&#xff0c;自定义组件 从小程序基础库版本 1.6.3 开始&#xff0c;小程序支持简洁的组件化编程。所有自定义组件相关特性都需要基础库版本 1.6.3 或更高。 开发者可以将页面内的功能模块抽象成自定义组件&#xff0c;以便在不同的页面中重复使用&#xff1b;也可以将复杂的…

MSQL系列(四) Mysql实战-索引分析Explain命令详解

Mysql实战-索引分析Explain命令详解 前面我们讲解了索引的存储结构&#xff0c;我们知道了BTree的索引结构&#xff0c;也了解了索引最左侧匹配原则&#xff0c;到底最左侧匹配原则在我们的项目中有什么用&#xff1f;或者说有什么影响&#xff1f;今天我们来实战操作一下&…

Java并发面试题:(七)ThreadLocal原理和内存泄漏

ThreadLocal是什么&#xff1f; ThreadLocal是线程本地存储机制&#xff0c;可以将数据缓存在线程内部。ThreadLocal存储的变量在线程内共享的&#xff0c;在线程间又是隔离的。 ThreadLocal实现原理&#xff1f; ThreadLocal的底层是ThreadLocalMap&#xff0c;每个Thread都…

YOLOv5算法改进(16)— 增加小目标检测层 | 四头检测机制(包括代码+添加步骤+网络结构图)

前言:Hello大家好,我是小哥谈。小目标检测层是指在目标检测任务中用于检测小尺寸目标的特定网络层。由于小目标具有较小的尺寸和低分辨率,它们往往更加难以检测和定位。YOLOv5算法的检测速度与精度较为平衡,但是对于小目标的检测效果不佳,根据一些论文,我们可以通过增加检…