PKU 概率论+数理统计 期中考复习总结

这里写目录标题

  • 计算条件概率
  • 计算概率(放回与不放回)
  • 生成随机数算法
  • Uniformity (test of frequency)
    • 1.Chi-Square test
    • 2.Kolmogorov-Sminov test
  • Independence (test of autocorrelation)
    • Runs test
  • Acceptance-rejection method
  • Empirical distribution 经验分布
    • Ungrouped data
      • condition
      • method
      • construction method
      • 生成U去寻找x
    • grouped data
      • condition
      • construction method
      • example
      • How about discrete empirical distribution?
      • 经验分布的优点与缺点
  • Maximum Likelihood Estimator 最大似然估计

计算条件概率

【作业题】
Suppose that Die-Hardly-Ever battery has an exponential time-to-failure
distribution with a mean of 48 months. At 60 months, the battery is still operating.

  1. What is the probability that this battery is going to die in the next 12 months?
  2. What is the probability that the battery dies in an odd year of its life?
  3. If the battery is operating at 60 months, compute the expected additional months of life.

【重点】条件概率+无记忆性
P ( x > s + t ∣ x > t ) = P ( x > s ) P(x>s+t|x>t)=P(x>s) P(x>s+tx>t)=P(x>s)

计算概率(放回与不放回)

Suppose that a man has k keys, one of which will open a door. Compute
the expected number of keys required to open the door for the following two cases:
a. The keys are tried one at a time without replacement.(不放回)
b. The keys are tried one at time with replacement.(放回)
在这里插入图片描述

生成随机数算法

在这里插入图片描述【作业题】可能考察是否full period

Uniformity (test of frequency)

检验样本是否服从均匀分布

对前提进行假设
F r e q u e n c y Frequency Frequency
H 0 : R i ′ s U ( 0 , 1 ) H_0:R_i's~U(0,1) H0:Ris U(0,1)
H 1 : R i ′ s n o t U ( 0 , 1 ) H_1:R_i's not U(0,1) H1:RisnotU(0,1)

在测试前要说明清楚,显著性水平
α = P ( t y p e o n e e r r o r ) = p ( r e j e c t H 0 ∣ H 0 i s t r u e ) \alpha=P(type\ one\ error)=p(reject\ H_0|H_0 is\ true) α=P(type one error)=p(reject H0H0is true)

1.Chi-Square test

  • 卡方检验的期望值 E i E_i Ei要求 E i ≥ 5 E_i≥5 Ei5【这个是为了确保近似分布是合理的】

检验是否服从 U ( 0 , 1 ) U(0, 1) U(0,1)如下,

  1. 将[0,1]分成k个等长子区间(对应Reminder的Equal probability)
  2. 计算 O j O_j Oj,其为样本数据 R i R_i Ri落在子区间 ( j − 1 k , j k ] (\frac{j-1}{k},\frac{j}{k}] (kj1,kj]的频次
  3. E j = E ( O j ) = n k E_j=E(O_j)=\frac{n}{k} Ej=E(Oj)=kn观测值在j区间的期望
  4. 计算卡方 X 0 2 = ∑ j = 1 k ( O j − E j ) 2 E j {X_0}^2=\sum_{j=1}^{k}{\frac{(O_j-E_j)^2}{E_j}} X02=j=1kEj(OjEj)2
  5. Reject Ho if X 0 2 > X k − 1 , α 2 {X_0}^2>X_{k-1,\alpha}^2 X02>Xk1,α2

在这里插入图片描述

2.Kolmogorov-Sminov test

流程如下,

  1. Rank R ( 1 ) ≤ R ( 2 ) ≤ . . . ≤ R ( N ) R_{(1)}≤R_{(2)}≤...≤R_{(N)} R(1)R(2)...R(N)
  2. compute D + = max ⁡ 1 ≤ i ≤ N { i N − R ( i ) } D^+=\max_{1≤i≤N}\{\frac{i}{N}-R_{(i)}\} D+=1iNmax{NiR(i)}
    D − = max ⁡ 1 ≤ i ≤ N { R ( i ) − i − 1 N } D^-=\max_{1≤i≤N}\{R_{(i)}-\frac{i-1}{N}\} D=1iNmax{R(i)Ni1}
  3. compute D = m a x ( D + , D − ) D=max(D^+, D^-) D=max(D+,D)
  4. 拒绝 H 0 H_0 H0 if D > D α ( N ) D>D_{\alpha}(N) D>Dα(N)

Independence (test of autocorrelation)

Runs test

Acceptance-rejection method

This method uses an auxiliary function t(x) that is everywhere ≥ the density f(x) of the RV X we want to simulate
接受-拒绝采样,这个方法使用一个辅助函数 t ( x ) t(x) t(x) t ( x ) t(x) t(x)函数满足处处 t ( x ) ≥ f ( x ) t(x)≥f(x) t(x)f(x) f ( x ) f(x) f(x)是随机变量X的概率密度函数,X就是我们想要进行模拟的随机变量。

显然,处处 t ( x ) ≥ 0 t(x)≥0 t(x)0

引入 t ( x ) t(x) t(x)去求解 c c c

不妨,令 r ( x ) = t ( x ) c r(x)=\frac{t(x)}{c} r(x)=ct(x),其一定为概率密度

我们必须选择 t t t,以此能更轻松的从 r ( x ) r(x) r(x)概率密度函数中采样。

method

  1. 从概率密度r(x)中产生Y
  2. 产生均匀分布U(0, 1)变量U,其独立于Y
  3. 这意味着我们必须使用其他的随机变量
  4. U ≤ f ( Y ) t ( Y ) U≤\frac{f(Y)}{t(Y)} Ut(Y)f(Y)时,则令 X = Y X=Y X=Y,否则就回到第一步重新产生Y。

例题 Problem 7: Give an algorithm for generating a standard normal random variable X ∼ N(0,1).
(Hint: if we can generate from the absolute value |X|, then by symmetry we can obtain X by independently generating a rv U (for sign) that is ±1 with probability 1/2 and setting X = U|X|.)

方法1:建议函数使用指数分布

(1)前提准备
首先,根据已知分布的概率密度函数f(x),产生服从此分布的样本X

f ( x ) = 1 2 π e − x 2 2 ( − ∞ < x < + ∞ ) f(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} (-\infty<x<+\infty) f(x)=2π 1e2x2(<x<+)

但根据题目提示,我们仅能产生|X|,不过同理,不妨设随机变量Z, Z = ∣ X ∣ Z=|X| Z=X,由X的概率密度函数我们可以知道Z的概率密度函数
f Z ( z ) = 2 2 Π e − z 2 2 ( z ≥ 0 ) f_Z(z)=\frac{2}{\sqrt{2Π}}e^{-\frac{z^2}{2}} (z≥0) fZ(z)= 2e2z2(z0)
此时再找一个建议函数(辅助函数),即随机变量Y,其服从指数分布,故我们可得其概率密度函数
f Y ( y ) = λ e − λ y ( y > 0 ) f_Y(y)=\lambda e^{-\lambda y} (y>0) fY(y)=λeλy(y>0)
(2)我们首先得确定建议函数的参数 λ \lambda λ与Acceptance-rejection method的参数c(在Acceptance-rejection method算法中我们希望c能接近1)

c ∗ g ( x ) ≥ f ( x ) c*g(x)≥f(x) cg(x)f(x),g(x)为建议函数

c f Y ( u ) f Z ( u ) = c λ e − λ u 2 2 π e − u 2 2 = c λ 2 π 2 e 1 2 ( u − λ ) 2 − λ 2 2 \frac{cf_Y(u)}{f_Z(u)}=\frac{c\lambda e^{-\lambda u}} {\frac{2}{\sqrt{2\pi}}e^{-\frac{u^2}{2}}}= \frac{c\lambda\sqrt{2\pi}}{2}e^{\frac{1}{2}(u-\lambda)^2-\frac{\lambda^2}{2}} fZ(u)cfY(u)=2π 2e2u2cλeλu=2cλ2π e21(uλ)22λ2
易得
c λ 2 π 2 e 1 2 ( u − λ ) 2 − λ 2 2 ≥ c λ 2 π 2 e − λ 2 2 \frac{c\lambda\sqrt{2\pi}}{2}e^{\frac{1}{2}(u-\lambda)^2-\frac{\lambda^2}{2}}≥c\frac{\lambda\sqrt{2\pi}}{2}e^{-\frac{\lambda^2}{2}} 2cλ2π e21(uλ)22λ2c2λ2π e2λ2

不妨令 λ = 1 \lambda=1 λ=1 c = 2 2 π e 1 2 c=\frac{2}{\sqrt{2\pi}}e^{\frac{1}{2}} c=2π 2e21
(这么令代入便于计算)
即可以满足 c f Y ( u ) f Z ( u ) ≥ 1 \frac{cf_Y(u)}{f_Z(u)}≥1 fZ(u)cfY(u)1
此时确定可以将 f Y ( u ) f_Y(u) fY(u)作为我们的建议函数(辅助函数)
t ( y ) = c f Y ( y ) t(y)=cf_Y(y) t(y)=cfY(y)
(课件中使用t(x)代表建议函数,故此用t表示)

(3)由(2)已将建议函数 t ( y ) = c f Y ( y ) t(y)=cf_Y(y) t(y)=cfY(y)找好,接下来我们从中进行采样

【第一个是为了得到样本Y】

  • 生成随机变量U1,其服从U(0,1)的均匀分布,从中生成u1,从而获得采样点y
    y = F − 1 ( u 1 ) = − l n ( 1 − u 1 ) y=F^{-1}(u1)=-ln(1-u_1) y=F1(u1)=ln(1u1)(这个可由指数分布的分布函数去进行求逆变换得到)

【第二个是为了得到样本U】

  • 再生成一个随机变量U2,其也服从U(0, 1)的均匀分布,从中得到u2,且随机变量U1和U2相互独立
    if u 1 ≤ f Z ( y ) c f Y ( y ) u1≤\frac{f_Z(y)}{cf_Y(y)} u1cfY(y)fZ(y)
    则该采样点可以取到,(接受)Z=y
    否则就拒绝回到(3)的开始重新进行采样。

(4)综上,我们产生了Z,其满足 Z = ∣ X ∣ Z=|X| Z=X,但我们实际求解的是X

  • 因此,再生成一个随机变量U3,其服从U(0, 1)的均匀分布,从中得到u3,且随机变量U3是独立于U1、U2
    m = { + 1 u3 ≤ 0.5 − 1 u3 > 0.5 m=\begin{cases} +1& \text{u3 ≤ 0.5}\\ -1& \text{u3 > 0.5} \end{cases} m={+11u3 ≤ 0.5u3 > 0.5
    X = m ∗ Z X=m*Z X=mZ即为采样所得服从N(0,1)标准正态分布

方法2:双指数分布生成正态分布

  1. 产生两个相互独立服从参数为1的指数分布的随机变量Y1、Y2
    Y 1 = − l n ( U 1 ) Y1=-ln(U_1) Y1=ln(U1)
    and Y 2 = − l n ( U 2 ) Y2=-ln(U_2) Y2=ln(U2)
  2. Y 2 ≥ ( Y 1 − 1 ) 2 2 Y_2≥\frac{(Y_1-1)^2}{2} Y22(Y11)2时,令 ∣ Z ∣ = Y 1 |Z|=Y_1 Z=Y1否则就回到第一步重新进行采样
  3. 生成随机变量U,其服从均匀分布U(0, 1)
    Z = { ∣ Z ∣ U ≤ 0.5 − ∣ Z ∣ U > 0.5 Z=\begin{cases} |Z|& \text{U ≤ 0.5}\\ -|Z|& \text{U > 0.5} \end{cases} Z={ZZU ≤ 0.5U > 0.5

方法3:

  1. 生成随机变量Y,其服从参数为1的指数分布;生成随机变量U1,并令 Y = − l n ( U 1 ) Y=-ln(U1) Y=ln(U1)
  2. 生成随机变量U2
  3. U 2 ≤ e − ( Y − 1 ) 2 2 U2≤e^{-\frac{(Y-1)^2}{2}} U2e2(Y1)2则令|Z|=Y,否则则回到第一步
  4. 生成U3,若U3≤0.5则Z=|Z|;若U3>0.5,则Z=-|Z|

注意第3步, U 2 ≤ e − ( Y − 1 ) 2 2 U2≤e^{-\frac{(Y-1)^2}{2}} U2e2(Y1)2,可得
− l n ( U 2 ) ≥ ( Y − 1 ) 2 / 2 -ln(U2)≥(Y-1)^2/2 ln(U2)(Y1)2/2
就可以简化 − l n ( U 2 ) -ln(U2) ln(U2)是服从参数为1的指数分布。

使用Acceptance-Rejection method对连续型随机变量有效,证明处处都有 P ( X ≤ x ) = F X ( x ) P(X≤x)=F_X(x) P(Xx)=FX(x)

设,事件A为接受事件,由Acceptance-Rejection method可知,当A发生时,可将采样Y去代替X,即X=Y
左边 = P ( X ≤ x ) = P ( Y ≤ x ∣ A ) = P ( Y ≤ x , A ) P ( A ) 左边=P(X≤x)=P(Y≤x|A)=\frac{P(Y≤x,A)}{P(A)} 左边=P(Xx)=P(YxA)=P(A)P(Yx,A)

对Y进行采样,得到y,可以取Y作为X的概率如下,
P ( A ∣ Y = y ) = P ( U ≤ f ( y ) t ( y ) ) = f ( y ) t ( y ) P(A|Y=y)=P(U≤\frac{f(y)}{t(y)})=\frac{f(y)}{t(y)} P(AY=y)=P(Ut(y)f(y))=t(y)f(y)
t(y)为建议分布的概率密度函数
U服从U(0, 1)的均匀分布,故概率如上。
0 ≤ f ( y ) t ( y ) ≤ 1 0≤\frac{f(y)}{t(y)}≤1 0t(y)f(y)1
f ( y ) ≤ t ( y ) f(y)≤t(y) f(y)t(y)
取r(y)为Y的概率密度函数
P ( A a n d Y ≤ x ) = ∫ − ∞ x P ( A a n d Y ≤ x ∣ Y = y ) r ( y ) d y P(A\ and\ Y ≤ x)=\int_{-\infty}^xP(A\ and\ Y ≤x|Y=y)r(y)dy P(A and Yx)=xP(A and YxY=y)r(y)dy
由区间知Y≤x必然成立,故
P ( A a n d Y ≤ x ) = ∫ − ∞ x P ( A a n d Y ≤ x ∣ Y = y ) r ( y ) d y = ∫ − ∞ x P ( A ∣ Y = y ) r ( y ) d y = ∫ − ∞ x f ( y ) t ( y ) ∗ t ( y ) c d y = 1 c ∫ − ∞ x f ( y ) d y = 1 c F ( x ) P(A\ and\ Y ≤ x)=\int_{-\infty}^xP(A\ and\ Y ≤x|Y=y)r(y)dy\\= \int_{-\infty}^xP(A|Y=y)r(y)dy\\ =\int_{-\infty}^x\frac{f(y)}{t(y)}*\frac{t(y)}{c}dy\\ =\frac{1}{c}\int_{-\infty}^xf(y)dy\\ =\frac{1}{c}F(x) P(A and Yx)=xP(A and YxY=y)r(y)dy=xP(AY=y)r(y)dy=xt(y)f(y)ct(y)dy=c1xf(y)dy=c1F(x)

又因为 P ( A ) = ∫ R P ( A ∣ Y = y ) r ( y ) d y = 1 c ∫ R f ( y ) d y = 1 c P(A)=\int_R P(A|Y=y)r(y)dy\\ =\frac{1}{c}\int_R f(y)dy=\frac{1}{c} P(A)=RP(AY=y)r(y)dy=c1Rf(y)dy=c1 P ( A ) = 1 c P(A)=\frac{1}{c} P(A)=c1

已知, = P ( X ≤ x ) = P ( Y ≤ x ∣ A ) = P ( Y ≤ x , A ) P ( A ) =P(X≤x)=P(Y≤x|A)=\frac{P(Y≤x,A)}{P(A)} =P(Xx)=P(YxA)=P(A)P(Yx,A)
P ( A a n d Y ≤ x ) = 1 c F ( x ) P(A\ and\ Y ≤ x)=\frac{1}{c}F(x) P(A and Yx)=c1F(x)带入
P ( A ) = 1 c P(A)=\frac{1}{c} P(A)=c1带入
解得, P ( X ≤ x ) = F ( x ) P(X≤x)=F(x) P(Xx)=F(x),综上得证。

Empirical distribution 经验分布

经验分布是分段线性不是阶梯式

重点:数据是否已经被分组

Ungrouped data

condition

当原始的数据已知且有具体的值的时候

method

这里我们可以使用插值法。

首先我们得到的是一组未经处理的数据,不妨设有n个

然后,根据数值由小到大对其进行排序,

  • 最小的值到 [ 0 , 1 n − 1 ] [0, \frac{1}{n-1}] [0,n11]
  • 接下来的值放到 [ 1 n − 1 , 2 n − 1 ] [\frac{1}{n-1}, \frac{2}{n-1}] [n11,n12]
  • 继续上述类似操作
  • 最大值分配到1上

这样,每个值都会和一个区间相对应

construction method

定义一个连续的、分段线性的分布函数F
将Xi单调递增排序,Xi表示第i小(Xi就是排序过的数值),此时可以得到F函数如下
{ 0 , if  x < X ( 1 ) i − 1 n + 1 + x − X i ( n − 1 ) ( X ( i + 1 ) − X ( i ) ) , if  X i ≤ x < X ( i + 1 ) ,  ∀ i < n − 1 1 , if  X ( n ) < x \begin{cases} 0& ,\text{if $x<X_{(1)}$}\\ \frac{i-1}{n+1}+\frac{x-X_i}{(n-1)(X_{(i+1)}-X_{(i)})}& ,\text{if $X_i≤x<X_{(i+1)}$, $\forall i<n-1$}\\ 1& ,\text{if $X_{(n)}<x$} \end{cases} 0n+1i1+(n1)(X(i+1)X(i))xXi1,if x<X(1),if Xix<X(i+1), ∀i<n1,if X(n)<x

生成U去寻找x

在这里插入图片描述
在这里插入图片描述

grouped data

condition

我们没有独立的数据样本点的时候,仅知道每组数据间隔中有多少数据,即

  • n j n_j nj个点在区间 [ a j − 1 , a j ] , j = 0 , , , , , k [a_{j-1},a_j],j=0,,,,,k [aj1,aj],j=0,,,,,k
  • ∑ n j = n \sum n_j=n nj=n
  • G ( a j ) = ( n 1 + . . . + n j ) / n , j ≥ 1 , G ( a 0 ) = 0 G(a_j)=(n_1+...+n_j)/n,j≥1,G(a_0)=0 G(aj)=(n1+...+nj)/n,j1,G(a0)=0
  • 分配 a j a_j aj [ G ( a j ) , G ( a j + 1 ) ] [G(a_j), G(a_{j+1})] [G(aj),G(aj+1)],剩下的数据也如上处理
    最后将0值分配给任意x<a0即可

construction method

在这里插入图片描述

example

Suppose we have 5 observations in [3,5), 10 in [5,6), 10 in [6,8), so n = 3

How about discrete empirical distribution?

  • Data Are Not Grouped
    对于数值x,定义p(x)为 值为x的数值个数占所有数值个数的比例
  • Only Grouped Data Are Available
    定义一个概率函数,使得一个区间内所有数值的概率之和为该区间数值个数占所有数值个数之比

经验分布的优点与缺点

优点

  1. 使用当前数据
  2. 易于操作

缺点

  1. 无法得到观察值范围外的数据
  2. 看起来不规则

Maximum Likelihood Estimator 最大似然估计

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/167475.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AAPCS:最新的ARM子程序调用规则

AAPCS是arm公司发布的ARM架构应用程序二进制&#xff08;ABI&#xff09;程序调用接口&#xff0c;该文档由多个版本&#xff0c;博主第一次ARM程序调用规则是在《ARM体系与结构编程》&#xff0c;但书中描述的是ATPCS&#xff0c;AAPCS是ATPCS的升级版。后面去ARM官网看到了AA…

计算机视觉实战项目3(图像分类+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别+无人机检测+A*路径规划+单目测距与测速+行人车辆计数等)

车辆跟踪及测距 该项目一个基于深度学习和目标跟踪算法的项目&#xff0c;主要用于实现视频中的目标检测和跟踪。该项目使用了 YOLOv5目标检测算法和 DeepSORT 目标跟踪算法&#xff0c;以及一些辅助工具和库&#xff0c;可以帮助用户快速地在本地或者云端上实现视频目标检测和…

javaEE - 1(9000字详解多线程)

一&#xff1a;认识线程 1.1 线程的概念 线程是操作系统中执行的最小单位&#xff0c;它是进程中的一个实体。一个进程可以包含多个线程&#xff0c;并且这些线程共享进程的资源&#xff0c;如内存、文件句柄等&#xff0c;但每个线程有自己的独立执行流程和栈空间。 线程在…

昇腾CANN 7.0 黑科技:大模型训练性能优化之道

目前&#xff0c;大模型凭借超强的学习能力&#xff0c;已经在搜索、推荐、智能交互、AIGC、生产流程变革、产业提效等场景表现出巨大的潜力。大模型经过海量数据的预训练&#xff0c;通常具有良好的通用性和泛化性。用户基于“大模型预训练微调”开发范式即可在实际业务场景取…

【技能树笔记】网络篇——练习题解析(八)

目录 前言 一、LAN技术 1.1 堆叠与集群 1.2 MSTP的特点 二、WAN技术 2.1 PPP链路建立 2.2 PPPoE 2.3 组播 2.3.1 组播的IP 2.3.2 组播分发树 2.3.3 组播协议 三、IPv6基础 3.1 IPv6地址 3.2 IPv6协议 3.3 IPv6过渡技术 总结 &#x1f308;嗨&#xff01;我是Filotimo__&#x1…

Linux下Jenkins自动化部署SpringBoot应用

Linux下Jenkins自动化部署SpringBoot应用 1、 Jenkins介绍 官方网址&#xff1a;https://www.jenkins.io/ 2、安装Jenkins 2.1 centos下命令行安装 访问官方&#xff0c;点击文档&#xff1a; 点击 Installing Jenkins&#xff1a; 点击 Linux&#xff1a; 选择 Red Hat/…

RK3568平台 GPIO子系统框架

一.gpio 子系统简介 gpio 子系统顾名思义&#xff0c;就是用于初始化 GPIO 并且提供相应的 API 函数&#xff0c;比如设置 GPIO为输入输出&#xff0c;读取 GPIO 的值等。gpio 子系统的主要目的就是方便驱动开发者使用 gpio&#xff0c;驱动 开发者在设备树中添加 gpio 相关信…

改进YOLO系列 | YOLOv5/v7 引入 Dynamic Snake Convolution | 动态蛇形卷积

准确分割拓扑管状结构,如血管和道路,在各个领域中至关重要,可以确保下游任务的准确性和效率。然而,许多因素使任务复杂化,包括细小的局部结构和可变的全局形态。在这项工作中,我们注意到管状结构的特殊性,并利用这一知识来引导我们的DSCNet,以在三个阶段同时增强感知:…

【问题记录】解决Qt连接MySQL报“QMYSQL driver not loaded”以及不支持MySQL事务操作的问题!

环境 Windows 11 家庭中文版&#xff0c;64 位操作系统, 基于 x64 的处理器Qt 5.15.2 MinGW 32-bitmysql Ver 14.14 Distrib 5.7.42, for Win32 (AMD64) 问题情况 在Qt 5.15.2 中编写连接MySQL数据库代码后&#xff0c;使用 MinGW 32-bit 构建套件进行编译运行后&#xff0c;报…

互联网Java工程师面试题·Java 面试篇·第四弹

目录 59、我们能自己写一个容器类&#xff0c;然后使用 for-each 循环码&#xff1f; 60、ArrayList 和 HashMap 的默认大小是多数&#xff1f; 61、有没有可能两个不相等的对象有有相同的 hashcode&#xff1f; 62、两个相同的对象会有不同的的 hash code 吗&#xff1f; …

专业安卓实时投屏软件:极限投屏(QtScrcpy作者开发)使用说明

基本介绍 极限投屏是一款批量投屏管理安卓设备的软件&#xff0c;是QtScrcpy作者基于QtScrcpyCore开发&#xff0c;主要功能有&#xff1a; 设备投屏&控制&#xff1a;单个控制、批量控制分组管理wifi投屏adb shell快捷指令文件传输、apk安装 更多功能还在持续更新。 极…

Node学习笔记之Express框架

一、express 介绍 express 是一个基于 Node.js 平台的极简、灵活的 WEB 应用开发框架&#xff0c;官方网址&#xff1a;https://www.expressjs. com.cn/ 简单来说&#xff0c;express 是一个封装好的工具包&#xff0c;封装了很多功能&#xff0c;便于我们开发 WEB 应用&…

【vSphere 8 自签名 VMCA 证书】企业 CA 签名证书替换 vSphere VMCA CA 证书Ⅰ—— 生成 CSR

目录 替换拓扑图证书关系示意图说明 & 关联博文1. 默认证书截图2. 使用 certificate-manager 生成CSR2.1 创建存放CSR的目录2.2 记录PNID和IP2.3 生成CSR2.4 验证CSR 参考资料 替换拓扑图 证书关系示意图 本系列博文要实现的拓扑是 说明 & 关联博文 因为使用企业 …

Rust逆向学习 (2)

文章目录 Guess a number0x01. Guess a number .part 1line 1loopline 3~7match 0x02. Reverse for enum0x03. Reverse for Tuple0x04. Guess a number .part 20x05. 总结 在上一篇文章中&#xff0c;我们比较完美地完成了第一次Rust ELF的逆向工作&#xff0c;但第一次编写的R…

SL8541 android系统环境+编译

1.Ubuntu系统的安装 最好使用ubuntu18.0.4 2.工具环境包的安装 // 安装Android8.1源码编译环境 sudo apt-get install openjdk-8-jdk --------------ok sudo apt-get install libx11-dev:i386 libreadline6-dev:i386 libgl1-mesa-dev g-multilib --------------ok sudo…

1 Go的前世今生

概述 Go语言正式发布于2009年11月&#xff0c;由Google主导开发。它是一种针对多处理器系统应用程序的编程语言&#xff0c;被设计成一种系统级语言&#xff0c;具有非常强大和有用的特性。Go语言的程序速度可以与C、C相媲美&#xff0c;同时更加安全&#xff0c;支持并行进程。…

curl命令服务器上执行http请求

1. 现在本地使用postman生成curl命令 注意: 将ip改成127.0.0.1,端口是实际服务运行的端口 curl --location --request POST http://127.0.0.1:63040/content/course/list?pageNo1&pageSize2 \ --header Content-Type: application/json \ --data-raw {"courseName&q…

小插曲 -- 使用Visual Studio Code远程连接香橙派

在之前的学习中&#xff0c;代码的修改和保存都依赖于“vi”指令&#xff0c;而不得不承认vi指令的编辑界面非常原始&#xff0c;所以&#xff0c;如果可以将代码编辑放到更友好的环境里进行无疑是一件大快人心的事情。 本节介绍如何通过Visual Studio Code来进行远程连接: Vi…

【计算机网络】UDP/TCP协议

文章目录 :peach:1 UDP协议:peach:1.1 :apple:UDP协议端格式:apple:1.2 :apple:UDP的特点:apple:1.3 :apple:UDP的缓冲区:apple:1.4 :apple:UDP使用注意事项:apple:1.5 :apple:基于UDP的应用层协议:apple: 2 :peach:TCP协议:peach:2.1 :apple:TCP协议端格式:apple:2.2 :apple:确…

Redis 命令—— 超详细操作演示!!!

内存数据库 Redis7 三、Redis 命令3.1 Redis 基本命令3.2 Key 操作命令3.3 String 型 Value 操作命令3.4 Hash 型 Value 操作命令3.5 List 型 Value 操作命令3.6 Set 型 Value 操作命令3.7 有序Set 型 Value 操作命令3.8 benchmark 测试工具3.9 简单动态字符串SDS3.10 集合的底…