OpenCV 笔记(2):图像的属性以及像素相关的操作

Part11.  图像的属性

11.1 Mat 的主要属性

在前文中,我们大致了解了 Mat 的基本结构以及它的创建与赋值。接下来我们通过一个例子,来看看 Mat 所包含的常用属性。

先创建一个 3*4 的四通道的矩阵,并打印出其相关的属性,稍后会详细解释每个属性的含义。

Mat srcImage(3, 4, CV_16UC4, Scalar_<uchar>(1, 2, 3, 4));cout << srcImage << endl;cout << "dims:" << srcImage.dims << endl;
cout << "rows:" << srcImage.rows << endl;
cout << "cols:" << srcImage.cols << endl;
cout << "channels:" << srcImage.channels() << endl;
cout << "type:" << srcImage.type() << endl;
cout << "depth:" << srcImage.depth() << endl;
cout << "elemSize:" << srcImage.elemSize() << endl;
cout << "elemSize1:" << srcImage.elemSize1() << endl;
cout << "step:" << srcImage.step << endl;
cout << "step[0]:" << srcImage.step[0] << endl;
cout << "step[1]:" << srcImage.step[1] << endl;
cout << "step1[0]:" << srcImage.step1(0) << endl;
cout << "step1[1]:" << srcImage.step1(1) << endl;

输出结果:

[1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4;1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4;1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4]
dims:2
rows:3
cols:4
channels:4
type:26
depth:2
elemSize:8
elemSize1:2
step:32
step[0]:32
step[1]:8
step1[0]:16
step1[1]:4

在上述例子中我们打印了 Mat 的很多属性,它们主要包括:

  • rows: 表示图像的高度。

  • cols:表示图像的宽度。

  • dims:表示矩阵的维度。

  • data:表示 Mat 对象中的指针(uchar 类型的指针),指向内存中存放矩阵数据的一块内存 (uchar* data)。

  • channels:表示通道数量;例如常见的 RGB、HSV 彩色图像,则 channels=3;若为灰度图,则 channels=1。

  • depth:表示图像的深度,它用来度量每一个像素中每一个通道的精度,它本身与通道数无关,它的数值越大表示精度越高。

数据类型depth 的值数据类型取值范围对应 C++ 的类型
CV_8U08 位无符号类型0—255uchar,  unsigned char
CV_8S18 位有符号类型-128—127char
CV_16U216 位无符号类型0—65535ushort, unsigned short, unsigned short int
CV_16S316 位有符号类型-32768—32767short, short int
CV_32S432 位整数数据类型-2147483648—2147483647int, long
CV_32F532 位浮点数类型±(1.18e-38……3.40e38)float
CV_64F632 位双精度类型±(2.23e-308……1.79e308)double
  • type:表示矩阵的数据类型,它包含矩阵中元素的类型以及通道数信息。

数据类型1234
CV_8UCV_8UC1CV_8UC2CV_8UC3CV_8UC4
CV_8SCV_8SC1CV_8SC2CV_8SC3CV_8SC4
CV_16UCV_16UC1CV_16UC2CV_16UC3CV_16UC4
CV_16SCV_16SC1CV_16SC2CV_16SC3CV_16SC4
CV_32SCV_32SC1CV_32SC2CV_32SC3CV_32SC4
CV_32FCV_32FC1CV_32FC2CV_32FC3CV_32FC4
CV_64FCV_64FC1CV_64FC2CV_64FC3CV_64FC4
  • elemSize:表示矩阵中每一个元素的数据大小,它与通道数相关,单位是字节。 举几个例子: 如果 Mat 中的数据类型是 CV_8UC1 或 CV_8SC1,那么 elemSize=1(1 * 8 / 8 = 1 bytes); 如果 Mat 中的数据类型是 CV_8UC3 或 CV_8SC3,那么 elemSize=3(3 * 8 / 8 = 3 bytes); 如果 Mat 中的数据类型是 CV_16UC3 或 CV_16SC3,那么 elemSize=6(3 * 16 / 8 = 6 bytes); 如果 Mat 中的数据类型是 CV_32SC3 或 CV_32FC3,那么 elemSize=12(3 * 32 / 8 = 12 bytes);

  • elemSize1:表示矩阵中每一个元素单个通道的数据大小,单位是字节。满足:

  • step: 字面意思是“步长”,实际上它描述了矩阵的形状。 step[] 为一个数组,矩阵有几维,step[] 数组就有几个元素。以一个三维矩阵为例,step[0] 表示一个平面的字节总数,step[1] 表示一行元素的字节总数,step[2] 表示每一个元素的字节总数。

在 OpenCV 的官方文档中,关于解释 step 时曾提到矩阵数据元素

的地址

对于我们常用的二维数组,上述公式可化简为:

这里的 step[0] 表示一行元素的字节总数,step[1] 表示每一个元素的字节总数。

b0ec7e951bab533cd242f5163b09871c.jpeg
mat.png
  • step1:  step1 也是一个数组。step1 不再以字节为单位,而是以 elemSize1 为单位,满足:

Part22. 图像的像素操作

22.1 像素的类型

我们最常用的图像是二维数组,灰度图像(CV_8UC1)会存放 C++ 的 uchar 类型,RGB 彩色图像一般会存放 Vec3b 类型。

其中,单通道数据存放格式:061bed490799cb6ea99a30e4dfa20705.jpeg

三通道数据存放格式:cf92ff6d908931eaf945c6f308bb2f13.jpeg

对于彩色图像而言,在 OpenCV 中通道的顺序是 B、G、R,这跟我们通常所说的 RGB 三原色正好相反。

当然,灰度图像也不一定都是 CV_8UC1 类型,也可能是 CV_16SC1、CV_32FC1 等,它们会存放 C++ 的 short、float 等基本类型。类似地,彩色图像也可能是 CV_16SC3、CV_32FC3 等,那它们是怎么存放的呢?

OpenCV 定义了一系列的 Vec 类,它是一个一维的向量,代表像素的类型

typedef Vec<uchar, 2> Vec2b;
typedef Vec<uchar, 3> Vec3b;
typedef Vec<uchar, 4> Vec4b;typedef Vec<short, 2> Vec2s;
typedef Vec<short, 3> Vec3s;
typedef Vec<short, 4> Vec4s;typedef Vec<ushort, 2> Vec2w;
typedef Vec<ushort, 3> Vec3w;
typedef Vec<ushort, 4> Vec4w;typedef Vec<int, 2> Vec2i;
typedef Vec<int, 3> Vec3i;
typedef Vec<int, 4> Vec4i;
typedef Vec<int, 6> Vec6i;
typedef Vec<int, 8> Vec8i;typedef Vec<float, 2> Vec2f;
typedef Vec<float, 3> Vec3f;
typedef Vec<float, 4> Vec4f;
typedef Vec<float, 6> Vec6f;typedef Vec<double, 2> Vec2d;
typedef Vec<double, 3> Vec3d;
typedef Vec<double, 4> Vec4d;
typedef Vec<double, 6> Vec6d;

其中 b、s、w、i、f、d 分别表示如下的含义:


数据类型
bunsigned char
sshort int
wunsigned short
iint
ffloat
ddouble

Vec 类又被称为固定向量类,在编译时就知道向量的大小。类似 Vec 这样的类还有:Matx、Point、Size、Rect

我们用一张表,总结一下矩阵中的数据类型和像素的类型的对应关系:

数据类型C1C2C3C4C6
CV_8UucharVec2bVec3bVec4b
CV_8ScharVec<char, 2>Vec<char, 3>Vec<char, 4>
CV_16UushortVec2wVec3wVec4w
CV_16SshortVec2sVec3sVec4s
CV_32SintVec2iVec3iVec4i
CV_32FfloatVec2fVec3fVec4fVec6f
CV_64FdoubleVec2dVec3dVec4dVec6d

基于上述表格我们可以回答刚才的问题,CV_16SC3 类型的图像存放的是 Vec3s 类型,CV_32FC3 类型的图像存放的是 Vec3f 类型。

32.2 像素点的读取

Mat 的 at() 函数实现了对矩阵中的某个像素的读写操作

下面的代码展示了 at() 函数对灰度图像像素的读写:

Scalar value = grayImage.at<uchar>(y, x);
Scalar.at<uchar>(y, x) = 128;

三通道彩色的图像的读取:

Vec3b value = image.at<Vec3b>(y, x);uchar blue = value.val[0];
uchar green = value.val[1];
uchar red = value.val[2];

三通道彩色图像的赋值:

image.at<Vec3b>(y,x)[0]=128;
image.at<Vec3b>(y,x)[1]=128;
image.at<Vec3b>(y,x)[2]=128;

下面的例子结合像素的类型,展示了将加载的图像转换成灰度图像,以及对灰度图像进行取反的操作。

Mat srcImage = imread("/Users/tony/beautiful.jpg");
if (srcImage.empty())
{cout << "could not load image ..." << endl;return -1;
}
imshow("src", srcImage);Mat grayImage;
cvtColor(srcImage, grayImage, COLOR_BGR2GRAY); // 灰度处理
imshow("gray",grayImage);int height = grayImage.rows;
int width  = grayImage.cols;for (int row=0; row<height; row++)
{for (int col=0; col<width; col++){int gray = grayImage.at<uchar>(row, col);grayImage.at<uchar>(row, col) = 255- gray;}
}imshow("invert", grayImage);
1925bc3571edae4d8e4ecd159d5d671c.jpeg
像素点操作.png

简单提一下,上述例子中 cvtColor() 函数的作用是将图像从一个颜色空间转换到另一个颜色空间。例如,可以将图像从 BGR 色彩空间转换成灰度色彩空间,或者从 BGR 色彩空间转换成 HSV 色彩空间等等。

42.3 图像的遍历

2.3.1 基于数组遍历

前面 2.2 介绍过 at() 函数可以对某个像素进行读写操作,并用例子展示了对单通道进行遍历。

对于三通道的彩色图像可以这样遍历。

for(int i=0;i<srcImage.rows;i++){for(int j=0;j<srcImage.cols;j++){srcImage.at<Vec3b>(i,j)[0]=...  //B通道srcImage.at<Vec3b>(i,j)[1]=...  //G通道srcImage.at<Vec3b>(i,j)[2]=...  //R通道}
}

2.3.2 基于指针遍历

Mat 类提供了更高效的 ptr() 函数,它可以得到图像任意行首地址

下面的代码,它返回第 i+1 行的首地址,也就是指向第 i+1 行第一个元素的指针。

uchar* data = srcImage.ptr<uchar>(i);

at() 函数跟 ptr() 函数在使用上有一定的区别:

at<类型>(i,j) 

ptr<类型>(i)

当然,使用 ptr()  函数访问某个像素也是可以的,采用如下的方式:

mat.ptr<type>(row)[col]

它返回的是 <> 中的模板类型指针,指向的是第 row+1 行 col+1 列的元素。

对于单通道图像的遍历:

for(int i=0;i<srcImage.rows;i++){uchar* data=srcImage.ptr<uchar>(i);for(int j=0;j<srcImage.cols;j++){data[j]=...}
}

对于三通道图像的遍历:

for(int i=0;i<srcImage.rows;i++){Vec3b* data=srcImage.ptr<Vec3b>(i);for(int j=0;j<srcImage.cols;j++){data[j][0]=...  //B通道data[j][1]=...  //G通道data[j][2]=...  //R通道}
}

2.3.3 基于迭代器遍历

C++ STL 对每个集合类都定义了对应的迭代器类,OpenCV 也提供了 cv::Mat 的迭代器类,并且与 C++ STL 中的标准迭代器兼容。

对于单通道图像的遍历:

Mat_<uchar>::iterator begin = srcImage.begin<uchar>();
Mat_<uchar>::iterator end = srcImage.end<uchar>();for (auto it = begin; it != end; it++)
{*it = ...
}

迭代器 Mat_ 是 Mat 的模版子类,它重载了 operator() 让我们可以更方便的取图像上的点。类似的迭代器还有 Matlterator_。

对于三通道图像的遍历:

Mat_<cv::Vec3b>::iterator begin = srcImage.begin<cv::Vec3b>();
Mat_<cv::Vec3b>::iterator end = srcImage.end<cv::Vec3b>();for (auto it = begin; it != end; it++)
{(*it)[0] = ... //B通道(*it)[1] = ... //G通道(*it)[2] = ... //R通道
}

使用迭代器遍历图像会便捷一些,但是效率没有使用指针的效率高。

52.3.4 基于 LUT 遍历

LUT (LOOK -UP-TABLE) 意为查找表。

在数据结构中,查找表是由同一类型的 数据元素 构成的集合,它是一种以查找为“核心”,同时包括其他运算的非常灵活的数据结构。

在图像处理中,经常会通过事先建立一张查找表对图像进行映射。

例如,将灰度图由某个区间映射到另一个区间,或者将单通道映射到三通道。它们都是以像素灰度值作为索引,以灰度值映射后的数值作为表中的内容,通过索引号与映射后的输出值建立联系。

一般灰度图像会有 0-255 个灰度值,有时我们不需要这么精确的灰度级,例如黑白图像。下面我们来展示如何建立一个 LUT,将 64 到 196 之间的灰度值变成 0,其余变成 1。

Mat lut(1, 256, CV_8U);
for (int i = 0; i < 256; i++)
{if (i > 64 and i < 196){lut.at<uchar>(i) = 0;}else{lut.at<uchar>(i) = i;}
}

从上述代码可以看出,通过改变图像中像素的灰度值,LUT 可以降低灰度级提高运算速度。

LUT 只适用于 CV_8U 类型的图像。

当然,查找表并不一定都是单通道的。

  • 如果输入图像为单通道,那么查找表为单通道

  • 如果输入图像为三通道,那么查找表可以为单通道或者三通道

使用 LUT 进行遍历,采用的是颜色空间缩减的方式:把 unsigned char 类型的值除以一个 int 类型的值,得到仍然是一个 char 类型的数值。

我们采用如下的公式:

其中,Q 表示量化级别,当 Q= 10 时则灰度值 1-10 用灰度值 1 表示,灰度值 11-20 用灰度值 11 表示,以此类推。256 个灰度值的灰度图像可以用 26 个数值表示,那么彩色的图像就可以用 26 * 26 * 26 个数值表示,比原先小了很多。

#include <iostream>
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>using namespace std;
using namespace cv;#define QUAN_VAL1          10
#define QUAN_VAL2          20
#define QUAN_VAL3          100void createLookupTable(Mat& table, uchar quanVal)
{table.create(1,256,CV_8UC1);uchar *p = table.data;for(int i = 0; i < 256; ++i){p[i] = quanVal*(i/quanVal); // 颜色缩减运算}
}int main()
{Mat srcImage = imread("/Users/tony/beautiful.jpg");if (srcImage.empty()){cout << "could not load image ..." << endl;return -1;}imshow("src", srcImage); // 原图Mat table,dst1,dst2,dst3;createLookupTable(table, QUAN_VAL1);LUT(srcImage, table, dst1);createLookupTable(table, QUAN_VAL2);LUT(srcImage, table, dst2);createLookupTable(table, QUAN_VAL3);LUT(srcImage, table, dst3);imshow("dst1", dst1); // Q=10imshow("dst2", dst2); // Q=20imshow("dst3", dst3); // Q=100waitKey(0);return 0;
}
90c433dda869d33d1fa5fa71fde7ce70.jpeg
lut.png

上述例子在创建查找表时,遍历了矩阵的每一个像素以及运用颜色空间缩减的运算公式。并且分别展示了原图、Q=10、Q=20、Q=100 的图片。可以看到当 Q = 100 时,图像压缩得比较厉害丢失了很多信息。

Part33. 图像像素值的统计

63.1 均值与标准差

均值和标准差是统计学的概念。

均值的公式:

标准差公式:

在图像处理中,它们能帮助我们了解图像通道中像素值的分布情况。均值表示图像整体的亮暗程度,图像的均值越大则表示图像越亮。标准差表示图像中明暗变化的对比程度,标准差越大表示图像中明暗变化越明显。

在图像分析的时候,我们通过图像像素值的统计,可以对图像的有效信息作出判断。当标准差很小时,图像所携带的有效信息会很少,便于我们判断这是否是我们所需要的图像。说一个题外话,曾经我看到过一段很震惊的代码,某同事写的判断传送带上手机是否亮屏。当时的代码可能是为了偷懒,只通过判断图像的均值,当均值超过某个阈值时就认为手机是亮屏的。后来我接手后,当即做了大量的修改。

下面举个例子,通过 meanStdDev() 函数获取图像的均值和标准差,以及每个通道的均值和标准差。

Mat srcImage = imread("/Users/tony/beautiful.jpg");
if (srcImage.empty())
{cout << "could not load image ..." << endl;return -1;
}
imshow("src", srcImage);Mat mean, stddev;
meanStdDev(srcImage, mean, stddev);
std::cout << "mean:" << std::endl << mean << std::endl;
std::cout << "stddev:" << std::endl<< stddev << std::endl;
printf("blue channel mean:%.2f, stddev: %.2f \n", mean.at<double>(0, 0), stddev.at<double>(0, 0));
printf("green channel mean:%.2f, stddev: %.2f \n", mean.at<double>(1, 0), stddev.at<double>(1, 0));
printf("red channel mean:%.2f, stddev: %.2f \n", mean.at<double>(2, 0), stddev.at<double>(2, 0));

输出结果:

mean:
[91.28189117330051;104.7030620995939;118.9715339648672]
stddev:
[77.24017058254671;79.5424883584348;83.89088339080149]
blue channel mean:91.28, stddev: 77.24 
green channel mean:104.70, stddev: 79.54 
red channel mean:118.97, stddev: 83.89

Part44. 总结

本文过一个简单的例子,介绍了 Mat 经常使用的属性和方法。后续还介绍了像素的类型和多种图像遍历的方式、像素值的统计。

在几种图像遍历方式中,除了 LUT 遍历外,其他的几种方式它们的效率从高到低依次为:指针 > 迭代器 > 数组。在实际生产环境中,我们经常会用指针遍历的方式

本文介绍的内容是对前面一篇文章内容的补充,它们都是 OpenCV 最基础的内容,接下来的文章会经常使用这些内容。本文还引申出了 LUT 以及图像像素值的统计, 特别是均值和标准差它们在图像预处理中经常用到。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/168496.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

django建站过程(2)创建第一个应用程序页面

创建第一个应用程序页面 设置第一个页面【settings.py,urls.py,views.py】settings.pyurls.pyviews.py django是由一系列应用程序组成&#xff0c;协同工作&#xff0c;让项目成为一个整体。前面已创建了一个应用程序baseapp,使用的命令 python manage.py startapp baseapps这…

2023全新小程序广告流量主奖励发放系统源码 流量变现系统

2023全新小程序广告流量主奖励发放系统源码 流量变现系统 分享软件&#xff0c;吃瓜视频&#xff0c;或其他资源内容&#xff0c;通过用户付费买会员来变现&#xff0c;用户需要付费&#xff0c;有些人喜欢白嫖&#xff0c;所以会流失一部分用户&#xff0c;所以就写了这个系统…

RustCC分享会|非凸科技与开发者共同探讨Rust安全进化

10月15日&#xff0c;非凸科技受邀参加RustCC联合多家开发者社区组织的Global Tour of Rust技术分享活动&#xff0c;旨在为Rust开发者提供交流互动的平台&#xff0c;分享Rust语言的知识、经验和最佳实践。 活动上&#xff0c;非凸科技成都分公司研发总监赵海峰以“Rust安全进…

系统架构师备考倒计时13天(每日知识点)

1. 数据仓库四大特点 面向主题的。操作型数据库的数据组织面向事务处理任务&#xff0c;各个业务系统之间各自分离&#xff0c;而数据仓库中的数据是按照一定的主题域进行组织的。集成的。数据仓库中的数据是在对原有分散的数据库数据抽取、清理的基础上经过系统加工、汇总和整…

TechSmith Camtasia 2023 for Mac 屏幕录像视频录制编辑软件

​ TechSmith Camtasia for Mac 2023中文破解版 是一款专业的屏幕录像视频录制编辑软件&#xff0c;非常容易就可以获得精彩的截屏视频。创建引人注目的培训&#xff0c;演示和演示视频。Camtasia 屏幕录制软件简化&#xff0c;直观&#xff0c;让您看起来像专业人士。利用Camt…

安卓使用android studio跨进程通信之AIDL

我写这篇文章不想从最基础的介绍开始,我直接上步骤吧. 1.创建服务端 1.1:创建服务端项目:我的as版本比较高,页面就是这样的 1.2:创建AIDL文件,右键项目,选中aidl aidl名字可以自定义也可以默认 basicTypes是自带的,可以删掉,也可以不删,然后把你自己所需的接口写上去 1.3:创建…

让uniGUI支持https

今天在专家的帮助下&#xff0c;成功的让uniGUI支持https了。 首先&#xff0c;去申请个**的证书。我同事去阿里申请的&#xff0c;申请回是一个zip文件&#xff0c;里面有两个文件&#xff0c;一个扩展是per&#xff0c;一个key 然后&#xff0c;把这两个证书文件放到uniGUI…

06、Python 序列 与 列表 与 元组 的关系和创建 和 简单使用

目录 序列元组与列表关系总结 创建元组与列表方式一创建元组注意点 创建元组与列表方式二简单使用通过索引访问元素子序列序列加法序列乘法in运算 了解Python序列 创建列表和元组 通过索引访问元素 子序列 序列运算 序列 所谓序列&#xff0c;指的是一种包含多项数据的数据结…

【蓝桥每日一题]-动态规划 (保姆级教程 篇11)#方格取数2.0 #传纸条

目录 题目&#xff1a;方格取数 思路&#xff1a; 题目&#xff1a;传纸条 思路&#xff1a; 题目&#xff1a;方格取数 &#xff08;跑两次&#xff09; 思路&#xff1a; 如果记录一种方案后再去跑另一个方案&#xff0c;影响因素太多了&#xff0c;所以两个方案要同时开…

FL Studio 21 for Mac中文破解版百度网盘免费下载安装激活

FL Studio 21 for Mac中文破解版是Mac系统中的一款水果音乐编辑软件&#xff0c;提供多种插件&#xff0c;包括采样器、合成器和效果器&#xff0c;可编辑不同风格的音乐作品&#xff0c;Pattern/Song双模式&#xff0c;可兼容第三方插件和音效包&#xff0c;为您的创意插上翅膀…

Unity3D 基础——鼠标悬停更改物体颜色,移走恢复

方法介绍 【unity学习笔记】OnMouseEnter、OnMouseOver、OnMouseExit_unity onmouseover_一白梦人的博客-CSDN博客https://blog.csdn.net/a1208498468/article/details/117856445 GetComponent()详解_getcomponet<> 动态名称-CSDN博客https://blog.csdn.net/kaixindrag…

uniapp 测试 app 到安卓模拟器部署方法以及常见错误解决 无废话

uniapp 测试 app 到安卓模拟器 1.1 安装安卓模拟器 https://www.yeshen.com/ 1.2 查看安装模拟器端口 右击夜神模拟器属性打开文件位置 在打开的文件夹找到 debugReport 双击运行查看运行出来的端口号 一般都是&#xff1a;62001 1.3 HBuilder 配置 选中项目运行运行到手机…

自然语言处理---Transformer机制详解之ELMo模型介绍

1 ELMo简介 ELMo是2018年3月由华盛顿大学提出的一种预训练模型. ELMo的全称是Embeddings from Language Models.ELMo模型的提出源于论文<< Deep Contextualized Word Representations >>.ELMo模型提出的动机源于研究人员认为一个好的预训练语言模型应该能够包含丰…

opencv dnn模块 示例(19) 目标检测 object_detection 之 yolox

文章目录 0、前言1、网络介绍1.1、输入1.2、Backbone主干网络1.3、Neck1.4、Prediction预测输出1.4.1、Decoupled Head解耦头1.4.2、Anchor-Free1.4.3、标签分配1.4.4、Loss计算 1.5、Yolox-s、l、m、x系列1.6、轻量级网络研究1.6.1、轻量级网络1.6.2、数据增强的优缺点 1.7、Y…

【JavaEE】线程安全的集合类 -- 多线程篇(9)

线程安全的集合类 多线程环境使用 ArrayList多线程环境使用队列多线程环境使用哈希表 多线程环境使用 ArrayList 自己使用同步机制 (synchronized 或者 ReentrantLock)Collections.synchronizedList(new ArrayList); synchronizedList 是标准库提供的一个基于 synchronized 进…

nginx的使用

一、nginx下载 1.打开nginx官网http://nginx.org/en/index.html 下载安装链接 nginx&#xff08;NGINX&#xff09;详细下载安装及使用教程&#xff08;非常适合入门&#xff09;_nginx下载-CSDN博客 二、安装nginx # 前往用户根目录 cd ~#下载nginx1.13.7wget http://nginx…

Flink之Window窗口机制

窗口Window机制 窗口概述窗口的分类是否按键分区按键分区窗口非按键分区 按照驱动类型按具体分配规则滚动窗口Tumbling Windows滑动窗口 Sliding Windows会话窗口 Session Windows全局窗口 Global Windows 时间语义窗口分配器 Window Assigners时间窗口计数窗口例子 窗口函数 W…

商品价格区间筛选

列表应用&#xff0c;商品价格区间筛选。 (本笔记适合熟悉python列表及列表的条件筛选的coder翻阅) 【学习的细节是欢悦的历程】 Python 官网&#xff1a;https://www.python.org/ Free&#xff1a;大咖免费“圣经”教程《 python 完全自学教程》&#xff0c;不仅仅是基础那么…

回归预测 | MATLAB实现基于BP-Adaboost的BP神经网络结合AdaBoost多输入单输出回归预测

回归预测 | MATLAB实现基于BP-Adaboost的BP神经网络结合AdaBoost多输入单输出回归预测 目录 回归预测 | MATLAB实现基于BP-Adaboost的BP神经网络结合AdaBoost多输入单输出回归预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.MATLAB实现基于BP-Adaboost的BP…

嵌入式养成计划-46----QT--简易版网络聊天室实现--QT如何连接数据库

一百一十九、简易版网络聊天室实现 119.1 QT实现连接TCP协议 119.1.1 基于TCP的通信流程 119.1.2 QT中实现服务器过程 使用QTcpServer实例化一个服务器对象设置监听状态&#xff0c;通过listen()函数&#xff0c;可以监听特定的主机&#xff0c;也可以监听所有客户端&#x…